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Abstract. In this paper we study the nonlinear parabolic system ∂t u = Δu+a|x|−γ |v|p−1v, ∂t v =
Δv+b|x|−ρ |u|q−1u , t > 0 , x ∈ R

N\{0} , N � 1 , a,b ∈ R , 0 � γ < min(N,2) , 0 < ρ <
min(N,2) , p,q > 1 . Under conditions on the parameters p,q,γ and ρ we show the existence
and uniqueness of global solutions for initial values small with respect of some norms. In partic-
ular, we show the existence of self-similar solutions with initial value Φ = (ϕ1,ϕ2) , where ϕ1 ,
ϕ2 are homogeneous initial data. We also prove that some global solutions are asymptotic for
large time to self-similar solutions.

1. Introduction

In this paper we consider global in time solutions of the following nonlinear
parabolic system

(S)
{

∂t u = Δu+a|.|−γ|v|p−1v,
∂t v = Δv+b|.|−ρ|u|q−1u,

with initial data
u(0,x) = ϕ1(x), v(0,x) = ϕ2(x), (1.1)

where u = u(t,x) ∈ R , v = v(t,x) ∈ R , t > 0, x ∈ R
N , a, b ∈ R , 0 � γ < min(N,2) ,

0 < ρ < min(N,2) , p , q > 1.
In what follows, we denote ‖.‖Lr(RN) by ‖.‖r . For f ,g : I → R , we denote when

there exists supt∈I
[
f (t),g(t)

]
= max

[
supt∈I f (t),supt∈Ig(t)

]
. For all t > 0, etΔ de-

notes the heat semi-group, that is

(
etΔ f

)
(x) =

∫
RN

G(t,x− y) f (y)dy,

where

G(t,x) = (4πt)−
N
2 e−

|x|2
4t , t > 0, x ∈ R

N ,

and f ∈ Lr(RN), r ∈ [1,∞) or f ∈C0(RN). For f ∈S ′(RN), etΔ f is defined by duality.
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A mild solution of the system (S)-(1.1) is a solution of the integral system⎧⎪⎨
⎪⎩

u(t) = etΔϕ1 +a
∫ t

0
e(t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)

)
dσ ,

v(t) = etΔϕ2 +b
∫ t

0
e(t−σ)Δ(|.|−ρ |u(σ)|q−1u(σ)

)
dσ .

(1.2)

We investigate the existence of global solutions, including self-similar solutions for the
semilinear system (1.2). Moreover, we are concerned with estimating the decaying rate
in time of some global solutions and their asymptotic behavior.

Using the key estimate established by Proposition 2.1 in [1] we can adapt the
method in Fujita and Kato [9, 10] and recently used in [1, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16].

This method is based on a contraction mapping argument on the associated integral
system (1.2). Precisely we transform the problem of existence and uniqueness of global
solutions into a problem of a fixed point for a function defined in a suitable Banach
space equipped with a norm chosen so that we obtain directly the global character of
the solution.

In this paper we seek conditions for the following parameters p , q , γ and ρ
such that we have the global existence of some class of solutions, including self-similar
solutions and the nonlinear asymptotic self-similar behavior of these solutions. For this
we define k , α1 , α2 , β1 and β2 by

k =
(2− γ)q+(2−ρ)
(2−ρ)p+(2− γ)

, (1.3)

α1 =
1

2(pq−1)
[(2−ρ)p+(2− γ)], (1.4)

α2 =
1

2(pq−1)
[(2− γ)q+(2−ρ)], (1.5)

β1 = α1 − N
2r1

=
1

2(pq−1)
[(2−ρ)p+(2− γ)]− N

2r1
, r1 > 1, (1.6)

β2 = α2 − N
2r2

=
1

2(pq−1)
[(2− γ)q+(2−ρ)]− N

2r2
, r2 > 1. (1.7)

Note that α1 and α2 verify the following system{
2− γ +2α1 = 2α2p,
2−ρ +2α2 = 2α1q

(1.8)

and that
kp > 1, q > k and

α2

α1
= k. (1.9)

Let us summarize the results of this paper. First of all if we suppose that the
following conditions

2α1 < min

(
N,

p
q
(N−ρ)

(2− γ)q+(2−ρ)
[2+(2−ρ)p− γ pq]+

)
, (1.10)
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and

2α2 < min

(
N,

q
p
(N− γ)

(2−ρ)p+(2− γ)
[2+(2− γ)q−ρ pq]+

)
, (1.11)

are satisfied, then we prove the global existence of solutions for some initial data Φ =
(ϕ1,ϕ2) small with respect to the norm N defined by

N (Φ) := sup
t>0

[
tβ1‖etΔϕ1‖r1 ,t

β2‖etΔϕ2‖r2

]
, (1.12)

where β1 and β2 are given by (1.6) and (1.7), r1 and r2 are defined in Lemma 1 below.
See Theorem 1 below. We also prove, for ϕ1 homogeneous of degree −2α1 and ϕ2

homogeneous of degree −2α2 , where α1 and α2 are given by (1.4) and (1.5), that
the initial data Φ = (ϕ1,ϕ2) gives rise to a global self-similar solution. See Theorem
2 below. Next we show as in [1], that solutions with initial data Ψ which behaves
asymptotically like Φ in some appropriate sense as |x| → ∞ , are asymptotically self-
similar in the L∞ -norm. See Theorem 3 below. The norm N given in (1.12) is weak
enough so that initial data Φ = (ϕ1,ϕ2) with homogeneous components have finite
norm. We prove finally stronger uniqueness results in Lebesgue spaces for initial values
small with respect of some norm. See Theorem 4 below.

Yamauchi in [18] studied the parabolic system (S). In [18, Theorem 2.1, p. 339] it
is shown that for some nonnegative initial values under the conditions γ < min(N,2) ,
ρ < min(N,2) , pq− 1 > 0 and max(α1,α2) � N/2, that no nonnegative nontrivial
solutions exist.

The case γ = ρ = 0 has been already covered in [16]. In the case where p = q and
γ = ρ > 0, the parabolic system (S) behaves like a parabolic equation with singularity
in the nonlinearity. For more reading about Hardy-Hénon equations see [1, 11, 12, 17].

The rest of the paper is organized as follows. In Section 2, we state the main
results. In Section 3, we give the proofs of the main theorems. Finally, in Section 4, we
give stronger uniqueness results. Throughout this paper C will be a positive constant
which may have different values at different places. We denote sometimes u(t) by
u(t, .) .

2. Main results

We now state the main results of the paper. Let etΔ be the linear heat semi-group
defined by

(etΔϕ)(x) = (G(t, .)∗ϕ)(x),

where G is the heat kernel

G(t,x) = (4πt)−
N
2 e−

|x|2
4t , t > 0, x ∈ R

N .

We recall the smoothing effect of the heat semi-group

‖etΔ f‖s2 � (4πt)−
N
2

(
1
s1
− 1

s2

)
‖ f‖s1 , (2.1)
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for 1 � s1 � s2 � ∞ , t > 0 and f ∈ Ls1(RN) . We recall also the following key estimate
from [1]

‖etΔ(|.|−γ f )‖q2 � C(N,γ,q1,q2)t
− N

2

(
1
q1

− 1
q2

)
− γ

2 ‖ f‖q1 , (2.2)

for 0 � γ < N , q1 and q2 such that 0 � 1/q2 < γ/N + 1/q1 < 1, t > 0 and f ∈
Lq1(RN) . We note that if q2 = ∞ , then etΔ(|.|−γ f ) ∈C0(RN) .

We begin with the following technical lemma.

LEMMA 1. (Technical lemma) Let N be a positive integer. Let p , q > 1 . Let
0 � γ < min(N,2) and 0 < ρ < min(N,2) . Let k be given by (1.3). Let α1 , α2 be
defined by (1.4) and (1.5). Suppose that (1.10) and (1.11) are satisfied. Let β1 , β2 be
given by (1.6) and (1.7). Then there exist r1 > 1 and r2 > 1 satisfying

r1 = kr2, (2.3)

such that

(i) β1 > 0 , β2 > 0 and β2 = kβ1 ,

(ii) 1
r1

< γ
N + p

r2
< 1 and 1

r2
< ρ

N + q
r1

< 1 ,

(iii) β2p < 1 and β1q < 1 ,

(iv) N
2r1

(
−1+ r1

r2
p
)

< 2−γ
2 and N

2r2

(
−1+ r2

r1
q
)

< 2−ρ
2 ,

(v) 1
r1

< 2α1
N < γ

N + p
r2

and 1
r2

< 2α2
N < ρ

N + q
r1

,

(vi) −N
2

(
p
r2
− 1

r1

)
− γ

2 −β2p+1+β1 = 0 and −N
2

(
q
r1
− 1

r2

)
− ρ

2 −β1q+1+β2 = 0.

We prove this lemma in the appendix.

THEOREM 1. (Global existence and continuous dependence) Let N be a positive
integer. Let p , q > 1 . Let 0 � γ < min(N,2) and 0 < ρ < min(N,2) . Let α1 , α2 be
defined by (1.4) and (1.5). Suppose that (1.10) and (1.11) are satisfied. Let β1 , β2 be
given by (1.6) and (1.7). Let r1 and r2 be as in Lemma 1. Let M > 0 be such that

ν = max(Mp−1ν1,M
q−1ν2) < 1, (2.4)

where ν1 and ν2 are two positive constants given by (3.8) and (3.9) below. Choose
R > 0 such that

R+Mν � M. (2.5)

Let Φ = (ϕ1,ϕ2) be an element of S ′(RN)×S ′(RN) such that

N (Φ) := sup
t>0

[
tβ1‖etΔϕ1‖r1 ,t

β2‖etΔϕ2‖r2

]
� R. (2.6)
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Then there exists a unique global solution U = (u,v) ∈ C((0,∞);Lr1(RN)×Lr2(RN))
of the integral system (1.2) such that

sup
t>0

[
tβ1‖u(t)‖r1 ,t

β2‖v(t)‖r2

]
� M. (2.7)

Furthermore,

(a) lim
t↘0

u(t) = ϕ1 and lim
t↘0

v(t) = ϕ2 in the sense of tempered distributions,

(b) u(t)− etΔϕ1 ∈C
(
[0,∞),Lτ1

(
R

N
))

for τ1 satisfying 2α1
N < 1

τ1
< γ

N + p
r2

,

(c) v(t)− etΔϕ2 ∈C
(
[0,∞),Lτ2

(
R

N
))

for τ2 satisfying 2α2
N < 1

τ2
< ρ

N + q
r1

,

(d) sup
t>0

tα1− N
2r ‖u(t)‖r < ∞, ∀r ∈ [r1,∞] and u ∈C

(
(0,∞),Lr

(
R

N
)∩C0

(
R

N )) ,

(e) sup
t>0

tα2− N
2r ‖v(t)‖r < ∞, ∀r ∈ [r2,∞] and v ∈C

(
(0,∞),Lr

(
R

N
)∩C0

(
R

N
))

.

In addition, if Φ = (ϕ1,ϕ2) and Ψ = (ψ1,ψ2) satisfy (2.6) and if U1 = (u1,v1) and
U2 = (u2,v2) respectively are the solutions of the system (1.2) with initial values Φ and
Ψ , then

sup
t>0

[
tβ1‖u1(t)−u2(t)‖r1 ,t

β2‖v1(t)− v2(t)‖r2

]
� (1−ν)−1N (Φ−Ψ). (2.8)

Furthermore, if the initial data Φ and Ψ are such that

Nδ (Φ−Ψ) = sup
t>0

[
tβ1+δ‖etΔ(ϕ1 −ψ1)‖r1 ,t

β2+δ‖etΔ(ϕ2−ψ2)‖r2

]
< ∞, (2.9)

for some 0 < δ < δ0, where

δ0 = min
{
1−β1q,1−β2p

}
. (2.10)

Then

sup
t>0

[
tβ1+δ‖u1(t)−u2(t)‖r1 ,t

β2+δ‖v1(t)− v2(t)‖r2

]
� (1−ν ′)−1Nδ (Φ−Ψ), (2.11)

where the positive constant M is chosen small enough so that 0 < ν ′ < 1, where ν ′ is
given by the relations (3.16)-(3.18) below.

Finally, if we suppose also that Φ = (ϕ1,ϕ2) ∈ LN/2α1
(
R

N
)×LN/2α2

(
R

N
)

such
that

N ′(Φ) := max

[
‖ϕ1‖ N

2α1
,‖ϕ2‖ N

2α2

]
< R, (2.12)

then the solution U = (u,v) of the integral system (1.2) satisfies also U ∈
C

(
[0,∞),LN/2α1

(
R

N
))×C

(
[0,∞),LN/2α2

(
R

N
))

and

sup
t�0

[
‖u(t)‖ N

2α1
,‖v(t)‖ N

2α2

]
� M. (2.13)

Where M and R are sufficiently small.
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Now we give the following result which proves the existence of self-similar solutions.

THEOREM 2. (Self-similar solutions) Let N be a positive integer. Let p , q > 1 .
Let 0 � γ < min(N,2) and 0 < ρ < min(N,2) . Let α1 , α2 be defined by (1.4)
and (1.5). Suppose that (1.10) and (1.11) are satisfied. Let ϕ1(x) = ω1(x)|x|−2α1 ,
ϕ2(x) = ω2(x)|x|−2α2 , where ω1,ω2 ∈ L∞(RN) are homogeneous of degree 0 and
‖ω1‖∞,‖ω2‖∞ are sufficiently small. Denote Φ = (ϕ1,ϕ2) , then there exists a global
self-similar solution US = (uS,vS) of (1.2) with initial data Φ . Moreover US(t) → Φ
in S ′ (

R
N
)
, as t → 0 .

We turn now to the asymptotic behavior.

THEOREM 3. (Asymptotic behavior) Let N be a positive integer. Let p , q > 1 .
Let 0 � γ < min(N,2) and 0 < ρ < min(N,2) . Let α1 , α2 be defined by (1.4) and
(1.5). Suppose that (1.10) and (1.11) are satisfied. Let β1 , β2 be given by (1.6) and
(1.7). Let r1 and r2 be as in Lemma 1. Define β1(q) and β2(q) by

β1(q) = α1 − N
2q

, β2(q) = α2 − N
2q

, q > 1. (2.14)

Let Φ be given by

Φ(x) =
(
ϕ1(x),ϕ2(x)

)
:=

(
ω1(x)|x|−2α1 ,ω2(x)|x|−2α2

)
with ω1 , ω2 homogeneous of degree 0, ω1,ω2 ∈ L∞ (

R
N
)

and ‖ω1‖∞ , ‖ω1‖∞ are
sufficiently small. Let

US (t,x) =
(

t−α1uS

(
1,

x√
t

)
,t−α2vS

(
1,

x√
t

))

be the self-similar solution of (1.2) given by Theorem 2.
Let Ψ = (ψ1,ψ2) ∈C0

(
R

N
)×C0

(
R

N
)

be such that

|ψ1(x)| � c
(1+ |x|2)α1

, ∀x ∈ R
N , ψ1(x) = ω1(x)|x|−2α1 , |x| � A,

|ψ2(x)| � c
(1+ |x|2)α2

, ∀x ∈ R
N , ψ2(x) = ω2(x)|x|−2α2 , |x| � A,

for some constant A > 0, where c is a small positive constant. (We take ‖ω1‖∞ , ‖ω2‖∞
and c sufficiently small so that (2.6) is satisfied by Φ and Ψ).

Let U = (u,v) be the global solution of (1.2) with initial data Ψ constructed by
Theorem 1. Then there exists δ > 0 sufficiently small such that

‖u(t)−uS (t)‖q1 � Cδ t−β1(q1)−δ , ∀ t > 0, (2.15)

‖v(t)− vS (t)‖q2 � Cδ t−β2(q2)−δ , ∀ t > 0, (2.16)
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for all q1 ∈ [r1,∞] , q2 ∈ [r2,∞] . Also, we have

‖tα1u(t, .
√

t)−uS (1, .)‖q1 � Cδ t−δ , ∀ t > 0, (2.17)

‖tα2v(t, .
√

t)− vS (1, .)‖q2 � Cδ t−δ , ∀ t > 0, (2.18)

for all q1 ∈ [r1,∞] , q2 ∈ [r2,∞] .

To close this section we give the conditions on p,q,γ,ρ which guarantee that the rela-
tions (1.10) and (1.11) are satisfied.

PROPOSITION 1. Let N be a positive integer. Let the real numbers p, q > 1 .
Suppose that

max[p,q]+1 <
N
2

(pq−1).

Then there exist γ0,ρ0 > 0 such that for all 0 � γ < γ0 , 0 < ρ < ρ0 , (1.10) and (1.11)
are satisfied.

PROPOSITION 2. Let N be a positive integer. Fix 0 < γ < min(2,N) and 0 <
ρ < min(2,N) . Let p,q > 1 such that

p � max

(
2− γ

N
+

2−ρ
N

+1,
2− γ

ρ
+

2
ρ

)
,

and

q � max

(
2−ρ

N
+

2− γ
N

+1,
2−ρ

γ
+

2
γ

)
.

Then (1.10) and (1.11) are satisfied.

The proof of those two propositions is given in the next section.

3. Proof of main results

We look for global solutions of the system (1.2) via a fixed point argument. Let us
denote U = (u,v) , Φ = (ϕ1,ϕ2) and

FΦ(U) = (FΦ(U),GΦ(U)), (3.1)

where

FΦ(U)(t) = etΔϕ1 +a
∫ t

0
e(t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)

)
dσ , (3.2)

GΦ(U)(t) = etΔϕ2 +b
∫ t

0
e(t−σ)Δ(|.|−ρ |u(σ)|q−1u(σ)

)
dσ , (3.3)

with ϕ1 and ϕ2 being two tempered distributions, a,b ∈ R, 0 � γ < min(N,2) , 0 <
ρ < min(N,2) , p,q > 1.
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Proof of Theorem 1. Let X be the set of continuous functions

U : (0,∞) → Lr1
(
R

N
)×Lr2

(
R

N
)
,

t �→ (u(t),v(t))

such that
‖U‖X := sup

t>0

[
tβ1‖u(t)‖r1 ,t

β2‖v(t)‖r2

]
< ∞,

where r1,r2 are two positive real numbers satisfying conditions in Lemma 1 and β1 ,
β2 are respectively given by (1.6) and (1.7). Let M > 0 and define the closed ball in
the Banach space X by

XM =
{
U ∈ X ,‖U‖X � M

}
.

XM, endowed with the metric d(U1,U2) = ‖U1 −U2‖X , is a complete metric space.
Consider the mapping FΦ defined by (3.1), where Φ = (ϕ1,ϕ2) ∈ S ′ (Rn)×S ′ (Rn)
satisfies (2.6). We will show that FΦ = (FΦ,GΦ) is a strict contraction mapping on XM.
Let Φ = (ϕ1,ϕ2) and Ψ = (ψ1,ψ2) belong to S ′ (Rn)×S ′ (Rn) satisfying (2.6). Let
U1 = (u1,v1) and U2 = (u2,v2) be two elements of XM . Then we have

tβ1‖FΦ(U1)(t)−FΨ(U2)(t)‖r1

�tβ1‖etΔ(ϕ1−ψ1)‖r1+|a|tβ1

∫ t

0
‖e(t−σ)Δ|.|−γ [|v1(σ)|p−1v1(σ)−|v2(σ)|p−1v2(σ)]‖r1dσ .

It follows, by the key estimate (2.2) with (q1,q2) = ( r2
p ,r1) that

tβ1‖FΦ(U1)(t)−FΨ(U2)(t)‖r1

�tβ1‖etΔ(ϕ1−ψ1)‖r1

+ |a|tβ1

∫ t

0
C(t−σ)−

N
2 ( p

r2
− 1

r1
)− γ

2
∥∥|v1(σ)|p−1v1(σ)−|v2(σ)|p−1v2(σ)

∥∥ r2
p
dσ .

(3.4)

Using the fact that, for r > p > 1,

‖| f |p−1 f −|g|p−1g‖r/p � p
(‖ f‖p−1

r +‖g‖p−1
r

)‖ f −g‖r,

we obtain by (3.4) and the fact that U1 and U2 belong to XM , that

tβ1‖FΦ(U1)(t)−FΨ(U2)(t)‖r1

�tβ1‖etΔ(ϕ1−ψ1)‖r1+2p|a|Ctβ1×
[∫ t

0
(t−σ)−

N
2r1

(
−1+r1

r2
p
)
−γ

2 σ−β2pMp−1dσ
]
‖U1−U2‖X .

It follows that

tβ1‖FΦ(U1)(t)−FΨ(U2)(t)‖r1

� tβ1‖etΔ(ϕ1−ψ1)‖r1+2|a|CpMp−1tβ1×
[∫ t

0
(t−σ)−

N
2r1

(
−1+r1

r2
p
)
−γ

2 σ−β2 pdσ
]
‖U1−U2‖X
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� tβ1‖etΔ(ϕ1−ψ1)‖r1 +2|a|CpMp−1t
− N

2

(
p
r2
− 1

r1

)
− γ

2−β2p+1+β1

×
[∫ 1

0
(1−σ)−

N
2r1

(
−1+r1

r2
p
)
− γ

2 σ−β2pdσ
]
‖U1−U2‖X . (3.5)

Similarly using estimate (2.2) with (q1,q2) = (r1/q,r2) , we obtain an analogous esti-
mate of tβ2‖GΦ(U1)(t)−GΨ(U2)(t)‖r2 . Thus

tβ2‖GΦ(U1)(t)−GΨ(U2)(t)‖r2

� tβ2‖etΔ(ϕ2−ψ2)‖r2+2|b|CqMq−1tβ2×
[∫ t

0
(t−σ)−

N
2r2

(
−1+r2

r1
q
)
−ρ

2 σ−β1qdσ
]
‖U1−U2‖X

� tβ2‖etΔ(ϕ2−ψ2)‖r2 +2|b|CqMq−1t
− N

2

(
q
r1
− 1

r2

)
− ρ

2 −β1q+1+β2

×
[∫ 1

0
(1−σ)−

N
2r2

(
−1+ r2

r1
q
)
− ρ

2 σ−β1qdσ
]
‖U1−U2‖X . (3.6)

Now, due to part (vi) of Lemma 1, inequalities (3.5) and (3.6) we obtain

‖FΦ(U1)−FΨ(U2)‖X � N (Φ−Ψ)+ ν‖U1−U2‖X , (3.7)

where
ν = max(Mp−1ν1,M

q−1ν2),

with

ν1 = 2|a|Cp
∫ 1

0
(1−σ)−

N
2r1

(
−1+ r1

r2
p
)
− γ

2 σ−β2 pdσ , (3.8)

ν2 = 2|b|Cq
∫ 1

0
(1−σ)−

N
2r2

(
−1+ r2

r1
q
)
− ρ

2 σ−β1q. (3.9)

Finally, from parts (iii)-(iv) of Lemma 1, we see that both quantities ν1 and ν2 are
finite. Setting Ψ = 0 and U2 = 0, the inequality (3.7) becomes

‖FΦ(U1)‖X � N (Φ)+ ν‖U1‖X . (3.10)

If we choose M and R such that (2.5) and (2.6) are satisfied, then by (3.10) FΦ maps
XM into itself. Letting Φ = Ψ , we observe that (3.7) becomes

‖FΦ(U1)−FΦ(U2)‖X � ν‖U1−U2‖X .

Hence inequality (2.4) gives that FΦ is a strict contraction mapping from XM into
itself. So FΦ has a unique fixed point U = (u,v) in XM which is solution of (1.2).
This achieves the proof of the existence of a unique global solution of (1.2) in XM .

We now prove the statements (a)-(c). Let τ1 be a positive real number satisfying

2α1

N
<

1
τ1

<
γ
N

+
p
r2

, (3.11)
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then by (2.2) with (q1,q2) = (r2/p,τ1) , we have

‖u(t)− etΔϕ1‖τ1 � |a|
∫ t

0
‖e(t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)

)‖τ1dσ

� |a|
∫ t

0
C(t −σ)−

N
2

(
p
r2
− 1

τ1

)
− γ

2 ‖v(σ)‖p
r2dσ

� |a|CMpt
− N

2

(
p
r2
− 1

τ1

)
−β2 p+1− γ

2

∫ 1

0
(1−σ)−

N
2

(
p
r2
− 1

τ1

)
− γ

2 σ−β2 pdσ .

Therefore

‖u(t)− etΔϕ1‖τ1 � C1t
− N

2

(
p
r2
− 1

τ1

)
−β2p+ 2−γ

2 , (3.12)

where

C1 = |a|CMp
∫ 1

0
(1−σ)−

N
2

(
p
r2
− 1

τ1

)
− γ

2 σ−β2 pdσ

is a positive constant. Owing to (3.11) and part (iii) of Lemma 1, the constant C1 is
finite. Similarly using (2.2) with (q1,q2) = (r1/q,τ2) , we obtain for τ2 satisfying

2α2

N
<

1
τ2

<
ρ
N

+
q
r1

, (3.13)

the following inequality

‖v(t)− etΔϕ2‖τ2 � C2t
− N

2

(
q
r1
− 1

τ2

)
−β1q+ 2−ρ

2 , (3.14)

where C2 is a positive constant given by

C2 = |b|CMq
∫ 1

0
(1−σ)−

N
2

(
q
r1
− 1

τ2

)
− ρ

2 σ−β1qdσ ,

which is finite by (3.13) and part (iii) of Lemma 1. Owing to the conditions (3.11) and
(3.13), the right hand sides of (3.12) and (3.14) converges to zero as t ↘ 0. This proves
statements (a)-(c) of Theorem 1.

Finally, the continuous dependence relation (2.8) of Theorem 1 follows by consid-
ering FΦ(U1) = U1 and FΨ(U2) = U2 in the inequality (3.7).

Now, if in addition Φ and Ψ satisfy (2.9), then following the same steps as above
but with the norm

‖U = (u,v)‖X ,δ = sup
t>0

[
tβ1+δ‖u(t)‖r1,t

β2+δ‖v(t)‖r2

]
,

we obtain by the key estimate (2.2) with (q1,q2) = (r2/p,r1) , the fact that U1 and U2

belong to XM and the estimate ‖v1(σ)− v2(σ)‖r2 � σ−β2−δ‖U1−U2‖X ,δ

tβ1+δ‖FΦ(U1)(t)−FΨ(U2)(t)‖r1

� tβ1+δ‖etΔ(ϕ1 −ψ1)‖r1

+|a|tβ1+δ ×
∫ t

0
C(t−σ)−

N
2

(
p
r2
− 1

r1

)
− γ

2
∥∥|v1(σ)|p−1v1(σ)−|v2(σ)|p−1v2(σ)

∥∥ r2
p
dσ
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� tβ1+δ‖etΔ(ϕ1 −ψ1)‖r1 +2|a|CpMp−1tβ1+δ

×
[∫ t

0
(t −σ)−

N
2r1

(
−1+ r1

r2
p
)
− γ

2 σ−β2p−δ dσ
]
‖U1−U2‖X ,δ

� tβ1+δ‖etΔ(ϕ1 −ψ1)‖r1 +2|a|CpMp−1t
− N

2

(
p
r2
− 1

r1

)
− γ

2−β2 p+1+β1

×
[∫ 1

0
(1−σ)−

N
2r1

(
−1+ r1

r2
p
)
− γ

2 σ−β2p−δ dσ
]
‖U1−U2‖X ,δ .

We obtain also

tβ2+δ‖GΦ(U1)(t)−GΨ(U2)(t)‖r2

� tβ2+δ‖etΔ(ϕ2 −ψ2)‖r2 +2|b|CqMq−1t
− N

2

(
q
r1
− 1

r2

)
− ρ

2 −β1q+1+β2

×
[∫ 1

0
(1−σ)−

N
2r2

(
−1+ r2

r1
q
)
− ρ

2 σ−β1q−δ dσ
]
‖U1−U2‖X ,δ .

Then
‖FΦ(U1)−FΨ(U2)‖X ,δ � Nδ (Φ−Ψ)+ ν ′‖U1−U2‖X ,δ , (3.15)

where
ν ′ = max(Mp−1ν ′

1,M
q−1ν ′

2), (3.16)

with

ν ′
1 = 2|a|Cp

∫ 1

0
(1−σ)−

N
2r1

(
−1+ r1

r2
p
)
− γ

2 σ−β2 p−δ dσ , (3.17)

ν ′
2 = 2|b|Cq

∫ 1

0
(1−σ)−

N
2r2

(
−1+ r2

r1
q
)
− ρ

2 σ−β1q−δ . (3.18)

Since FΦ(U1) = U1 and FΨ(U2) = U2 , then (3.15) becomes

sup
t>0

[
tβ1+δ‖u1(t)−u2(t)‖r1 ,t

β2+δ‖v1(t)− v2(t)‖r2

]
� (1−ν ′)−1Nδ (Φ−Ψ).

Now, since 0 < δ < δ0 with δ0 given by (2.10), ν ′
1 and ν ′

2 are finite. Thus, (2.11)
holds by choosing ν ′ < 1 (this choice is possible for M small enough), where ν ′ is
given by (3.16)-(3.18).

We now prove statements (d)-(e) of Theorem 1 for r = ∞ , we use some arguments
of [15]. Let us consider two real numbers r and r′ such that r = kr′ and

1 < r1 < r � ∞ 1 < r2 < r′ � ∞,

0 < N
2

(
p
r2
− 1

r

)
< 2−γ

2 , 0 < N
2

(
q
r1
− 1

r′
)

< 2−ρ
2 .

(3.19)

Remark that such a choice is possible owing to Lemma 4. Write now,

u(t) = e
t
2 Δu(t/2)+a

∫ t

t
2

e(t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)
)
dσ .
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Then by using the smoothing properties of the heat semigroup (2.1), the estimate (2.2)
with (q1,q2) = (r2/p,r) , (3.19) and the estimate (2.7), we obtain

tα1− N
2r ‖u(t)‖r

� C sup
t>0

[
t
α1− N

2r1 ‖u(t)‖r1

]
+ |a|tα1− N

2r

∫ t

t
2

‖e(t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)
)‖rdσ

� CM +Ctα1− N
2r

∫ t

t
2

(t−σ)−
N
2

(
p
r2
− 1

r

)
− γ

2 ‖v(σ)‖p
r2dσ

� CM +CMptα1− N
2r

∫ t

t
2

(t−σ)−
N
2

(
p
r2
− 1

r

)
− γ

2 σ−β2 pdσ

� CM +CMp
∫ 1

1
2

(1−σ)−
N
2

(
p
r2
− 1

r

)
− γ

2 σ−β2 pdσ ,

which leads to
sup
t>0

[
tα1− N

2r ‖u(t)‖r

]
� C(M) < ∞.

Analogously, we obtain the following estimate on the second component v :

sup
t>0

[
tα2− N

2r′ ‖v(t)‖r′
]

� C(M) < ∞.

We iterate this procedure, for the next step we replace in (3.19) r1 by r , r2 by r′ and
we consider two real numbers s2 and s′2 such that s2 = ks′2 and

1 < r < s2 � ∞ 1 < r′ < s′2 � ∞,

0 < N
2

(
p
r′ − 1

s2

)
< 2−γ

2 , 0 < N
2

(
q
r − 1

s′2

)
< 2−ρ

2 .

We obtain

sup
t>0

[
t
α1− N

2s2 ‖u(t)‖s2 ,t
α2− N

2s′2 ‖v(t)‖s′2

]
� C(M) < ∞.

We therefore construct two sequences (si)i and (s′i)i with s0 = r1, s′0 = r2, s1 = r,
s′1 = r′ and such that si = ks′i, ∀i = 0,1,2, . . . and

1 < si < si+1 � ∞, 1 < s′i < s′i+1 � ∞,

0 < N
2

(
p
s′i
− 1

si+1

)
< 2−γ

2 , 0 < N
2

(
q
si
− 1

s′i+1

)
< 2−ρ

2 .

We prove that

sup
t>0

[
t
α1− N

2si ‖u(t)‖si ,t
α2− N

2s′i ‖v(t)‖s′i

]
� C(M) < ∞, ∀i = 0,1,2, . . . .

Now by Lemma 4, one can choose the sequences (si)i and (s′i)i such that they reach ∞
for some finite i . We finally obtain

sup
t>0

[
tα1‖u(t)‖∞,tα2‖v(t)‖∞

]
� C(M) < ∞,
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with C(M) ↘ 0 as M ↘ 0.
Finally, if in addition Φ satisfies (2.12), the fact that the solution U = (u,v) of

the integral system (1.2) with initial value Φ belongs to C
(
[0,∞),LN/2α1

(
R

N
))×

C
(
[0,∞),LN/2α2

(
R

N
))

and the proof of the affirmation (2.13) are based on a contrac-
tion mapping argument in the set

YM =
{

U = (u,v) ∈C
(
[0,∞),L

N
2α1

(
R

N))×C
(
[0,∞),L

N
2α2

(
R

N))∩
C

(
(0,∞),Lr1

(
R

N))×C
(
(0,∞),Lr2

(
R

N))
;

max
[
sup
t�0

[‖u(t)‖ N
2α1

,‖v(t)‖ N
2α2

],sup
t>0

[tβ1‖u(t)‖r1 ,t
β2‖v(t)‖r2 ]

]
� M

}
.

Endowed with the metric

d(U1,U2) := d
(
(u1,v1),(u2,v2)

)
= max

[
sup
t�0

[‖u1(t)−u2(t)‖ N
2α1

,‖v1(t)−v2(t)‖ N
2α2

],

sup
t>0

[tβ1‖u1(t)−u2(t)‖r1 ,t
β2‖v1(t)−v2(t)‖r2 ]

]
,

YM is a nonempty complete metric space. Consider the mapping FΦ defined by (3.2)-
(3.3), where Φ = (ϕ1,ϕ2) ∈ LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

satisfies (2.12). We will show
that FΦ = (FΦ,GΦ) is a strict contraction mapping on YM . Let Φ = (ϕ1,ϕ2) and
Ψ = (ψ1,ψ2) belong to LN/2α1(RN)×LN/2α2(RN) satisfying (2.12). Let U1 = (u1,v1)
and U2 = (u2,v2) be two elements of YM . Then we have

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1

� ‖etΔ(ϕ1−ψ1)‖ N
2α1

+|a|
∫ t

0

∥∥∥e(t−σ)Δ|.|−γ [|v1(σ)|p−1v1(σ)−|v2(σ)|p−1v2(σ)
]∥∥∥

N
2α1

dσ .

It follows, by the key estimate (2.2) with (q1,q2) = (r2/p,N/2α1) that

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1

�‖ϕ1−ψ1‖ N
2α1

+|a|
∫ t

0
C(t−σ)−

N
2

(
p
r2
−2α1

N

)
−γ

2
∥∥|v1(σ)|p−1v1(σ)−|v2(σ)|p−1v2(σ)

∥∥ r2
p
dσ ,

(3.20)

we obtain by (3.20) and the fact that U1 and U2 belong to YM , that

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1

� ‖ϕ1−ψ1‖ N
2α1

+ |a|C×
[∫ t

0
(t−σ)−

N
2

(
p
r2
− 2α1

N

)
− γ

2 2pσ−β2pMp−1dσ
]
d(U1,U2),

it follows that

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1
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� ‖ϕ1−ψ1‖ N
2α1

+2|a|CpMp−1×
[∫ t

0
(t−σ)−

N
2

(
p
r2
− 2α1

N

)
− γ

2 σ−β2pdσ
]
d(U1,U2)

� ‖ϕ1−ψ1‖ N
2α1

+2|a|CpMp−1t
− N

2

(
p
r2
− 2α1

N

)
− γ

2−β2p+1

×
[∫ 1

0
(1−σ)−

N
2

(
p
r2
− 2α1

N

)
− γ

2 σ−β2 pdσ
]
d(U1,U2).

Owing to (1.7), we get

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1

�‖ϕ1−ψ1‖ N
2α1

+2|a|CpMp−1tα1−pα2+
2−γ
2 ×

[∫ 1

0
(1−σ)−

N
2

(
p
r2
−2α1

N

)
−γ

2 σ−β2pdσ
]
d(U1,U2).

Since α1 , α2 satisfy (1.4) and (1.5), using the fact that r1 > N/2α1 and due to part (iv)
of Lemma 1, it follows that

α1 − pα2 +
2− γ

2
= 0,

N
2

(
p
r2

− 2α1

N

)
+

γ
2

<
N
2

(
p
r2

− 1
r1

)
+

γ
2

< 1.

Using also the fact that β2p < 1, we get

‖FΦ(U1)(t)−FΨ(U2)(t)‖ N
2α1

� N ′(Φ−Ψ)+Mp−1ν ′′
1 d(U1,U2), (3.21)

with ν ′′
1 is a finite positive constant defined by

ν ′′
1 = 2|a|Cp×

[∫ 1

0
(1−σ)−

N
2

(
p
r2
− 2α1

N

)
− γ

2 σ−β2 pdσ
]
.

Similarly, we get

‖GΦ(U1)(t)−GΨ(U2)(t)‖ N
2α2

� N ′(Φ−Ψ)+Mq−1ν ′′
2 d(U1,U2), (3.22)

with ν ′′
2 is a finite positive constant defined by

ν ′′
2 = 2|b|Cq×

[∫ 1

0
(1−σ)−

N
2

(
q
r1
− 2α2

N

)
− ρ

2 σ−β1qdσ
]
.

Owing to (3.21) and (3.22) we get

sup
t�0

[
‖FΦ(U1)(t)−FΨ(U2)(t)‖ N

2α1
,‖GΦ(U1)(t)−GΨ(U2)(t)‖ N

2α2

]
�N ′(Φ−Ψ)+ ν ′′d(U1,U2), (3.23)

where
ν ′′ = max(Mp−1ν ′′

1 ,Mq−1ν ′′
2 ).
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We can conclude now from (3.7) and (3.23) and from the estimate N (Φ − Ψ) �
N ′(Φ−Ψ), that

d(FΦ(U1),FΨ(U2)) � N ′(Φ−Ψ)+max(ν,ν ′′)d(U1,U2). (3.24)

It is clear that if U ∈YM , then FΦ(U)∈C
(
[0,∞),L

N
2α1

(
R

N
))×C

(
[0,∞),L

N
2α2

(
R

N
))

∩C
(
(0,∞),Lr1

(
R

N
))×C

(
(0,∞),Lr2

(
R

N
))

. Hence, by choosing M and R such that

R+Mmax(ν,ν ′′) � M, (3.25)

it follows that FΦ is a strict contraction from YM into itself. So Fϕ has a unique fixed
point in YM which is solution of (1.2).

Remark finally when the initial data Φ belongs to LN/2α1
(
R

N
)× LN/2α2

(
R

N
)

with respect to the norm N ′ , that the condition (2.6) is satisfied, since N (Φ) �
N ′(Φ) . We note also that by the previous calculations, precisely (3.24), we have
the following continuous dependence property: Let Φ = (ϕ1,ϕ2), Ψ = (ψ1,ψ2) ∈
LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

and let UΦ = (uΦ,vΦ) and UΨ = (uΨ,vΨ) be the solutions

of (1.2) with initial values Φ and respectively Ψ , with sup
t�0

[
‖uΦ(t)‖N/2α1

,‖vΦ(t)‖N/2α2

]
� M and sup

t�0

[
‖uΨ(t)‖N/2α1

,‖vΨ(t)‖N/2α2

]
� M . Then

sup
t�0

[
‖uΦ(t)−uΨ(t)‖ N

2α1
,‖vΦ(t)− vΨ(t)‖ N

2α2

]

�(1−K)−1×max

[
‖ϕ1−ψ1‖ N

2α1
,‖ϕ2 −ψ2‖ N

2α2

]
, (3.26)

for some positive constant K = max(ν,ν ′′). This finishes the proof of Theorem 1. �
Let us define the scaling operator dλ by

[dλ ϕ ](x) = ϕ(λx).

It follows that
etΔdλ = dλ eλ 2tΔ,∀λ > 0.

Proof of Theorem 2. We now construct self-similar solution with initial data Φ .
We adapt the method used in [1]. Let us define Φλ , for λ > 0, by

Φλ (x) :=
(
λ 2α1ϕ1(λx),λ 2α2ϕ2(λx)

)
.

It is clear that Φλ satisfies

Φλ (x) = Φ(x),∀λ > 0.

Let U be the solution of the integral system (1.2) with initial data Φ constructed
by Theorem 1 ( remark that N (Φ) < ∞ , since r1 satisfies parts (i)-(ii) of Lemma 4
below and by homogeneity, also N (Φ) is sufficiently small since ‖ω1‖∞ and ‖ω2‖∞
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are sufficiently small). That is U belong to XM . We want to prove that Uλ = U ,
∀λ > 0, where Uλ (t,x) :=

(
uλ (t,x),vλ (t,x)

)
, ∀λ > 0, with

uλ (t,x) = λ 2α1u(λ 2t,λx),

and
vλ (t,x) = λ 2α2v(λ 2t,λx).

To do this it suffice to prove that Uλ is also a solution of (1.2) with the same initial
data Φλ = Φ and that Uλ belong to XM . On one hand due the homogeneity properties
of the system (1.2), if U = (u,v) solves this system, then the scaled function solves it
also. In fact

dλ u(λ 2t) = dλ eλ 2tΔϕ1 +a
∫ λ 2t

0
dλ e(λ 2t−σ)Δ(|.|−γ |v(σ)|p−1v(σ)

)
dσ

= etΔdλ ϕ1 +a
∫ λ 2t

0
e

(
t− σ

λ2

)
Δ(

dλ (|.|−γ |v(σ)|p−1v(σ))
)
dσ

= etΔdλ ϕ1 +a
∫ λ 2t

0
λ−γe

(
t− σ

λ2

)
Δ(|.|−γ |dλv(σ)|p−1dλ v(σ)

)
dσ

= etΔdλ ϕ1 +a
∫ t

0
λ 2−γe(t−σ)Δ (|.|−γ |dλ v

(
λ 2σ

) |p−1dλ v
(
λ 2σ

))
dσ .

Hence by (1.8), we get

λ 2α1dλ u
(
λ 2t

)
= etΔdλ

(
λ 2α1ϕ1

)
+a

∫ t

0
e(t−σ)Δ (|.|−γ λ 2−γ+2α1 |dλ v(λ 2σ)|p−1dλ v

(
λ 2σ

))
dσ

= etΔdλ
(
λ 2α1ϕ1

)
+a

∫ t

0
e(t−σ)Δ (|.|−γ |λ 2α2dλ v

(
λ 2σ

) |p−1λ 2α2dλ v
(
λ 2σ

))
dσ ,

we conclude finally that

uλ (t) = etΔϕ1 +a
∫ t

0
e(t−σ)Δ (|.|−γ |vλ (σ)|p−1vλ (σ)

)
dσ . (3.27)

Similarly we obtain

vλ (t) = etΔϕ2 +b
∫ t

0
e(t−σ)Δ (|.|−ρ |uλ (σ)|p−1uλ (σ)

)
dσ . (3.28)

The affirmation follows from (3.27)-(3.28). On the other hand we have

‖uλ (t)‖r1 = λ 2α1
∥∥dλ u(λ 2t)

∥∥
r1

= λ 2α1λ− N
r1

∥∥u
(
λ 2t

)∥∥
r1

=
(
λ 2)β1

∥∥u
(
λ 2t

)∥∥
r1

.

Hence

sup
t>0

tβ1‖uλ (t)‖r1 = sup
λ 2t>0

(
λ 2t

)β1
∥∥u

(
λ 2t

)∥∥
r1

= sup
t>0

tβ1‖u(t)‖r1 ,
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similarly sup
t>0

tβ2‖vλ (t)‖r2 = sup
t>0

tβ2‖v(t)‖r2 . It follows so that ‖Uλ‖X = ‖U‖X . Then

by uniqueness in XM , we have Uλ = U and thus U is self-similar. Let us denote it
by US . The fact that US(t) → Φ in S ′ (

R
N
)
, as t → 0, follows by statement (c) in

Theorem 1. �

Proof of Theorem 3. The proof is similar to the one of Theorem 5.1 in [1], we
simply indicate that

(i) sup
t>0

tβ1+δ
∥∥∥etΔ(ϕ1−ψ1)

∥∥∥
r1

< ∞ , for 0 < δ < N
2 −α1 .

(ii) sup
t>0

tβ2+δ
∥∥∥etΔ(ϕ2−ψ2)

∥∥∥
r2

< ∞ , for 0 < δ < N
2 −α2 .

By the formula (2.11), we have that

sup
t>0

[
tβ1+δ‖u(t)−uS (t)‖r1 ,t

β2+δ‖v(t)− vS (t)‖r2

]
� CNδ (Φ−Ψ).

That is

sup
t>0

[
tβ1+δ‖u(t)−uS (t)‖r1 ,t

β2+δ‖v(t)− vS (t)‖r2

]
� C ,

for δ > 0 sufficiently small and C a finite positive constant. This gives (2.15)-(2.16)
directly for q1 = r1 and q2 = r2 .

We now turn to prove the asymptotic result in the L∞ -norm. Write

u(t)−uS (t)

=e
t
2 Δ (u(t/2)−uS (t/2))+a

∫ t

t
2

e(t−σ)Δ [|.|−γ (|v(σ)|p−1v(σ)−|vS (σ)|p−1vS (σ)
)]

dσ ,

v(t)− vS (t)

=e
t
2 Δ (v(t/2)−vS (t/2))+b

∫ t

t
2

e(t−σ)Δ [|.|−γ (|u(σ)|q−1u(σ)−|uS (σ)|q−1uS (σ)
)]

dσ .

Let T > 0 be an arbitrary real number. By using the smoothing properties of the heat
semi-group with (s1,s2) = (r1,∞) and the estimate (2.2) with (q1,q2) = (∞,∞) , it
follows that

tα1+δ ‖u(t)−uS (t)‖∞ � tα1+δ
∥∥∥e

t
2 Δ (u(t/2)−uS (t/2))

∥∥∥
∞

+ |a|tα1+δ ×∫ t

t
2

∥∥∥e(t−σ)Δ[|.|−γ (|v(σ)|p−1v(σ)−|vS (σ)|p−1vS (σ)
)]∥∥∥

∞
dσ

� Ctβ1+δ ‖u(t/2)−uS (t/2)‖r1
+ |a|Ctα1+δ ×∫ t

t
2

(t−σ)−
γ
2
(‖v(σ)‖p−1

∞ +‖vS (σ)‖p−1
∞

)‖v(σ)−vS (σ)‖∞dσ .
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Using (2.11) to estimate the first term and the fact that ‖vS (t)‖∞ �Ct−α2 , ‖v(t)‖∞ �
Ct−α2 to estimate the last term, we get

tα1+δ‖u(t)−uS (t)‖∞

�C(δ )+ |a|C×
[∫ 1

1
2

(1−σ)−
γ
2 σ−α2 p−δ dσ

]
sup

t∈(0,T ]

(
tα2+δ‖v(t)− vS (t)‖∞

)
.

Which leads to

tα1+δ‖u(t)−uS (t)‖∞ �C(δ )+C sup
t∈(0,T ]

[
tα1+δ‖u(t)−uS (t)‖∞,tα2+δ‖v(t)− vS (t)‖∞

]
.

(3.29)
Similarly we have

tα2+δ‖v(t)−vS (t)‖∞ �C(δ )+C sup
t∈(0,T ]

[
tα1+δ‖u(t)−uS (t)‖∞,tα2+δ‖v(t)− vS (t)‖∞

]
.

(3.30)
Using (3.29) and (3.30) we obtain

sup
t∈(0,T ]

[
tα1+δ‖u(t)−uS (t)‖∞,tα2+δ‖v(t)− vS (t)‖∞

]
� C′(δ ).

Since the constant C′(δ ) does not depend on T > 0, one can take the supremum over
(0,∞) . This proves (2.15)-(2.16) for r1 = ∞ and r2 = ∞ . Using the interpolation
inequality

‖u(t)−uS (t)‖q1 � ‖u(t)−uS (t)‖μ1
r1 ‖u(t)−uS (t)‖1−μ1

∞ ,

where
1
q1

=
μ1

r1
+

1− μ1

∞
=

μ1

r1
.

We get

‖u(t)−uS (t)‖q1 � ‖u(t)−uS (t)‖μ1
r1 ‖u(t)−uS (t)‖1−μ1

∞

� Ctμ1[−β1(r1)−δ ]+(1−μ1)[−β1(∞)−δ ] = Ct−β1(q1)−δ .

We have also
‖v(t)− vS (t)‖q2 � Ct−β2(q2)−δ .

Hence we obtain the results (2.15)-(2.16) in general case. The estimate (2.17)-
(2.18) follows by a simple dilation argument. We prove just the first estimate (2.17),
the proof of the second estimate is similar. We have

‖u(t)−uS (t)‖q1 =
∥∥∥∥u(t, .)−t−α1uS

(
1,

.√
t

)∥∥∥∥
q1

=
∥∥∥∥d 1√

t
u(t, .

√
t)−t−α1d 1√

t
uS (1, .)

∥∥∥∥
q1

=
∥∥∥∥d 1√

t

[
u
(
t, .

√
t
)− t−α1uS (1, .)

]∥∥∥∥
q1
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=
(

1√
t

)− N
q1 ∥∥u

(
t, .

√
t
)− t−α1uS (1, .)

∥∥
q1

.

Then by using inequality (2.15) and relation (2.14), we get (2.17). �

Proof of Proposition 1. If γ = 0 and ρ = 0, then (1.10) and (1.11) are verified.
Since these are strict inequalities, they must hold for small γ � 0 and ρ > 0. This
finishes the proof of the proposition. �

Proof of Proposition 2. Let α1 and α2 defined by (1.4) and (1.5), respectively.
Under the conditions

q � 2−ρ
γ

+
2
γ
,

and

p � 2− γ
ρ

+
2
ρ

,

we have that conditions (1.10) and (1.11) are equivalent to the conditions 2α1 < N
and 2α2 < N . Now, since q � 2−ρ

N + 2−γ
N + 1, we see that 2α1 < N and since p �

2−γ
N + 2−ρ

N +1, we obtain that 2α2 < N . This finishes the proof of the proposition. �

4. Stronger uniqueness results

It has been proved in Theorem 1 that for small initial data Φ = (ϕ1,ϕ2) ∈
LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

with respect of the norm N ′ , there exists a solution UΦ =
(uΦ,vΦ) of the integral system (1.2) and uniqueness is guaranteed only among contin-
uous functions U : [0,∞) → LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

which also verify

sup
t>0

[
tβ1‖u(t)‖r1 , t

β2‖v(t)‖r2

]
is sufficiently small. Our aim in this section is to prove

that uniqueness is guaranteed for solutions which belong to C
(
[0,∞),LN/2α1

(
R

N
))×

C
(
[0,∞),LN/2α2

(
R

N
))∩C

(
(0,∞),Lr1

(
R

N
))×C

(
(0,∞),Lr2

(
R

N
))

, which improves
the result of uniqueness in Lebesgue spaces given in Theorem 1. We will use arguments
of type Brezis Cazenave [2]. We have obtained the following result.

THEOREM 4. Let N be a positive integer. Let p , q > 1 . Let 0 � γ < min(N,2)
and 0 < ρ < min(N,2) . Let α1 , α2 be defined by (1.4) and (1.5). Suppose that (1.10)
and (1.11) are satisfied. Let β1 , β2 be given by (1.6) and (1.7). Let r1 and r2 be
as in Lemma 1. Let M , R > 0 be such that (3.25) is satisfied. Let Φ = (ϕ1,ϕ2) ∈
LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

satisfying (2.12). Let UΦ = (uΦ,vΦ) ∈ YM be the solution
of the integral system (1.2) with initial data Φ constructed by Theorem 1. Let V =
(v1,v2) ∈C

(
[0,∞),LN/2α1

(
R

N
))×C

(
[0,∞),LN/2α2

(
R

N
))∩C

(
(0,∞),Lr1

(
R

N
))

×C
(
(0,∞),Lr2

(
R

N
))

be a solution of (1.2) with the same initial data Φ . Then

V (t) = UΦ(t), ∀t ∈ [0,∞).
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The proof of this theorem relies on the following two lemmas.

LEMMA 2. Let N be a positive integer. Let p , q > 1 . Let 0 � γ < min(N,2)
and 0 < ρ < min(N,2) . Let α1 , α2 be defined by (1.4) and (1.5). Suppose that (1.10)
and (1.11) are satisfied. Let β1 , β2 be given by (1.6) and (1.7). Let r1 and r2 be
as in Lemma 1. Let M , R > 0 be such that (3.25) is satisfied. Let Φ = (ϕ1,ϕ2) ∈
LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

satisfying (2.12). Let UΦ = (uΦ,vΦ) be the solution of the
integral system (1.2) with initial data Φ constructed by Theorem 1. Then for all T > 0 ,
there exists a unique solution UΦ,T = UΦ ∈YM,T of (1.2) with initial data Φ , where

YM,T =

{
U = (u,v) ∈C

(
[0,T ),L

N
2α1

(
R

N))×C
(
[0,T ),L

N
2α2

(
R

N))∩

C
(
(0,T ),Lr1

(
R

N))×C
(
(0,T ),Lr2

(
R

N))
;

max

[
sup

t∈[0,T )

[
‖u(t)‖ N

2α1
,‖v(t)‖ N

2α2

]
, sup
t∈(0,T )

[
tβ1‖u(t)‖r1,t

β2‖v(t)‖r2

]]
� M

}
.

Proof. The existence of the unique solution UΦ,T of (1.2) with initial data Φ fol-
lows by a fixed point argument in YM,T . Let UΦ ∈ YM be the solution of (1.2) with
initial data Φ . Owing to the fact that UΦ ∈ YM ⊂ YM,T and by uniqueness in YM,T , we
obtain UΦ,T = UΦ . �

LEMMA 3. Let N be a positive integer. Let p , q > 1 . Let 0 � γ < min(N,2)
and 0 < ρ < min(N,2) . Let α1 , α2 be defined by (1.4) and (1.5). Suppose that
(1.10) and (1.11) are satisfied. Let M , R > 0 be such that (3.25) is satisfied. Let
Φ = (ϕ1,ϕ2) ∈ LN/2α1

(
R

N
)× LN/2α2

(
R

N
)

satisfying (2.12). Let UΦ = (uΦ,vΦ) be
the solution of the integral system (1.2) with initial data Φ constructed by Theorem 1.
Let (Φτ ) =

(
(ϕ1,τ ,ϕ2,τ)

)
be a family of functions satisfying (2.12) such that

Φτ −→
τ→0

Φ, in L
N

2α1
(
R

N)×L
N

2α2
(
R

N)
.

Then the family of solutions (UΦτ ) =
(
(uΦτ ,vΦτ )

)
of the integral system (1.2) verify

UΦτ (t) −→τ→0
UΦ(t), in L

N
2α1

(
R

N)×L
N

2α2
(
R

N)
,∀t ∈ [0,∞).

Proof. By continuous dependance (3.26) in YM , it follows that

max

[
‖uΦτ (t)−uΦ(t)‖ N

2α1
,‖vΦτ (t)− vΦ(t)‖ N

2α2

]

�(1−K)−1×max

[
‖ϕ1,τ −ϕ1‖ N

2α1
,‖ϕ2,τ −ϕ2‖ N

2α2

]
, ∀t ∈ [0,∞).

By letting τ → 0, we obtain the result. �
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Proof of Theorem 4. Since V = (v1,v2) ∈C
(
[0,∞),LN/2α1

(
R

N
))×

C
(
[0,∞),LN/2α2

(
R

N
))

, then there exists ε1 > 0 such that

N ′ (V (s)) = max

[
‖v1(s)‖ N

2α1
,‖v2(s)‖ N

2α2

]
< R, ∀s ∈ [0,ε1]. (4.1)

Let us define Vτ = (v1,τ ,v2,τ) by Vτ(t) = V (t + τ), ∀τ ∈ (0,ε1/2] , ∀t ∈ [0,ε1/2].
We have from (4.1) and since

(
tβ1‖v1,τ(t)‖r1 ,t

β2‖v2,τ(t)‖r2

) → (0,0) as t → 0, ∀τ ∈
(0,ε1/2] :

(a) max

[
‖v1,τ(0)‖ N

2α1
,‖v2,τ(0)‖ N

2α2

]
= max

[
‖v1(τ)‖ N

2α1
,‖v2(τ)‖ N

2α2

]
< R , ∀τ ∈(

0, ε1
2

]
,

(b) sup
t∈[0,

ε1
2 ]

[
‖v1,τ(t)‖ N

2α1
,‖v2,τ(t)‖ N

2α2

]
< R � M , ∀τ ∈ (

0, ε1
2

]
,

(c) there exists 0 < Tτ � ε1 such that sup
t∈(0, Tτ

2 ]

[
tβ1‖v1,τ(t)‖r1 ,t

β2‖v2,τ(t)‖r2

]
� M ,

∀τ ∈ (
0, ε1

2

]
.

It follows then that Vτ ∈ YM,Tτ /2, using now Lemma 2 we deduce that Vτ(t) =
UVτ(0)(t) , ∀τ ∈ (0,ε1/2], ∀t ∈ [0,Tτ/2], where UVτ(0) is the solution of the integral sys-
tem (1.2) with initial data Vτ(0) constructed by Theorem 1. Hence Vτ(t) = UVτ(0)(t),
∀τ ∈ (0,ε1/2], ∀t ∈ [0,∞). By Lemma 3, we obtain Vτ(t)−→

τ→0
UΦ(t) , in LN/2α1

(
R

N
)×

LN/2α2
(
R

N
)
, ∀t ∈ [0,∞). On the other hand Vτ(t)=V (t+τ)−→

τ→0
V (t) , in LN/2α1

(
R

N
)×

LN/2α2
(
R

N
)
, ∀t ∈ [0,∞), (since V is continuous in [0,∞)). Finally, we conclude by

uniqueness of the limit that V (t) = UΦ(t) , ∀t ∈ [0,∞). �
Consider now the integral equation

u(t) = etΔϕ +a
∫ t

0
e(t−s)Δ(|.|−γ |u(s)|p−1u(s)

)
ds, (4.2)

where u = u(t,x) ∈ R , t > 0, x ∈ R
N , a ∈ R, 0 < γ < min(N,2) and p > 1. Set

qc =
N(p−1)

2− γ
. (4.3)

Suppose that
N(p−1)

2− γ
> 1, (i.e. qc > 1). (4.4)

By choosing γ = ρ , p = q and r1 = r in Lemma 4, using the fact that 1
qc
− 2

Np =
2+(2−γ)p−γ p2

Np(p2−1) and the equivalence qc > 1 ⇔ (A.1) , it follows that there exists r > qc

satisfying
1
qc

− 2
Np

<
1
r

<
N− γ
Np

. (4.5)
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COROLLARY 1. Let N be a positive integer. Suppose that p > 1 . Let 0 < γ <
min(N,2) . Let qc be defined by (4.3). Suppose that (4.4) is satisfied. Let r > qc

satisfying (4.5). Let ϕ ∈ Lqc(RN) sufficiently small. Then there exists a global so-
lution of the integral equation (4.2), which is unique in the class of functions u ∈
C

(
[0,∞),Lqc

(
R

N
))∩C

(
(0,∞),Lr

(
R

N
))

.

Proof. Let N be a positive integer. Suppose that p = q > 1. Suppose that γ = ρ
with 0 < γ < min(N,2) . Let α1 = α2 defined by (1.4). Suppose that (A.1) is satisfied.
Let β1 , β2 be given by (1.6) and (1.7). Let r1 = r2 be as in Lemma 1. Let M , R > 0
be such that (3.25) is satisfied. Let Φ = (ϕ1,ϕ1) ∈ LN/2α1

(
R

N
)×LN/2α2

(
R

N
)

satis-
fying (2.12). Let UΦ = (uΦ,uΦ) ∈ YM be the solution of the integral system (1.2) with
initial data Φ constructed by Theorem 1. Let V = (v1,v1) ∈C

(
[0,∞),LN/2α1

(
R

N
))×

C
(
[0,∞),LN/2α2

(
R

N
))∩C

(
(0,∞),Lr1

(
R

N
))×C

(
(0,∞),Lr2

(
R

N
))

be a solution of
(1.2) with the same initial data Φ . Then by Theorem 4

V (t) = UΦ(t), ∀t ∈ [0,∞).

This finishes the proof. �

REMARK 1. The previous corollary improves the class of uniqueness for the scalar
Hardy-Hénon parabolic equations given by Theorem 1.1 (iii)-(b) in [1].

REMARK 2. Using the same steps as above we prove that for initial data Φ =
(ϕ1,ϕ2) ∈ Lq1

(
R

N
)× Lq2

(
R

N
)

such that N/2α1 < q1 < r1 and N/2α2 < q2 < r2,
there exists a local solution UΦ = (uΦ,vΦ) of the integral system (1.2) and unique-
ness is guaranteed in the class of solutions which belong to C

(
[0,T ],Lq1

(
R

N
))×

C
(
[0,T ],Lq2

(
R

N
))∩C

(
(0,T ],Lr1

(
R

N
))×C

(
(0,T ],Lr2

(
R

N
))

, for any fixed 0 < T <
Tmax , where Tmax is the maximal existence time. This improves the result of uniqueness
in Lebesgue spaces given by Theorem 1.1 (iii)-(a) in [1].

A. Auxiliary lemmas

Let us state the following result which will be needed in the proof of the technical
lemma.

LEMMA 4. Let N be a positive integer. Let p , q > 1 . Let 0 � γ < min(N,2) and
0 < ρ < min(N,2) . Let k given by (1.3). Suppose that (1.10) and (1.11) are satisfied.
Then there exists a real number r1 satisfying the conditions:

(i) N pq−1
(2−ρ)p+(2−γ) < r1 ,

(ii) Nk pq−1
(2−γ)q+(2−ρ) < r1 ,

(iii) N
N−γ kp < r1 ,

(iv) N
N−ρ q < r1 ,
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(v) N
2−γ (kp−1) < r1 ,

(vi) N
2−ρ (q− k) < r1 ,

(vii) r1 < Nk p(pq−1)
[2+(2−ρ)p−γ pq]+

,

(viii) r1 < Nk p(pq−1)
[2+(2−ρ)p−γ pq]+

.

Proof. We will treat the cases where 2+(2−ρ)p− γ pq > 0 and 2+(2− γ)q−
ρ pq > 0, the other cases are simple. One can easily see that r1 exists if and only if the
left-hand sides of inequalities (i)-(vi) are less than the right-hand sides of inequalities
(vii) and (viii). Since pq−1 > 0 we verify easily:

(i) N pq−1
(2−ρ)p+(2−γ) < Nk p(pq−1)

2+(2−ρ)p−γ pq ,

(ii) Nk pq−1
(2−γ)q+(2−ρ) < Nk p(pq−1)

2+(2−ρ)p−γ pq ,

(iii) N
2−γ (kp−1) < Nk p(pq−1)

2+(2−ρ)p−γ pq ,

(iv) N
2−ρ (q− k) < Nk p(pq−1)

2+(2−ρ)p−γ pq ,

(v) N pq−1
(2−ρ)p+(2−γ) < N q(pq−1)

2+(2−γ)q−ρ pq ,

(vi) Nk pq−1
(2−γ)q+(2−ρ) < N q(pq−1)

2+(2−γ)q−ρ pq ,

(vii) N
2−γ (kp−1) < N q(pq−1)

2+(2−γ)q−ρ pq ,

(viii) N
2−ρ (q− k) < N q(pq−1)

2+(2−γ)q−ρ pq .

Condition 2α1 < N implies that N
N−γ kp < Nk p(pq−1)

2+(2−ρ)p−γ pq , condition 2α1 < p
q (N −

ρ) (2−γ)q+(2−ρ)
2+(2−ρ)p−γ pq implies that N

N−ρ q < Nk p(pq−1)
2+(2−ρ)p−γ pq , condition 2α2 < N implies that

N
N−ρ q< N q(pq−1)

2+(2−γ)q−ρ pq and finally condition 2α2 < q
p(N−γ) (2−ρ)p+(2−γ)

2+(2−γ)q−ρ pq implies that
N

N−γ kp < N q(pq−1)
2+(2−γ)q−ρ pq . This finishes the proof of the lemma. �

Proof of Lemma 1. Assume the hypotheses of Lemma 1, which are the same as
those of Lemma 4. Let r1 be given by Lemma 4 and define r2 by r2 = k−1r1 .

Owing to (1.9) the conditions (i)-(v) in Lemma 1 are equivalent to the conditions
(i)-(viii) in Lemma 4. Finally (vi) in Lemma 1 follows by (1.6), (1.7) and (1.8). �

REMARK 3. In the case where γ = ρ and p = q it suffice to change the hypothe-
ses (1.10) and (1.11) by the hypothesis

2α1 < N. (A.1)
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