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EIGENVALUE CRITERIA FOR EXISTENCE AND NONEXISTENCE
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Abstract. This article concerns nonexistence and existence of positive solutions to the fractional
differential equation {

Dα u(t)+ f (t,u(t)) = 0, 0 � t < ∞,
u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0,

where α ∈ (2,3) , Dα is the standard Riemann-Liouville derivative and f : R
+ ×R

+ → R
+ is

a continuous function. The main results obtained here, are under eigenvalue criteria.

1. Introduction and main results

Because that fractional differential equations are considered as alternative models
to nonlinear differential equations, study of existence of positive solutions to boundary
value problems associated with fractional differential equations has become a very im-
portant area of applied mathematics over the last few decades. Such a subject has been
discussed in many recent papers; see, for example [7], [8], [10], [11], [12], [13], [14],
[17], [18], [19] and references therein.

We are concerned in this paper with nonexistence and existence of positive solu-
tions to the fractional boundary value problem (fbvp for short),{

Dαu(t)+ f (t,u(t)) = 0, 0 � t < ∞,
u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0,

(1.1)

where α ∈ (2,3) , Dα is the standard Riemann-Liouville derivative and f : R
+×R

+ →
R

+ is a continuous function.
Motivated by the works in [1], [4], [5], [6] and [20], we want to establish nonexis-

tence and existence results to the fbvp (1.1) under eigenvalue criteria.
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Set

Qα =
{

q ∈C
(
R

+,R
)

: q(s) > 0 a.e. s > 0 and
∫ +∞

0
q(s)(1+ s)α−1 ds < ∞

}
.

A continuous function g : R
+ ×R → R is said to be Qα -Caratheodory if for all

r > 0 there is ψr ∈ Qα such that∣∣∣g(t,(1+ t)α−1 u
)∣∣∣� ψr(t)(1+ t)α−1 , for all t ∈ R

+ and u ∈ [−r,r] .

A continuous function g : R
+×R → R such that∣∣∣(1+ t)1−α g(t,u)
∣∣∣� a(t)+b(t) |u|ρ , for all t,u ∈ R

+,

where ρ ∈ (0,+∞) and a, b̃ ∈ Qα ∈ C (R+) with b̃(s) = (1+ s)(α−1)(ρ−1) b(s), is a
typical Qα -Caratheodory function.

Consider for q in Qα the linear fractional boundary value problem{
Dαu(t)+ μq(t)u(t) = 0, a.e. t ∈ (0,�∞) ,
u(0) = Dα−2u(0) = 0, limt→∞ Dα−1u(t) = 0,

(1.2)

where μ is a real parameter.

PROPOSITION 1. For all functions q in Qα the fbvp (1.2) admits a unique posi-
tive eigenvalue μα (q) .

PROPOSITION 2. Assume that the nonlinearity f is a Qα -Caratheodory function
and there exists q ∈ Qα such that one of the following Hypotheses (1.3) and (1.4)

μα (q) < 1 and f (t,u) � q(t)u, for all t,u � 0, (1.3)

μα (q) > 1 and f (t,u) � q(t)u, for all t,u � 0 (1.4)

holds true. Then the fbvp (1.1) has no positive solutions.

The existence result for positive solutions to the fbvp (1.1) needs to introduce the
following additional notations. Set for a Qα -Caratheodory function g : R

+ ×R → R,
q ∈ Qα and ν = 0,+∞

g+
ν (q) = limsupu→ν

(
maxt�0

g(t,(1+ t)α−1 u)
(1+ t)α−1 q(t)u

)
,

g−ν (q) = liminfu→ν

(
mint�0

g(t,(1+ t)α−1 u)
(1+ t)α−1 q(t)u

)
.
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THEOREM 1. Assume that the nonlinearity f is Qα -Caratheodory function and
there exist two functions q0,q∞ in Qα such that one of the following hypotheses (1.5)
or (1.6) holds true:

f +
+∞(q∞)
μα(q∞)

< 1 <
f−0 (q0)
μα(q0)

(1.5)

or
f +
0 (q0)

μα(q0)
< 1 <

f−+∞(q0)
μα(q∞)

. (1.6)

Then the fbvp (1.1) admits a positive solution.

Consider now the particular case of the fbvp (1.1), where the nonlinearity f takes
the form:

f (t,u) = m(t)(1+ t)α−1 h

(
t,

u

(1+ t)α−1

)
.

Namely, we consider the fbvp{
Dαu(t)+m(t)(1+ t)α−1 h

(
t, u(t)

(1+t)α−1

)
= 0, t > 0,

u(0) = Dα−2u(0) = 0, limt→∞ Dα−1u(t) = 0,
(1.7)

where m ∈ Qα and h : R
+×R

+ → R
+ is a continuous function such that{

for all r > 0 there is Mr > 0 such that
h(t,u) � Mr, for all t � 0 and u ∈ [0,r] . (1.8)

Set ν = 0,+∞

h+
ν = limsupu→ν

(
maxt�0

h(t,u)
u

)
,

h−ν = liminfu→ν

(
mint�0

h(t,u)
u

)
.

We obtain from Proposition 2 and Theorem 1 the following corollaries.

COROLLARY 1. Assume that that hypothesis (1.8) holds true. If either

h(t,u) < ηu with 0 < η < μα(m)

or
h(t,u) > ηu with η > μα(m),

then the fbvp (1.7) admits no positive solution.

COROLLARY 2. Assume that hypothesis (1.8) holds true. If either

h+
+∞ < μα(m) < h−0

or
h+

0 < μα(m) < h−+∞,

then the fbvp (1.7) admits a positive solution.
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At the end of this section, we consider the particular case of the fbvp (1.1), where
f (t,u) = p(t)(1+ t)α−1 uρ . Namely, we consider the case of the fbvp{

Dαu(t)+ p(t)uρ = 0, t > 0,
u(0) = Dα−2u(0) = 0, limt→∞ Dα−1u(t) = 0,

(1.9)

where ρ > 0 and p ∈C (R+,R+) .
We obtain from Corollary 2 the following existence result.

COROLLARY 3. Assume that m∈Qα where m(t) = p(t)(1+ t)(α−1)(ρ−1) . Then
for all ρ ∈ (0,1)∪ (1,+∞) the fbvp (1.9) admits a positive solution.

Proof. We have

p(t)uρ = p(t)(1+ t)ρ(α−1)

(
u

(1+ t)(α−1)

)ρ

= m(t)(1+ t)α−1 h

(
u

(1+ t)(α−1)

)
,

where h(x) = xρ and{
h+

+∞ = 0 < μα(m) < h−0 = +∞, if ρ ∈ (0,1) ,
h+

0 = 0 < μα(m) < h−+∞ = +∞, if ρ ∈ (1,+∞) .

Thus, existence of a positive solution for the fbvp (1.9) is obtained from Corollary
2. �

2. Abstract background

Let X be a real Banach space, the standard notations L (X) and r(L) refer re-
spectively to the set of all linear bounded self-mapping defined on X and the spectral
radius of an operator L in L (X) . Let K be a cone in X , that is K is a nonempty closed
convex subset of X such that K ∩ (−K) = {0E} and tK ⊂ K for all t � 0. Hereafter,
� denotes the partial order induced by the cone K on the Banach space X . We write
for all x,y ∈ X : x� y (or y	 x ) if y−x∈ K and x≺ y (or y� x ) if y−x∈ K �{0E} .

DEFINITION 1. Let L be a compact operator in L (X) . L is said to be

i) positive, if L(K) ⊂ K ,

ii) strongly positive, if int(K) �= /0 and L(K �{0X}) ⊂ int(K) ,

iii) lower bounded on the cone K, if

inf{‖Lu‖ : u ∈ K∩∂B(0E ,1)} > 0.

In all what follows, LK (X) denotes the subset of all positive compact operators
in L (X) and we set for all L ∈ LK (X)

ΛL = {θ � 0 : ∃u � 0X such that Lu 	 θu} ,
ΓL = {θ � 0 : ∃u � 0X such that Lu � θu} .
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DEFINITION 2. Let L be an operator in LK (X) and μ > 0. The operator L is
said to have the strongly index-jump property (SIJP for short) at μ if

r(L) = supΛL = infΓL.

PROPOSITION 3. (Proposition 3.16 in [2]) Let L be an operator in LK (X) . If L
is strongly positive, then L has the SIJP at r(L).

THEOREM 2. (Theorem 3.23 in [2]) Let L be an operator in LK (X) and assume
that there is an increasing sequence (Ln) of operators in LK (X) such that Ln → L in
operator norm and for all integers n � 1, Ln has the SIJP at μn . Then L has the SIJP
at μ = limμn = supμn .

REMARK 1. We have from Proposition 3.14 and Proposition 3.15 in [3] that if
L ∈ LK (X) has the SIJP at μ , then μ is the unique positive eigenvalue of L.

REMARK 2. It is easy to see that if L ∈ LK (X) has the SIJP at μ and L(K) ⊂
P ⊂ K , where P is a cone in E, then L ∈ LP (X) has the SIJP at μ .

In this work, the problem of existence and nonexistence of positive solutions for
the fbvp (1.1) will be converted to that of existence and nonexistence of fixed point for
a completely continuous mapping defined on a cone of an appropriate functional space.
This why we need the following two abstract results. Let T : K → K be a completely
continuous mapping. The following proposition provides under eigenvalue criteria a
nonexistence result for fixed point to the mapping T .

PROPOSITION 4. Assume that there exists L ∈ LK(X) having the SIJP at μ such
that one of the following conditions (2.1) and (2.2) holds true,

μ > 1 and Tu 	 Lu, for all u ∈ K, (2.1)

μ < 1 and Tu � Lu, for all u ∈ K. (2.2)

Then T has no positive fixed point.

Proof. We present the proof in the case of (2.1) holds, the other case is checked
similarly. To the contrary, suppose there exists u � 0X such that Tu = u. In this case
we have that u = Tu 	 Lu, 1 ∈ ΛL and μ = infΛL � 1.This contradicts μ > 1 in
hypothesis (2.1). �

The following theorem is an adapted version of Theorem 3.25 in [2]. It provides
under eigenvalue criteria an existence result for fixed point to the mapping T.

THEOREM 3. Assume that there exist two operators L1,L2 in LK(X) and two
functions F1,F2 : K → K such that⎧⎪⎪⎨⎪⎪⎩

L1 is lower bounded on K,
L1 has the SIJP at r(L1),
0 < r (L2) < 1 < r (L1) and
L1u−F1u � Tu � L2u+F2u, for all u ∈ K.
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If either
F1u = ◦(‖u‖) as u → ∞ and F2u = ◦(‖u‖) as u → 0 (2.3)

or
F1u = ◦(‖u‖) as u → 0 and F2u = ◦(‖u‖) as u → ∞, (2.4)

then T has a positive fixed point.

3. Riemann-Liouville fractional derivative

Now, let us recall some basic facts related to the theory of fractional differential
equations. Let β be a positive real number, the Riemann-Liouville fractional integral
of order β of a function f : (0,+∞) → R is defined by

Iβ
0+ f (t) =

1
Γ(β )

∫ t

0
(t− s)β−1 f (s)ds,

where Γ(β ) is the gamma function, provided that the right side is pointwise defined on

(0,+∞) . For example, we have for any real σ > −1, Iβ
0+tσ = Γ(σ+1)

Γ(σ+β+1)t
σ+β .

The Riemann-Liouville fractional derivative of order β , of a continuous function
f : (0,+∞) → R is given by

Dβ
0+ f (t) =

1
Γ(n−β )

(
d
dt

)n ∫ t

0

f (s)
(t − s)β−n+1

ds,

where n = [β ]+1, [β ] denotes the integer part of the number β , provided that the right
side is pointwise defined on R

+ .

As a basic example, we quote for σ > −1, Dβ
0+tσ = Γ(σ+1)

Γ(σ−β+1)t
σ−β . Thus, if

u ∈ C (0,+∞)∩L
1 (0,+∞) , then the fractional differential equation Dβ

0+u(t) = 0 has

u(t) = ∑i=[β ]+1
i=1 citβ−i , ci ∈ R , as unique solution and if u has a fractional derivative of

order β in C (0,+∞)∩L
1 (0,+∞) , then

Iβ
0+Dβ

0+u(t) = u(t)+
i=[β ]+1

∑
i=1

cit
β−i, ci ∈ R. (3.1)

For a detailed presentation on fractional differential calculs, see [15] or [16].

4. Fixed point formulation

Now, we introduce some spaces and operators needed for the proof of the main
results of this paper. Throughout, we let E and F be the linear spaces defined by

E =
{

u ∈C
(
R

+,R
)

: lim
t→∞

u(t)
tα−1 = 0 ∈ R

}
,
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equipped with the norm ‖·‖E where for all u ∈ E, ‖u‖E = supt>0
|u(t)|

(1+t)α−1 , E becomes

a Banach space.
In all what follows E+ denotes the cone of nonnegative functions in E and the

subset P of E defined by

P = {u ∈ E : u(t) � γ(t)‖u‖E , for all t � 0} ,

where
γ(t) = min

(
1,tα−1) ,

is a cone in E.
Let G : R

+ ×R
+ → R be the function given by

G(t,s) =
1

Γ(α)

{
tα−1− (t− s)α−1, 0 � s � t < ∞,
tα−1, 0 � t � s < ∞.

LEMMA 1. The functions G and
∂G
∂ t

are continuous and have the following prop-

erties:

G(0,s) = 0, for all s � 0, (4.1)

0 < G(t,s) � tα−1

Γ(α)
, for all t,s � 0, (4.2)

lim
t→0

G(t,s)
tα−1 =

1
Γ(α)

, lim
t→+∞

G(t,s)
tα−1 = 0, for all s � 0, (4.3)

G(t,s) � γ(t)
G(τ,s)

(1+ τ)α−1 , for all t,τ,s � 0, (4.4)

∂G
∂ t

(t,s) > 0, for all t,s > 0. (4.5)

Proof. Properties (4.1), (4.2), (4.3) and (4.5) are easy to check, let us prove prop-
erty (4.4). Set for η > 0 and s ∈ (0,η) , ϕη (s) = ηα−1 − (η − s)α−1 . The function
ϕη has the following properties: for all s ∈ (0,η) ,

ϕ ′
η (s) > 0 and

(
ϕη (s)
sα−1

)′
< 0, for all s ∈ (0,η) ,

lim
s→0

ϕη (s)
sα−1 = +∞ and lim

s→η

ϕη (s)
sα−1 = 1,

(1+ τ)α−1 � ϕη (s) � sα−1, for all s ∈ (0,η) , (4.6)

if η < ξ then ϕη (s) < ϕξ (s) , for all s ∈ (0,η) .

Therefore, we have

G(t,s) =
1

Γ(α)

{
ϕt (s) , if 0 � s � t < ∞,
ϕt (t) , if 0 � t � s < ∞ (4.7)
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and we obtain from the above properties of the function ϕη that for all t,τ,s > 0,

G(t,s)
G(τ,s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt (t)
ϕτ (s)

� tα−1

ϕτ(τ)
� tα−1

(1+ τ)α−1 � γ(t)

(1+ τ)α−1 , if t � s � τ,

ϕt (s)
ϕτ (τ)

�
( s

τ

)α−1
� 1 � 1

(1+ τ)α−1 � γ(t)

(1+ τ)α−1 , if τ � s � t,

ϕt (t)
ϕτ (τ)

� tα−1

(τ +1)α−1 � γ(t)
(1+ τ)α−1 , if τ, t � s,

ϕt (s)
ϕτ (s)

� ϕτ (s)
ϕτ(s)

= 1 � 1

(1+ τ)α−1 � γ(t)

(1+ τ)α−1 , if s � τ � t,

ϕt (s)
ϕτ (s)

=
ϕt(s)
sα−1

ϕτ (s)
sα−1

� 1
ϕτ (s)
tα−1

� tα−1

(1+ τ)α−1 � γ(t)

(1+ τ)α−1 , if s � t � τ,

proving property (4.4) of the function G . �

LEMMA 2. For all functions h in C (R+,R)∩L
1 (R+) , u(t) =

∫+∞
0 G(t,s)h(s)ds

is the unique solution to the fbvp:{
Dαu(t)+h(t) = 0 in (0,+∞) ,
u(0) = Dα−2u(0) = limt→+∞ Dα−1u(t) = 0.

Proof. Applying the operator Iα , we obtain from (3.1) that u is a solution to
Dαu(t)+h(t) = 0 if and only if

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3− 1

Γ(α)

∫ t

0
(t− s)α−1 h(s)ds, (4.8)

where c1,c2 and c3 are real constants. Consequently, the boundary condition u(0) = 0
and (4.8) lead to c3 = 0,

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1 h(s)ds+ c1t

α−1 + c2t
α−2

and

Dα−2u(t) = −
∫ t

0
(t− s)h(s)ds+ c1Γ(α)t + c2Γ(α −1). (4.9)

The boundary condition Dα−2u(0) = 0 and (4.9) lead to c2 = 0,

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1 h(s)ds+ c1t

α−1

and

Dα−1u(t) = −
∫ t

0
h(s)ds+ c1Γ(α). (4.10)
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At the end, the boundary condition Dα−1u(+∞) = 0 and (4.10) lead to c1 = 1
Γ(α)∫+∞

0 h(s)ds and

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1 h(s)ds+

tα−1

Γ(α)

∫ ∞

0
h(s)ds =

∫ +∞

0
G(t,s)h(s)ds. �

In order to prove the compactness of operators, we make use of the following
Lemma.

LEMMA 3. ([9])A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E ,

(b) the functions belonging to

{
u : u(t) =

x(t)

(1+ t)α−1 , x ∈ M

}
are locally equicon-

tinuous on [0,+∞), that is, equicontinuous on every compact interval of R
+ and

(c) the functions belonging to

{
u : u(t) =

x(t)

(1+ t)α−1 , x ∈ M

}
are equiconvergent

at +∞, that is, given ε > 0, there corresponds T (ε) > 0 such that |x(t)−
x(+∞)| < ε , for any t � T (ε) and x ∈ M.

LEMMA 4. Let g : R
+ ×R → R be a Qα -Caratheodory function . The operator

Tg : E → E with Tgu(t) =
∫+∞
0 G(t,s)g(s,u(s))ds, is well defined and is completely

continuous. Moreover, if g(t,u) � 0 , for all t,u � 0, then Tg(E+) ⊂ P and u ∈ E is a
fixed point of Tg if and only if u is a solution to{

Dαu(t)+g(t,u(t)) = 0, 0 < t < ∞,
u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0.

Proof. The fact that Tgu ∈ E for all u ∈ E follows from the following estimates
(4.11), (4.15) and (4.16). Let Ω ⊂ B(0E ,R) be a subset of E and let ψR ∈ Qα such
that

g(t,(1+ t)α−1 u) � ψR(t)(1+ t)α−1 , for all t � 0 and u ∈ [−R,R] .

We have then for all u ∈ Ω

|Tu(t)|
(1+ t)α−1 �

∫ +∞

0

G(t,s)

(1+ t)α−1

∣∣∣∣∣g
(

s,(1+ s)α−1 u(s)

(1+ s)α−1

)∣∣∣∣∣ds

�
∫ +∞

0
ψR(s)(1+ s)α−1 ds. (4.11)

This shows that the operator T is bounded on Ω .
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Let [ξ ,η ] be an interval of R
+. We have for all u ∈ Ω and all t1,t2 ∈ [ξ ,η ] with

0 < t2− t1 < 1,∣∣∣∣∣ Tu(t2)

(1+ t2)
α−1 −

Tu(t1)

(1+ t1)
α−1

∣∣∣∣∣
� 1

Γ(α)

∫ t1

0

∣∣∣∣∣
(

t2 − s
1+ t2

)α−1

−
(

t1 − s
1+ t1

)α−1
∣∣∣∣∣ψR(s)(1+ s)α−1 ds

+
1

Γ(α)

∫ t2

t1

(
t2− s
1+ t2

)α−1

ψR(s)(1+ s)α−1 ds

+
1

Γ(α)

∣∣∣∣∣
(

t2
1+ t2

)α−1

−
(

t1
1+ t1

)α−1
∣∣∣∣∣
∫ +∞

0
ψR(s)(1+ s)α−1 ds. (4.12)

We have by the mean value theorem:∣∣∣∣∣
(

t2 − s
1+ t2

)α−1

−
(

t1 − s
1+ t1

)α−1
∣∣∣∣∣� (α −1)

(
η

1+ η

)α−2 ∣∣∣∣ t2− s
1+ t2

− t1− s
1+ t1

∣∣∣∣
� (α −1)

(
η

1+ η

)α−2 (t2 − t1) (1+ s)
(1+ t2) (1+ t1)

� (α −1)
(

η
1+ η

)α−2

(t2− t1) (4.13)

and ∣∣∣∣( t2
1+t2

)α−1−
(

t1
1+t1

)α−1
∣∣∣∣� (α −1)

(
η

1+η

)α−2(
t2

1+t2
− t1

1+t1

)
� (α −1)

(
η

1+η

)α−2
(t2 − t1) . (4.14)

Set |ψR|α = 1
Γ(α)

∫ +∞
0 ψR(s)(1+ s)α−1 ds , inserting (4.13) and (4.14) in (4.12) we ob-

tain:∣∣∣∣∣ Tu(t2)
(1+t2)

α−1 −
Tu(t1)

(1+t1)
α−1

∣∣∣∣∣� 2
(α−1)
Γ(α)

(
η

1+η

)α−2

|ψR|α (t2−t1)+
(

t2−t1
1+t2

)α−1

|ψR|α

� 1
Γ(α)

(
2(α −1)

(
η

1+ η

)α−2

+1

)
|ψR|α (t2 − t1)

(4.15)

Proving that Tg (Ω) is equicontinuous.
We have for any u in Ω and t � 0∣∣∣∣∣ Tu(t)

(1+ t)α−1

∣∣∣∣∣�
∫ +∞

0

G(t,s)

(1+ t)α−1 |g(s,u(s))|ds
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�
∫ +∞

0

G(t,s)
(1+ t)α−1 ψR(s)(1+ s)α−1 ds = H(t). (4.16)

Since ψR ∈ Qα , the property (4.3) of the function G and the dominated convergence
theorem lead to limt→∞ H(t) = 0 and then Tg(Ω) is equiconvergent.

Now, let us prove that the operator Tg is continuous on Ω . Let u be a function in
Ω and (un) ⊂ Ω is such that limun = u . Because of∥∥Tgun−Tgu

∥∥
E � sup

t�0

∫ +∞

0

G(t,s)

(1+ t)α−1 |g(s,un(s))−g(s,u(s))|ds

� sup
t�0

tα−1

(1+ t)α−1

∫ +∞

0
|g(s,un(s))−g(s,u(s))|ds

�
∫ +∞

0
|g(s,un(s))−g(s,u(s))|ds,

|g(s,un(s))−g(s,u(s))| � 2ψR(s),

and
lim |g(s,un(s))−g(s,u(s))| = 0, for all s � 0,

we have by the Lebesgue dominated convergence theorem lim
∥∥Tgun−Tgu

∥∥
E = 0.

Proving the continuity of Tg . Thus, Tg (Ω) satisfies all conditions of Lemma 3 and
the mapping Tg is completely continuous.

At the end, assume that g(t,u) � 0 for all t,u � 0, we obtain from property (4.4)
of the function G , that for any u ∈ E+ and t,τ � 0

Tgu(t) =
∫ +∞

0
G(t,s)g(s,u(s))ds �

∫ +∞

0
γ (t)

G(τ,s)

(1+ τ)α−1 g(s,u(s))ds

leading to

Tgu(t) � γ (t)sup
τ�0

∫ +∞

0

G(τ,s)

(1+ τ)α−1 g(s,u(s))ds � γ (t)
∥∥Tgu

∥∥ .

This proves that Tg (E+) ⊂ P and in particular Tg (P) ⊂ P. The fact that fixed point of
Tg are solutions to the fbvp in Lemma 4 follows from Lemma 2. �

We obtain from Lemma 4 the following formulation of the fbvp (1.1).

COROLLARY 4. A function u∈C (R+,R+) is a positive solution to the fbvp (1.1)
if and only if u = Tf u, where Tf : P → P is completely continuous and Tf u(t) =∫+∞
0 G(t,s) f (s,u(s))ds for all u ∈ P.

5. Proofs of main results

5.1. Auxilliary result

The main result of this subsection (Theorem 4) and its proof need to introduce
additional notations. With a function q in Qα and T > 0 are associated the linear
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operators Lq in L (E) , LF
q , LF

q,T in L (F) and KF
q,T in L (FT ) defined by

Lqu(t) =
∫ +∞

0
G(t,s)q(s)u(s)ds, for all u ∈ E,

LF
q u = Lqu, for all u ∈ F,

LF
q,T u(t) =

∫ T

0
GT (t,s)q(s)u(s)ds, for all u ∈ F,

KF
q,T u(t) =

∫ T

0
GT (t,s)q(s)u(s)ds, for all u ∈ FT ,

where for T > 0 GT : R
+ × [0,T ] → R

+ be such that

GT (t,s) =
{

G(t,s), if t,s ∈ [0,T ] ,
G(T,s), if t � T

and FT , F1
T are the Banach spaces defined by

FT =
{

u ∈C [0,T ] : lim
t→0

u(t)
tα−1 = l ∈ R

}
F1

T =
{

u ∈ FT :
u(t)
tα−1 ∈C1 [0,T ]

}
equipped respectively with the norms

‖u‖FT
= sup

t∈[0,T ]

|u(t)|
tα−1 , for all u ∈ FT ,

‖u‖F1
T

= ‖u‖FT
+ sup

t∈[0,T ]

∣∣∣∣( u(t)
tα−1

)′∣∣∣∣ , for all u ∈ F1
T .

Set for T > 0

ST =
{

u ∈ FT : u(t) > 0, for all t ∈ (0,T ] and lim
t→0

u(t)
tα−1 > 0

}
.

LEMMA 5. The set ST is open in the Banach space FT and S ⊂ F+
T .

Proof. We have FT �ST = F1∪F2 , where

F1 = {u ∈ FT : u(t∗) < 0 for some t∗ ∈ (0,T ]}
F2 =

{
u ∈ FT : lim

t→0

u(t)
tα−1 � 0

}
.

It is clear that F2 is a closed set in FT , so let (un) ⊂ F1 be a sequence converging
to u in FT and (tn) ⊂ (0,T ] with un(tn) � 0 and lim tn = t ∈ [0,T ] . We distinguish
then two cases:
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Case 1. t ∈ (0,T ] . In this case we have u(t) = limn→+∞ un (tn) � 0 and u ∈ F1.

Case 2. t = 0. In this case we have u ∈ F2. By the contrary suppose that u /∈ F2

and limt→0
u(t)
tα−1 = l > 0. Thus, there is n0 ∈ N and δ > 0 such that for all n � n0

− l
4

<
un(t)
tα−1 − u(t)

tα−1 <
l
4
, for all t ∈ (0,T ]

and
3l
4

<
u(t)
tα−1 <

5l
4

, for all t ∈ (0,δ ].

Let n1 be such that tn ∈ (0,δ ] , for all n � n1 . We have then for all n � max(n0,n1)
the contradiction

0 � un(tn) = tα−1
n

un(tn)
tα−1
n

= tα−1
n

((
un(tn)
tα−1
n

− u(tn)
tα−1
n

)
+
(

u(tn)
tα−1
n

))
� tα−1

n

(
− l

4
+

3l
4

)
= tα−1

n
l
2

> 0.

This ends the proof. �

LEMMA 6. For all functions q in Qα and all T > 0, the operator LF
q,T has the

SIJP at r(LF
q,T ) .

Proof. Observe that LF
q,T has the SIJP at r(LF

q,T ) if and only if KF
q,T has the SIJP at

r(KF
q,T ) = r(LF

q,T ). To this aim, we will prove that the operator KF
q,T is strongly positive

and we conclude then by Proposition 4 that it has the SIJP at r(KF
q,T ).

Let us prove first that KF
q,T is compact. We have for all u ∈ FT∣∣∣∣∣

(
KF

q,T u(t)
tα−1

)′∣∣∣∣∣ =
α −1
Γ(α)

∣∣∣∣∫ t

0

s
t2

(
1− s

t

)α−2
q(s)u(s)ds

∣∣∣∣
� α −1

Γ(α)

(∫ t

0

s
t2

(
1− s

t

)α−2
sα−1ds

)
‖q‖∞ ‖u‖FT

.

Leading to limt→0

(
KF

q,T u(t)
tα−1

)′
= 0 and LF

q,T u∈F1
T . Thus, the operator K̃F

q,T : FT →
F1

T , where K̃F
q,T u(t) = KF

q,T u(t) , for all u ∈ FT and all t ∈ [0,T ] , is well defined and

KF
q,T ∈L

(
FT ,F1

T

)
. Since the embeding j of F1

T in FT is compact and KF
q,T = j◦ K̃F

q,T ,
we have that KF

q,T is compact.

Now, since for all u ∈ F+
T with u �= 0

KF
q,T u(t) =

∫ T

0
GT (t,s)q(s)u(s)ds > 0, for all t ∈ (0,T ]
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and (by dominated convergence theorem)

lim
t→0

KF
q,T u(t)
tα−1 = lim

t→0

∫ T

0

GT (t,s)
tα−1 q(s)u(s)ds =

∫ T

0
q(s)u(s)ds > 0,

we have KF
q,T

(
F+

T �{0}) ⊂ ST ⊂ F+
T and the operator KF

q,T is strongly positive. This
ends the proof. �

THEOREM 4. For all functions q in Qα the operator Lq has the SIJP at r(Lq)
and is lower bounded on the cone P.

Proof. First let us prove that LF
q has the SIJP at r

(
LF

q

)
. This will be obtained from

Theorem 2 whence we prove that LF
q = limT→∞ LF

q,T in operator norm and T → LF
q,T is

increasing. We have for all u ∈ F with ‖u‖F = 1,∣∣∣∣∣LF
q u(t)−LF

q,Tu(t)
tα−1

∣∣∣∣∣ =
∣∣∣∣∫ +∞

0

G(t,s)
tα−1 q(s)u(s)ds−

∫ T

0

GT (t,s)
tα−1 q(s)u(s)ds

∣∣∣∣
�
∣∣∣∣∫ T

0

G(t,s)−GT (t,s)
tα−1 q(s)u(s)ds

∣∣∣∣+ ∣∣∣∣∫ +∞

T

G(t,s)
tα−1 q(s)u(s)ds

∣∣∣∣
�
∣∣∣∣∫ T

0

G(t,s)−GT (t,s)
tα−1 q(s)sα−1ds

∣∣∣∣+∫ +∞

T

G(t,s)
tα−1 q(s)sα−1ds

�
∫ +∞

T
q(s)sα−1ds+

∣∣∣∣∫ T

0

G(t,s)−GT (t,s)
tα−1 q(s)sα−1ds

∣∣∣∣ .
Since GT (t,s) = G(t,s) , for t,s � T, we have∣∣∣∣∣LF

q u(t)−LF
q,Tu(t)

tα−1

∣∣∣∣∣�
∫ +∞

T
q(s)sα−1ds, for all t � T

and since
∂
∂ t

(
G(t,s)
tα−1

)
< 0, for s ∈ (0,t) , we have in the case of t � T,∣∣∣∣∣LF

q u(t)−LF
q,Tu(t)

tα−1

∣∣∣∣∣ �
∫ +∞

T
q(s)sα−1ds+

∫ T

0

G(t,s)
tα−1 q(s)sα−1ds+

∫ T

0

GT (t,s)
tα−1 q(s)sα−1ds

�
∫ +∞

T
q(s)sα−1ds+

∫ T

0

G(t,s)
tα−1 q(s)sα−1ds+

∫ T

0

G(T,s)
T α−1 q(s)sα−1ds

�
∫ +∞

T
q(s)sα−1ds+2

∫ T

0

G(T,s)
Tα−1 q(s)sα−1ds.

The above estimates lead to∥∥LF
q −LF

q,T

∥∥ = sup
‖u‖F=1

(
sup
t>0

∣∣∣∣∣LF
q u(t)−LF

q,tu(t)
tα−1

∣∣∣∣∣
)

�
∫ +∞

T
q(s)sα−1ds+2

∫ T

0

G(T,s)
T α−1 q(s)sα−1ds → 0, as T → ∞.
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Then by means of the dominated convergence theorem, we conclude that

limT→+∞

∥∥∥LF
q −LF

q,T

∥∥∥= 0 and LF
q,T converge to LF

q in operator norm.

For T1 < T2 and u ∈ F+ , we have

LF
q,T2

u(t)−LF
q,T1

u(t) =
∫ T2

0
GT2(t,s)q(s)u(s)ds−

∫ T1

0
GT1(t,s)q(s)u(s)ds

=
∫ T1

0
(GT2(t,s)−GT1(t,s))q(s)u(s)ds+

∫ T2

T1

GT2(t,s)q(s)u(s)ds.

Because of

GT2(t,s)−GT1(t,s) =

⎧⎨⎩
0, if t � T1,
ϕt(s)−ϕT1(s), if T1 � t � T2,
ϕT2(s)−ϕT1(s), if T2 � t

� 0

we have LF
q,T2

� LF
q,T1

.
At this stage, we are able to prove that Lq has the SIJP at r (Lq) . We have ΛLF

q
⊂

ΛLq and ΓLF
q
⊂ ΓLq . So, let us prove that ΛLF

q
= ΛLq and ΓLF

q
= ΓLq . To this aim,

let λ � 0 and u ∈ E+
� {0} be such that Lqu 	 λu. We have U = Lqu ∈ F+

� {0} ,
LF

q U = LqLqu 	 λLqu = λU and λ ∈ ΛLF
q
. This proves that ΛLF

q
= ΛLq . In similar

way, we also obtain that ΓLF
q

= ΓLq . Thus, we have that

r(LF
q ) = sup

(
ΛLF

q

)
= sup

(
ΛLq

)
= inf

(
ΓLF

q

)
= inf

(
ΓLq

)
and the operator Lq has the SIJP at r

(
LF

q

)
. Furthermore, since the cone E+ is total in

E and Remark 1 claims that r
(
LF

q

)
is the unique positive eigenvalue of Lq, we have

r (Lq) = r
(
LF

q

)
and Lq has the SIJP at r (Lq) .

It remains to show that the operator Lq is lower bounded on the cone P. We have
from property (4.4) of the function G

Lqu(t) =
∫ +∞

0
G(t,s)q(s)u(s)ds �

(∫ +∞

0
G(t,s)q(s)γ(s)(1+ s)α−1 ds

)
‖u‖E

leading to

∥∥Lqu
∥∥= sup

t�0

Lqu(t)

(1+ t)α−1 � sup
t�0

(∫ +∞

0

G(t,s)

(1+ t)α−1 q(s)γ(s)(1+ s)α−1 ds

)
‖u‖E .

This completes the proof. �

5.2. Proof of Propostion 1

We have from Lemma 4 that μ is a positive eigenvalue of the linear eigenvalue
problem (1.2) if and only if μ−1 is a positive eigenvalue of the compact operator Lq.
Since Theorem 4 claims that Lq has the SIJP at r (Lq) , we have from Remark 1 that
r (Lq) is the unique positive eigenvalue of Lq. Therefore, we have that μ = 1/r (Lq) is
the unique positive eigenvalue of the linear eigenvalue problem (1.2).
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5.3. Proof of Proposition 2

Assume that hypothesis (1.3) holds true (the case where (1.4) holds is checked
similarly). We have then from Theorem 4 the operator Lq has the SIJP at r (Lq) ,

r (Lq) =
1

μα (q)
> 1

and for all u ∈ P

Tf u(t) =
∫ +∞

0
G(t,s) f (s,u(s))ds �

∫ +∞

0
G(t,s)q(s)u(s)ds = Lqu(t).

Thus, hypothesis (2.1) holds and Proposition 4 claims that the operator Tf has no fixed
point. At end, we conclude by Corollary 4 that the fbvp (1.1) has no positive solution.

5.4. Proof of Theorem 1

Assume that hypothesis (1.5) holds true (the case where (1.6) holds is checked sim-
ilarly). Then we obtain from f +

+∞(q∞) < μ1(q∞) that for ε ∈ (0,μα(q∞)− f +
+∞(q∞)

)
there is R large such that f (t,u) � (μα (q∞)− ε)q∞(t)(1+ t)α−1 u , for all t � 0 and
u � R . Since the nonlinearity f is Qα -Caratheodory, there is ψR ∈ Qα such that

f (t,u) � (μα (q∞)− ε)q∞(t)(1+ t)α−1 u+ ψR (t)(1+ t)α−1 , for all t,u � 0. (5.1)

Also, we have from f−0 (q0) > μα(q0) that for ε ∈ (0, f−0 (q0)− μα(q∞)
)

there is r > 0

such that f (t,u) � (μα (q∞)+ ε)q0(t)(1+ t)α−1 u , for all t � 0 and u ∈ [0,r] . Thus
we have

f (t,u) � (μα (q0)+ ε)q0(t)(1+ t)α−1 u− f̃ (t,u), for all t,u � 0, (5.2)

where f̃ (t,u) = sup
(
0,(μα (q∞)+ ε)q0(t)(1+ t)α−1 u− f (t,u)

)
. Therefore, we ob-

tain from (5.1) and (5.2) that

Lq0u−F0u � Tf u � Lq∞u+F∞u, for all u ∈ P,

where

F0u(t) =
∫ +∞

0
G(t,s) f̃ (t,u(s))ds,

F∞u(t) =
∫ +∞

0
G(t,s)ψR (s) (1+ s)α−1 ds,

r
(
Lq0

)
=

(μα (q0)+ ε)
μα (q0)

> 1 >
(μα (q∞)− ε)

μα (q∞)
= r (Lq∞) .

We conclude from Theorem 4, Theorem 3 and Corollary 4 that the fbvp (1.1)
admits a positive solution.
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REMARK 3. We have from Property (4.5) of the function G that if u is a solution
to the fbvp (1.1) then u is increasing and limt→+∞ u(t) exists. Thus, it is natural to ask
about the boundedness of the solution u. A sufficient condition on the nonlinearity f
to have an unbounded solution is

lim
t→+∞

∫ t

1
sα−1 f (s,θ )ds = +∞ uniformely for θ in compact intervals of (0,+∞) .

(5.3)
Indeed, if u is a solution of the fbvp (1.1), then we obtain from (4.6) and (4.7) that

for all t � 1,

u(t) =
∫ +∞

0
G(t,s) f (s,u(s))ds

=
1

Γ(α)

∫ t

0
G(t,s) f (s,u(s))ds+

1
Γ(α)

∫ +∞

t
G(t,s) f (s,u(s))ds

� 1
Γ(α)

∫ t

0
G(t,s) f (s,u(s))ds � 1

Γ(α)

∫ t

1
sα−1 f (s,u(s))ds.

Thus, if limt→+∞ u(t) = l ∈ R
+ we have then the contradiction

l = lim
t→+∞

u(t) � 1
Γ(α)

lim
t→+∞

∫ t

1
sα−1 f (s,u(s))ds = +∞.

In the particular case where f (t,u) = m(t)uρ , where ρ > 0 and m ∈C (R+,R+) ,
the condition (5.3) is equivalent to∫ +∞

0
sα−1m(s)ds = +∞.
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