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FINAL STATE PROBLEM FOR THE NONLOCAL NONLINEAR

SCHRÖDINGER EQUATION WITH DISSIPATIVE NONLINEARITY

MAMORU OKAMOTO ∗ AND KOTA URIYA

(Communicated by P. I. Naumkin)

Abstract. We consider the asymptotic behavior of solutions to the nonlocal nonlinear Schrödinger
equation with dissipative nonlinearity. We prove that there exists a solution which has different
behavior from that of the typical cubic nonlinear Schrödinger equation.

1. Introduction

We consider the nonlocal nonlinear Schrödinger (NLS) equation

i∂t u+
1
2

∂ 2
x u = λu(x)2u(−x), (1.1)

where λ ∈C . Ablowitz and Musslimani [1] proved that (1.1) with λ ∈ R is a complete
integrable model, and hence has infinitely many conserved quantities. For example, if
λ ∈ R and u is a solution to (1.1), then∫

R

u(t,x)u(t,−x)dx,
∫

R

{
∂xu(t,x)∂xu(t,−x)−λu(t,x)2u(t,−x)

2
}

dx

are independent of t . They found solutions to (1.1) which are different to that of the
typical cubic NLS equation

i∂t u+
1
2

∂ 2
x u = λ |u|2u. (1.2)

Our aim in this paper is to investigate the asymptotic behavior of solutions to (1.1)
which differs from that of (1.2) when Imλ �= 0.

Since L2 -norm of solutions to (1.2) with λ ∈ R is conserved, the global-in-time
well-posedness for (1.2) follows form the local well-posedness in [19]. However, while
the same argument as in [19] implies the local well-posedness for (1.7), the conserved
quantities of (1.1) do not work well to extend the local solution even if λ ∈ R .
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The long-time behavior of (1.2) has been studied by several researchers (see [15,
5, 2, 7, 16, 6, 9, 12, 11] and references therein). It is known that the solution to NLS
equation scatters when the degree of nonlinearity is bigger than three. In addition, there
is no nontrivial solution to (1.2) is asymptotically free. In this sense, the cubic nonlin-
earity of the NLS equation in the one dimension is critical. Ozawa [15] constructed the
modified wave operator of (1.2) from a ball in H0,2(R) to L2(R) when λ ∈ R , where
Hs,m(R) denotes the weighted Sobolev space equipped with the norm

‖ f‖Hs,m :=
∥∥∥〈x〉m (

1− ∂ 2
x

) s
2 f

∥∥∥
L2

,

for s,m ∈ R . More precisely, he proved that for λ ∈ R and given small u+ ∈ H0,2(R) ,
there exist T > 0 and a unique solution u ∈C([T,∞);L2(R)) to (1.2) satisfying∥∥∥∥u(t,x)− ei |x|

2

2t −i π
4 t−

1
2 û+

(x
t

)
e−iλ |û+( x

t )|2 logt

∥∥∥∥
L2

→ 0,

as t → ∞ . Hayashi and Naumkin [6] showed the existence of the modified wave oper-
ator from a ball in H0,α(R) to H0,β (R) , for 1/2 < β < α < 1. Moreover, Shimomura
[17] proved that the solution to (1.2) with Imλ < 0 decays faster by logarithmic order
than the linear solutions (see also [18, 8]). Namely, the solution u to (1.2) behaves like
the following as t → ∞ :

ei |x|
2

2t −i π
4 t−

1
2 û+

(x
t

)
W

(
t,

x
t

)− 1
2
e

i
2

Reλ
Imλ logW(t, x

t ), (1.3)

where W (t,ξ ) := 1−2(Imλ )|û+(ξ )|2 logt .
In the study of spinor Bose-Einstein condensates, the following system of cubic

NLS equations is considered ([10]):⎧⎪⎪⎨⎪⎪⎩
i∂t u1 +

1
2m1

∂ 2
x u1 = u1u

2
2,

i∂t u2 +
1

2m2
∂ 2

x u2 = u2
1u2,

(1.4)

where m1 and m2 are positive constants. We focus only on the mass resonance case,
namely m1 = m2 , because the systems are asymptotically free in the remaining cases
(see, for example, [4]). Then, (1.4) has the mass conservation law, i.e., ‖u1(t)‖2

L2 +
‖u2(t)‖2

L2 is independent of t . The second author [20] showed that mass transition
phenomenon occurs for (1.4) under the mass resonance condition (see [3, 4, 14] for the
two dimensional case).

The long-time behavior of systems of NLS equations heavily depends on structure
of the nonlinearity. In fact, the second author [20] also observed the mass transition
phenomenon to the following NLS system:⎧⎪⎨⎪⎩

i∂tu1 +
1
2

∂ 2
x u1 = |u1|2u2,

i∂tu2 +
1
2

∂ 2
x u2 = |u2|2u1.

(1.5)
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On the other hand, Nakamura et al. [13] constructed the modified wave operator of the
following system: ⎧⎪⎨⎪⎩

i∂t u1 +
1
2

∂ 2
x u1 = u2

1u2 + |u1|2u2,

i∂t u2 +
1
2

∂ 2
x u2 = u2

2u1 + |u2|2u1.

(1.6)

In particular, the asymptotic behavior of (1.6) is given by

ei |x|
2

2t −i π
4 t−

1
2 û j+

(x
t

)
e−2iRe(û1+û2+)( x

t ) log t ,

for j = 1,2 (see Remark 2.2 below). Note that more general cases are treated in [13].
By setting u1(t,x) = u(t,x) and u2(t,x) = u(t,−x) , (1.1) is written as the follow-

ing system of cubic NLS equations:⎧⎪⎨⎪⎩
i∂t u1 +

1
2

∂ 2
x u1 = λu2

1u2,

i∂t u2 +
1
2

∂ 2
x u2 = λu2

2u1.
(1.7)

The structure of (1.7) is different from those of (1.4), (1.5), and (1.6). Indeed, ‖u1(t)‖2
L2 +

‖u2(t)‖2
L2 is not conserved even if (u1,u2) is a solution to (1.7) and λ ∈ R , while (1.7)

is mass resonance.
A formal calculation shows that

∂t

∫
R

u1(t,x)u2(t,x)dx = 2(Imλ )
∫

R

(
u1(t,x)u2(t,x)

)2
dx

provided for solutions (u1,u2) to (1.7). Hence,
∫

R

u1(t,x)u2(t,x)dx is conserved if

Imλ = 0. Moreover, if u1(t,x)u2(t,x) is real-valued, Imλ < 0 implies a dissipative
nature: ∫

R

u1(t,x)u2(t,x)dx <

∫
R

u1(0,x)u2(0,x)dx.

Let u1+,u2+ be given final states. To ensure the dissipative nature, we impose the
following assumption:

ASSUMPTION 1. There exists a constant η � 1 such that

1
η
|û2+(ξ )| � |û1+(ξ )| � η |û2+(ξ )|, (A-1)

(Imλ )Re
(
û1+û2+

)
(ξ ) � η

∣∣∣ Im(
û1+û2+

)
(ξ )

∣∣∣ (A-2)

hold for any ξ ∈ R .

We choose asymptotic behavior (w1,w2) as follows:

wj(t,x) := ei |x|
2

2t −i π
4 t−

1
2 ϕ j

(
t,

x
t

)
, (1.8)
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where ϕ1 and ϕ2 are defined by

ϕ1(t,ξ ) := û1+(ξ )R(t,ξ )−
1
2 e−

1
2

Reλ
Imλ A(t,ξ )e

i
2

(
Reλ
Imλ logR(t,ξ )−A(t,ξ )

)
, (1.9)

ϕ2(t,ξ ) := û2+(ξ )R(t,ξ )−
1
2 e

1
2

Reλ
Imλ A(t,ξ )e

i
2

(
Reλ
Imλ logR(t,ξ )+A(t,ξ )

)
, (1.10)

R(t,ξ ) :=
∣∣∣1−2(Imλ )

(
û1+û2+

)
(ξ ) logt

∣∣∣,
A(t,ξ ) := Arg

(
1−2(Imλ )

(
û1+û2+

)
(ξ ) log t

)
.

Here, we define the angle of z ∈ C by Argz , namely Argz := θ for z = |z|eiθ and
−π < θ � π . We note that (A-2) in Assumption 1 implies that R(t,ξ ) �= 0. See
Lemma 3.1 below. Moreover, (A-2) yields that A(t,ξ ) ∈ (−π ,π) , for t � 1. Indeed, if

Im
(
û1+û2+

)
(ξ ) = 0, it follows from (A-2) that (Imλ )Re

(
û1+û2+

)
(ξ ) � 0, namely

A(t,ξ ) = 0.
We are now in position to state our main result.

THEOREM 1.1. Let u1+,u2+ ∈ H0,1(R) . Assume that Imλ �= 0 and Assumption
1 holds. Then, there exists T > 0 such that the system (1.7) admits a (unique) solution
(u1,u2) ∈C([T,∞);L2(R)2) satisfying

‖u j(t)−wj(t)‖L2 = o
(
t−

1
4

)
,

as t → ∞ , for j = 1,2 .

In proving Theorem 1.1, the key point is choice of the asymptotic profile (1.9) and
(1.10). Roughly speaking, because w1 and w2 satisfy ‖wj(t)‖L∞ = O

(
t−1/2

)
and⎧⎪⎨⎪⎩

i∂tw1 +
1
2

∂ 2
x w1 = λw2

1w2 +o
(
t−1) ,

i∂tw2 +
1
2

∂ 2
x w2 = λw2

2w1 +o
(
t−1) ,

the difference u j −wj decays faster than that of the linear solutions. Accordingly, we
can apply the contraction mapping theorem as in [15] (see also [6, 20]).

In the proof of Theorem 1.1, we show that ϕ j(t,x) defined in (1.9) and (1.10) has
logarithmic decay because of Assumption 1. See (3.6) below. Thanks to this dissipative
feature, the smallness of the data u j+ is not needed.

We mention some remarks on Theorem 1.1. First, although we can solve the corre-
sponding profile equation to (1.7) even if λ ∈R , the expected asymptotic behavior may
decay slower than the linear solutions (see Remark 2.1 below). Second, the uniqueness
holds only in Xb,T defined by (3.1) below, which is a subspace of C([T,∞);L2(R)2) .
Third, in general, the asymptotic behavior obtained in Theorem 1.1 is different from
that of the typical NLS equation (see (1.3)), because of the presence of A(t,ξ ) in (1.9)
and (1.10).
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REMARK 1.1. By setting u1+(x) = u2+(−x) in Theorem 1.1, we can obtain the
asymptotic behavior of (1.1). More precisely, let u+ ∈ H0,1(R) and assume that As-
sumption 1 holds with u1+(x) = u+(x) and u2+(x) = u+(−x) . Then, there exists a
(unique) solution u to (1.1) with∥∥∥∥u(t,x)− ei |x|

2

2t −i π
4 t−

1
2 ϕ

(
t,

x
t

)∥∥∥∥
L2

= o
(
t−

1
4

)
,

where ϕ is defined by

ϕ(t,ξ ) := û+(ξ )R0(t,ξ )−
1
2 e−

1
2

Reλ
Imλ A0(t,ξ )e

i
2

(
Reλ
Imλ logR0(t,ξ )−A0(t,ξ )

)
,

R0(t,ξ ) :=
∣∣∣1−2(Imλ )

(
û+(ξ )û+(−ξ )

)
log t

∣∣∣,
A0(t,ξ ) := Arg

(
1−2(Imλ )

(
û+(ξ )û+(−ξ )

)
logt

)
.

Here, we give some examples for Assumption 1. For simplicity, let Imλ = −1
and

û1+(ξ ) = f (ξ )+ ig(ξ ), û2+(ξ ) = f (−ξ )+ ig(−ξ )

for real-valued f ,g . Then,(
û1+û2+

)
(ξ ) = f (ξ ) f (−ξ )+g(ξ )g(−ξ )+ i(− f (ξ )g(−ξ )+ f (−ξ )g(ξ )). (1.11)

Note that u+ := u1+ is also a final state of the nonlocal NLS equation (1.1), because
u1+(x) = u2+(−x) . If both of f and g are even, (A-1) and (A-2) hold, while this case
is the same as the final state problem for the typical NLS equation (1.2).

Let κ be a positive even Schwartz function, e.g., κ(ξ ) = e−ξ 2
.

(i) f (ξ ) = (sinhξ )e−ξ 2
and g(ξ ) = (coshξ )e−ξ 2

satisfy

R.H.S. of (1.11) = (1− isinh2ξ )e−2ξ 2
.

Hence, (A-2) holds. We also note that (A-1) follows from |û1+(ξ )|= |û2+(ξ )|=√
cosh2ξe−ξ 2

.

(ii) Set f (ξ )= 2ξ κ(ξ ) and g(ξ )= |ξ |κ(ξ ) . Then, |û1+(ξ )|=|û2+(ξ )|=√
5|ξ |κ(ξ )

and
R.H.S. of (1.11) = (−3ξ 2−2iξ |ξ |)κ(ξ )2.

Hence, (A-1) and (A-2) hold.

(iii) Let f (ξ )= 2(sinξ )κ(ξ ) and g(ξ )= κ(ξ ) . Then, we have |û1+(ξ )| ∼ |û2+(ξ )| ∼
κ(ξ ) and

R.H.S. of (1.11) =
(
1−4sin2 ξ −4isinξ

)
κ(ξ )2.

If Re
(
û1+û2+

)
(ξ ) < 0, we have

∣∣∣ Im(
û1+û2+

)
(ξ )

∣∣∣ > 2κ(ξ )2 . Accordingly,

(A-1) and (A-2) follow.
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(iv) Let

f (ξ ) = g(ξ ) =

{
ξ 2κ(ξ ), if ξ � 0,

ξ κ(ξ ), if ξ < 0.

Then, û1+(ξ ) = ξ û2+(ξ ) and

R.H.S. of (1.11) = 2ξ 3κ(ξ )2,

for ξ � 0. Hence, (A-1) fails, while (A-2) holds.

(v) Let f (ξ ) = (sinξ )κ(ξ ) and g(ξ ) = (cosξ )κ(ξ ) . Then, we have |û1+(ξ )| =
|û2+(ξ )| = κ(ξ ) and

R.H.S. of (1.11) = (cos2ξ − isin2ξ )κ(ξ )2.

The condition (A-2) fails, while (A-1) holds.

REMARK 1.2. Since we are interested in the asymptotic behavior of the nonlocal
NLS equation which differs from that of the typical NLS equation, the result and the
proofs are done in the setting of H0,1 data. However, with some extra work as in [6],
we may replace H0,1(R) by H0,s(R) for s > 1/2.

This paper is organized as follows. In Section 2, we solve a corresponding system
of ordinary differential equations to (1.7), which determines the asymptotic profile. In
Section 3, we prove our main result Theorem 1.1.

We summarize the notation used throughout this paper. We denote the Fouorier
transform of f by F f or f̂ , which is defined by

f̂ (ξ ) :=
1√
2π

∫
R

e−ixξ f (x)dx.

In estimates, we use the notation A � B to mean A �CB for some constant C > 0. We
define A � B to mean A � B/C .

2. On the profile equation

In this section, we solve the profile equation given by{
i∂tϕ1 = λ t−1ϕ2

1 ϕ2,

i∂tϕ2 = λ t−1ϕ1ϕ2
2 .

(2.1)

A direct calculation shows that

∂t(ϕ1ϕ2) = 2t−1(Imλ )(ϕ1ϕ2)
2,

which leads to
(ϕ1ϕ2)(t) =

σ
1−2(Imλ )σ log t

,
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where σ := ϕ1(1)ϕ2(1) ∈ C . Hence, (2.1) is reduced to⎧⎪⎪⎨⎪⎪⎩
∂tϕ1 =

−iλ σ
t(1−2(Imλ )σ logt)

ϕ1,

∂tϕ2 =
−iλ σ

t(1−2(Imλ )σ logt)
ϕ2.

(2.2)

When Imλ �= 0, (2.2) has the solution

ϕ1(t) = ϕ1(1)exp

(
iλ

2Imλ
Log(1−2(Imλ )σ logt)

)
,

ϕ2(t) = ϕ2(1)exp

(
iλ

2Imλ
Log(1−2(Imλ )σ logt)

)
,

where Logz := log |z|+ iArgz , for z ∈ C . By setting

R(t) := |1−2(Imλ )σ log t|, A(t) := Arg(1−2(Imλ )σ logt)

for simplicity, these solutions are written as follows:

ϕ1(t) = ϕ1(1)R(t)−
1
2 e−

1
2

Reλ
Imλ A(t)e

i
2 (Reλ

Imλ logR(t)−A(t)),

ϕ2(t) = ϕ2(1)R(t)−
1
2 e

1
2

Reλ
Imλ A(t)e

i
2

(
Reλ
Imλ logR(t)+A(t)

)
.

Thanks to the presence of R(t)−1/2 , the nonlinearity has a dissipative nature as in [17].

REMARK 2.1. When Imλ = 0, (2.2) with λ ∈ R leads to

ϕ1(t) = ϕ1(1)exp(−iλ σ logt) = ϕ1(1)tλ Imσ e−iλ Reσ logt ,

ϕ2(t) = ϕ2(1)exp(−iλ σ logt) = ϕ2(1)t−λ Imσ e−iλ Reσ log t .

Hence, we conjecture that the asymptotic behavior of (1.7) with Imλ = 0 is determined
by

w̃1(t,x) := ei |x|
2

2t −i π
4 t−

1
2 û1+

(x
t

)
tλ Im(û1+û2+)( x

t )e−iλ Re(û1+û2+)( x
t ) logt ,

w̃2(t,x) := ei |x|
2

2t −i π
4 t−

1
2 û2+

(x
t

)
t−λ Im(û1+û2+)( x

t )e−iλ Re(û1+û2+)( x
t ) logt .

Indeed, these functions satisfy

i∂t w̃1 +
1
2

∂ 2
x w̃1 = λ w̃2

1w̃2 +
1
2
t−

5
2 ei x2

2t − π
4 ∂ 2

x

(
û1+tλ Im(û1+û2+)e−iλ Re(û1+û2+) logt

)(x
t

)
,

i∂t w̃2 +
1
2

∂ 2
x w̃2 = λ w̃2

2w̃1 +
1
2
t−

5
2 ei x2

2t − π
4 ∂ 2

x

(
û2+t−λ Im(û1+û2+)e−iλ Re(û1+û2+) log t

)(x
t

)
.

We can find that there exists a solution (u1,u2) to (1.7) satisfying

‖u j − w̃ j‖L2 → 0, (2.3)
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as t → ∞ , for j = 1,2, if Im
(
û1û2

)
(ξ ) = 0, for ξ ∈R , while this asymptotic behavior

is the same as that of (1.6). On the other hand, because Im(û1û2) �= 0 yields that
‖wj(t)‖L∞ � t−1/2 fails, we could not obtain (2.3). This case is excluded from the
consideration in this paper, because we assume Imλ �= 0 in Theorem 1.1.

REMARK 2.2. The corresponding profile equation for (1.6) is given by{
i∂tϕ1 = t−1(ϕ2

1 ϕ2 + |ϕ1|2ϕ2
)
,

i∂tϕ2 = t−1(ϕ1ϕ2
2 + |ϕ2|2ϕ1

)
.

(2.4)

Since ∂t(ϕ1ϕ2) = 0, (2.4) is reduced to{
∂tϕ1 = −i2t−1(Reσ)ϕ1,

∂tϕ2 = −i2t−1(Reσ)ϕ2,

where σ := ϕ1(1)ϕ2(1) ∈ C . Hence, the solution to (2.4) are written as follows:

ϕ1(t) = ϕ1(1)e−2i(Reσ) logt ,

ϕ2(t) = ϕ2(1)e−2i(Reσ) logt .

Hence, the modified scattering for (1.6) follows from essentially the same argument as
in [15].

3. Proof of Theorem 1.1

We introduce the following notation:

U(t) := e
i
2 t∂ 2

x , M(t) := ei |x|
2

2t , D(t)ψ := e−i π
4 t−

1
2 ψ

(x
t

)
.

Then, we note that

U(t) = M(t)D(t)FM(t), wj(t) = M(t)D(t)ϕ j,

where (w1,w2) is defined by (1.8). By (1.7) and (2.1), we have

i∂t(FU(−t)u1(t)−ϕ1) = λFU(−t)
(
u2

1u2
)− λ

t
ϕ2

1 ϕ2

⇔ FU(−t)u1(t) = ϕ1 + λ
∫ ∞

t
FU(−τ)

(
u2

1u2− 1
τ
U(τ)F−1 [

ϕ2
1 ϕ2

])
dτ

⇔ u1(t) = U(t)F−1ϕ1 + λ
∫ ∞

t
U(t− τ)

(
u2

1u2− 1
τ
U(τ)F−1 [

ϕ2
1 ϕ2

])
dτ

⇔ u1(t) = M(t)D(t)ϕ1 + λ
∫ ∞

t
U(t− τ)

(
u2

1u2− (M(τ)D(τ)ϕ1)2M(τ)D(τ)ϕ2

)
dτ

+ λ
∫ ∞

t
U(t− τ)M(τ)D(τ)F (M(τ)−1)F−1 [

ϕ2
1 ϕ2

] dτ
τ

+M(t)D(t)F (M(t)−1)F−1ϕ1.
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Let J(t) be the generator of the Galilean transformation, i.e. J(t) := x + it∂x =
U(t)xU(−t) . We also use the operator |J(t)|β defined by

|J(t)|β := U(t)|x|βU(−t) = M(t)
(−t2∂ 2

x

) β
2 M(−t),

for β � 0. We define the function space

Xb,T :=
{
(u1,u2) ∈C([T,∞);L2(R)2) : ‖u j −wj‖Xb,T < ∞ ( j = 1,2)

}
(3.1)

equipped with the norm

‖ f‖Xb,T := sup
t∈[T,∞)

(
t

β
2 +b‖ f‖L2 + tb

∥∥∥|J(t)|β f
∥∥∥

L2

)
,

for β ,b,T > 0.
Set

1
2

< β < 1, 0 < b <
1−β

4
. (3.2)

We will show that the map Φ = (Φ1,Φ2) defined by

Φ1(u1,u2)(t) = w1(t)+ λ
∫ ∞

t
U(t− τ)

(
u2

1u2−w2
1w2

)
(τ)dτ (3.3)

+ λ
∫ ∞

t
U(t− τ)M(τ)D(τ)F (M(τ)−1)F−1 [

ϕ2
1 ϕ2

] dτ
τ

+M(t)D(t)F (M(t)−1)F−1ϕ1,

Φ2(u1,u2)(t) = w2(t)+ λ
∫ ∞

t
U(t− τ)

(
u2

2u1−w2
2w1

)
(τ)dτ

+ λ
∫ ∞

t
U(t− τ)M(τ)D(τ)F (M(τ)−1)F−1 [

ϕ2
2 ϕ1

] dτ
τ

+M(t)D(t)F (M(t)−1)F−1ϕ2

is a contraction mapping on a ball in Xb,T , for sufficiently large T .
We only consider the estimates for Φ1 , because Φ2 is similarly handled. We

write the second, third, and fourth terms on the right hand side of (3.3) as I1 , I2 , and
I3 , respectively:

Φ1(u1,u2)(t)−w1(t) =: I1 + I2 + I3.

Let K be a positive constant. We define

BK(Xb,T ) :=
{
(u1,u2) ∈ Xb,T : ‖u j −wj‖Xb,T < K ( j = 1,2)

}
.

First, we observe the lower bound of R(t,ξ ) .

LEMMA 3.1. If Imλ �= 0 and (A-2) holds, we have

R(t,ξ ) � 1+
∣∣∣(û1+û2+

)
(ξ )

∣∣∣ log t, (3.4)

for t � 1 and ξ ∈ R , where the implicit constant depends only on Imλ and η .
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Proof. When (Imλ )Re
(
û1+û2+

)
(ξ ) log t � 1/8, a direct calculation yields that

R(t,ξ ) =

√
4(Imλ )2

∣∣∣(û1+û2+

)
(ξ )

∣∣∣2(log t)2−4(Imλ )Re
(
û1+û2+

)
(ξ ) logt +1

�
√

4(Imλ )2
∣∣∣(û1+û2+

)
(ξ )

∣∣∣2(logt)2 +
1
2
.

We note that (A-2) implies that∣∣∣(û1+û2+

)
(ξ )

∣∣∣ �
(

η
| Imλ | +1

)∣∣∣ Im(
û1+û2+

)
(ξ )

∣∣∣, (3.5)

when (Imλ )Re
(
û1+û2+

)
(ξ ) > 0. Hence, if (Imλ )Re

(
û1+û2+

)
(ξ ) log t � 1, it fol-

lows from (3.5) that

R(t,ξ ) =

√(
1−2(Imλ )Re

(
û1+û2+

)
(ξ ) logt

)2
+4(Imλ )2

(
Im

(
û1+û2+

)
(ξ ) log t

)2

�
√

1+4(Imλ )2
(

Im
(
û1+û2+

)
(ξ ) logt

)2

�
√

1+4
(Imλ )4

(η + | Imλ |)2

∣∣∣(û1+û2+

)
(ξ )

∣∣∣2(log t)2.

If 1/8 < (Imλ )Re
(
û1+û2+

)
(ξ ) logt < 1, by (3.5), we have

R(t,ξ ) � 2| Imλ |
∣∣∣ Im(

û1+û2+

)
(ξ )

∣∣∣ logt � 1
4

∣∣∣ Im(
û1+û2+

)
(ξ )

∣∣∣∣∣∣Re
(
û1+û2+

)
(ξ )

∣∣∣ � 1
4

| Imλ |
η + | Imλ | .

Moreover, by (3.5), we get

R(t,ξ ) � 2| Imλ |
∣∣∣ Im(

û1+û2+

)
(ξ )

∣∣∣ log t � 2
(Imλ )2

η + | Imλ |
∣∣∣(û1+û2+

)
(ξ )

∣∣∣ logt.

Therefore, we obtain (3.4). �
By (1.9), (1.10), (3.4), and (A-1), we have

‖ϕ j(t)‖L∞ �
∥∥∥û j+R(t)−

1
2

∥∥∥
L∞

� (log t)−
1
2

√∥∥∥∥ û1+

û2+

∥∥∥∥
L∞

+
∥∥∥∥ û2+

û1+

∥∥∥∥
L∞

� (logt)−
1
2 . (3.6)

Moreover, since

|∂ξ R(t,ξ )|+ |R(t,ξ )∂ξA(t,ξ )| � (|∂ξ û1+(ξ )û2+(ξ )|+ |û1+(ξ )∂ξ û2+(ξ )|) log t,

from (3.4), we get

‖ϕ1(t)‖H1 � ‖û1+‖H1 +‖û1+‖2
H1‖û2+‖H1 log t
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� ‖u1+‖H0,1(1+‖u1+‖H0,1‖u2+‖H0,1 log t),

‖ϕ2(t)‖H1 � ‖û2+‖H1 +‖û1+‖H1‖û2+‖2
H1 log t

� ‖u2+‖H0,1(1+‖u1+‖H0,1‖u2+‖H0,1 log t).

Hence, by taking T = T (‖u1+‖H0,1 ,‖u2+‖H0,1) sufficiently large, we have

‖ϕ1(t)‖H1 +‖ϕ2(t)‖H1 � (log t)2, (3.7)

for t � T .
Next, we observe some L∞ -bounds. By (3.6), we have

‖wj(t)‖L∞ = t−
1
2 ‖ϕ j(t)‖L∞ � t−

1
2 (logt)−

1
2 , (3.8)

for j = 1,2 and t � T . Since the Gagliardo-Nirenberg type inequality yields that

‖ f (t)‖L∞ = ‖M(−t) f (t)‖L∞ � ‖M(−t) f (t)‖1− 1
2β

L2

∥∥∥(−∂ 2
x )

β
2 (M(−t) f (t))

∥∥∥ 1
2β

L2

� ‖ f (t)‖1− 1
2β

L2

∥∥∥t−β |J(t)|β f (t)
∥∥∥ 1

2β

L2
,

by (3.2), we have

‖u j −wj‖L∞ � Kt−
1
4− β

2 −b � t−
1
2−b(logt)−3, (3.9)

for j = 1,2, t � T = T (‖u1+‖H0,1 ,‖u2+‖H0,1 ,K)  1 and (u1,u2) ∈ BK(Xb,T ) .
For the term I1 , we use (3.8) and (3.9) to obtain

‖I1‖L2 �
∫ ∞

t
‖(u1 +w1)(u1−w1)u2‖L2dτ +

∫ ∞

t
‖w2

1(u2−w2)‖L2dτ

�
∫ ∞

t
(‖u1‖L∞ +‖w1‖L∞)‖u1−w1‖L2‖u2‖L∞dτ +

∫ ∞

t
‖w1‖2

L∞‖u2−w2‖L2dτ

�
∫ ∞

t
τ−

β
2 −b−1(logτ)−1dτ � t−

β
2 −b(logt)−1 � K

100
t−

β
2 −b,

(3.10)
for t � T = T (K)  1.

For the term I2 , (3.6), (3.7), and (3.2) yield that

‖I2‖L2 �
∫ ∞

t

∥∥U(t− τ)M(τ)D(τ)F (M(τ)−1)F−1 [
ϕ2

1 ϕ2
]∥∥

L2

dτ
τ

�
∫ ∞

t
τ−

1
2
∥∥|x|F−1 [

ϕ2
1 ϕ2

]∥∥
L2

dτ
τ

�
∫ ∞

t
τ−

1
2 ‖∂x(ϕ2

1 ϕ2)‖L2
dτ
τ

�
∫ ∞

t
τ−

1
2 (‖∂xϕ1‖L2‖ϕ1‖L∞‖ϕ2‖L∞ +‖ϕ1‖2

L∞‖∂xϕ2‖L2)
dτ
τ

�
∫ ∞

t
τ−

3
2 logτdτ � t−

1
2 logt � K

100
t−

β
2 −b, (3.11)

for t � T = T (K)  1.
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For the term I3 , by (3.7) and (3.2), we have

‖I3‖L2 � ‖M(t)D(t)F (M(t)−1)F−1ϕ1‖L2 � t−
1
2 ‖∂xϕ1‖L2 � t−

1
2 (log t)2

� K
100

t−
β
2 −b,

(3.12)

for t � T = T (K)  1.

In what follows, we consider the contribution of the second term in the Xb,T -norm.
By (3.7),

∥∥∥|J(t)|β wj(t)
∥∥∥

L2
=

∥∥∥(−∂ 2
x )

β
2 ϕ j(t)

∥∥∥
L2

� ‖ϕ j(t)‖H1 � (log t)2,

which yields that

∥∥∥|J(t)|β u j(t)
∥∥∥

L2
�

∥∥∥|J(t)|β wj(t)
∥∥∥

L2
+

∥∥∥|J(t)|β (u j(t)−wj(t))
∥∥∥

L2
� (logt)2 +Kt−b

� (log t)2,

for t � T = T (K)  1.

By the fractional Leibniz rule, (3.8), and (3.9), we have

∥∥∥|J(t)|β I1
∥∥∥

L2
�

∫ ∞

t
τβ

∥∥∥(−∂ 2
x )

β
2

{
M(−τ)(u1 +w1)M(−τ)u2M(−τ)(u1 −w1)

}∥∥∥
L2

dτ

+
∫ ∞

t
τβ

∥∥∥(−∂ 2
x )

β
2

{
(M(−τ)w1)2M(−τ)(u2 −w2)

}∥∥∥
L2

dτ

�
∫ ∞

t

∥∥∥|J(τ)|β (u1−w1)
∥∥∥

L2
‖u2‖L∞(‖u1‖L∞ +‖w1‖L∞)dτ

+
∫ ∞

t
‖u1−w1‖L∞

∥∥∥|J(τ)|β u2

∥∥∥
L2

(‖u1‖L∞ +‖w1‖L∞)dτ

+
∫ ∞

t
‖u1−w1‖L∞‖u2‖L∞

(∥∥∥|J(τ)|β u1

∥∥∥
L2

+
∥∥∥|J(τ)|β w1

∥∥∥
L2

)
dτ

+
∫ ∞

t

∥∥∥|J(τ)|β w1

∥∥∥
L2
‖w1‖L∞‖u2−w2‖L∞dτ

+
∫ ∞

t
‖w1‖2

L∞

∥∥∥|J(τ)|β (u2 −w2)
∥∥∥

L2
dτ

� K
∫ ∞

t
τ−1−b(logτ)−1dτ

� Kt−b(log t)−1 � K
100

t−b, (3.13)

for t � T = T (K)  1.
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The contribution of I2 is estimates as follows: by (3.6), (3.7), and (3.2),∥∥∥|J(t)|β I2
∥∥∥

L2
�

∫ ∞

t

∥∥∥|J(t)|βU(t− τ)M(τ)D(τ)F (M(τ)−1)F−1 [
ϕ2

1 ϕ2
]∥∥∥

L2

dτ
τ

�
∫ ∞

t

∥∥∥|x|β (1−M(−τ))F−1 [
ϕ2

1 ϕ2
]∥∥∥

L2

dτ
τ

�
∫ ∞

t
τ−

1−β
2

∥∥|x|F−1 [
ϕ2

1 ϕ2
]∥∥

L2

dτ
τ

�
∫ ∞

t
τ−

1−β
2

∥∥ϕ2
1 ϕ2

∥∥
H1

dτ
τ

�
∫ ∞

t
τ−

1−β
2 (‖ϕ1‖H1‖ϕ1‖L∞‖ϕ2‖L∞ +‖ϕ1‖2

L∞‖ϕ2‖H1)
dτ
τ

�
∫ ∞

t
τ−1− 1−β

2 logτdτ � t−
1−β

2 logt � K
100

t−b,

(3.14)
for t � T = T (K)  1. Similarly,∥∥∥|J(t)|β I3

∥∥∥
L2

�
∥∥∥|J(t)|β M(t)D(t)F (M(t)−1)F−1[ϕ1]

∥∥∥
L2

�
∥∥∥|x|β (1−M(−t))F−1[ϕ1]

∥∥∥
L2

� t−
1−β

2 ‖ϕ1‖H1 � t−
1−β

2 (logt)2

� K
100

t−b,

(3.15)
for t � T = T (K)  1.

From (3.10)–(3.15), we obtain

‖Φ1(u1,u2)−w1‖Xb,T � K
4

.

By a similar manner, we obtain that Φ is a contraction mapping on BK(Xb,T ) ,
which concludes the proof. �
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