
D ifferential
Equations

& Applications

Volume 11, Number 4 (2019), 495–508 doi:10.7153/dea-2019-11-24
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(Communicated by C. C. Tisdell)

Abstract. In this paper, we consider nonlinearly perturbed Legendre differential equations sub-
ject to the usual boundary conditions. For such problems we establish sufficient conditions for
the existence of solutions and in some cases we provide a qualitative description of solutions
depending on a parameter. The results presented depend on the size and limiting behavior of the
nonlinearities.

1. Introduction

In this paper, we discuss the solvability of boundary value problems which arise
as nonlinear perturbations of the classical Legendre differential equation subject to the
standard boundary conditions. The framework we present enables us to establish the
existence of solutions to boundary value problems under a variety of conditions. Each
approach takes advantage of the general linear Sturm-Liouville theory, in particular
existing knowledge regarding the spectrum of the Legendre Sturm-Liouville operator.
In Section 2.1, we provide a general framework that enables us to discuss the nonlinear
boundary value problem as an operator equation of the form Lx = F(x) and we establish
conditions for the existence of solutions in the case where the linear part L is invertible.
In Sections 2.2 and 2.3, we don’t make this invertibility assumption and results we
obtain are based on the projection scheme commonly referred to as the Lyapunov-
Schmidt procedure. In Section 2.2, we use fixed-point theorems to provide sufficient
conditions for the solvability of the boundary value problem that depend on the limiting
behavior of the nonlinearity. In Section 2.3, the same projection scheme along with the
implicit function theorem is used to establish the existence and qualitative properties of
solutions to weakly nonlinear problems.

Approaches similar to the ones appearing in this paper have been used in a variety
of settings in the study of nonlinear boundary value problems. For the use of arguments
similar to those in Section 2.1 in the continuous and discrete cases, the reader is referred
to [2], [10], [13], [17], [18] and [19]. For the general theory of projection methods in
nonlinear boundary value problems we suggest [21]. For the use of projection methods
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similar to those in Subsections 2.2 and 2.3, see [6], [9], [14], [15], [22], [23] and [24].
For results involving topological degree theory arguments in the analysis of discrete
boundary value problems, the reader may consult [4] and [8].

The classical Legendre eigenvalue-eigenfunction problems consists of finding the
scalars μ and functions x : (−1,1) → R such that

[(
1− t2

)
x′(t)

]′
+ μx(t) = 0,

for all t ∈ (−1,1) , where

lim
t→−1+

x(t), lim
t→1−

x(t),

lim
t→−1+

x′(t), lim
t→1−

x′(t)

all exist and are finite. It is well-known that nontrivial solutions of this problem exist
if and only if μ = k(k + 1) , where k is a nonnegative integer. If μ = k(k + 1) , the
only solutions are the constant multiples of the kth Legendre polynomial. In this paper,
we consider a nonlinear perturbation of the differential equation subject to the same
boundary conditions. That is, the existence of finite limits of x(t) and x′(t) at 1 and
−1.

2. Differential equations

2.1. The case of invertible L

Even though in this paper we are mainly interested in the cases where the parame-
ter μ in the equation below is an eigenvalue of the associated linear Legendre equation,
we devote this first section to the case where μ �= k(k+1) for any nonnegative integer
k . We consider boundary value problems on (−1,1) of the form,

[(
1− t2

)
x′(t)

]′
+ μx(t) = f (x(t)) (1)

subject to the condition that the following limits exist and are finite

lim
t→−1+

x(t), lim
t→1−

x(t),

(2)

lim
t→−1+

x′(t) lim
t→1−

x′(t).

Throughout this paper, we assume that f : R → R is continuous. Let L 2 denote the
space of functions L 2 = (L 2[−1,1],‖ ·‖2) , X be defined as the subspace of functions
in L 2 where the limits appearing in (2) exist and are finite and

D(L) =
{
x ∈ X : x′ is absolutely continuous and x′′ ∈ L 2} .
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In this section, we assume that f : R → R is Lipschitz. This implies that f ◦ x ∈ L2 ,
for all x ∈ L2 . We seek conditions under which we can guarantee the existence of a
solution to the boundary value problem (1)-(2).

We now present some basic results regarding a closely related linear boundary
value problem. If μ �= k(k+1) , for all k , the equation[(

1− t2
)
x′(t)

]′
+ μx(t) = h(t)

has exactly one solution satisfying the condition that the following limits exist and are
finite

lim
t→−1+

x(t), lim
t→1−

x(t),

lim
t→−1+

x′(t) lim
t→1−

x′(t).

Define the map L : D(L) → L 2 by

[Lx](t) =
[(

1− t2
)
x′(t)

]′
+ μx(t).

Clearly, if μ �= k(k+1) , for all k , then L is a bijection from D(L) onto L2 .
Let Pk denote the kth -degree Legendre polynomial and p(t) = (1− t2) . From

general Sturm-Liouville theory, the equation (px′)′ + λx = 0, subject to the condition
that the limits in (2) exist and are finite, has countably many simple eigenvalues λk =
k(k+1) with corresponding eigenfunctions Pk , for k � 0. It is also well-known that L
is self-adjoint and that the graph of L is closed. Further, the unique solution xh ∈ D(L)
to Lx = h guaranteed above can be represented by the eigenfunction expansion,

xh =
∞

∑
k=0

(k+ 1
2)〈h,Pk〉

[μ − k(k+1)]
Pk,

where 〈·, ·〉 denotes the standard L 2 inner product. From this is follows that L−1 is
continuous and that

∥∥L−1
∥∥�

(
∞

∑
k=0

∣∣∣∣∣ 1

(μ − k(k+1))2(k+ 1
2)

∣∣∣∣∣
)1/2

.

This information, as well as more on the general theory of Legendre polynomials
and the Legendre differential equation can be found in [3].

The following corollary establishes the continuity of L−1 by giving a bound on
its operator norm that will be useful later. Before presenting the next corollary, we
first must introduce some notation. Let C denote the space of continuous functions on
[−1,1] and ‖ · ‖∞ denote the supremum norm. That is, for a continuous function x on
[−1,1]

‖x‖∞ = sup
t∈[−1,1]

|x(t)|.
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COROLLARY 1. There exists K > 0 such that for all h∈ Im(L)⊂L 2 , the unique
solution xh to the equation Lx = h satisfies

‖xh‖∞ � K‖h‖

and

‖x′h‖∞ � K‖h‖.

Proof. Define the map L̂ : D̂(L) → Im(L) by

[
L̂x
]
(t) =

[(
1− t2

)
x′(t)

]′
+ μx(t),

where D̂(L) consists of the same set of functions as D(L) , but is endowed with the
norm ‖ · ‖H2 given by

‖z‖H2 = ‖z‖∞ +‖z′‖∞ +‖z′′‖.

Note that the map L̂ is a continuous, linear bijection onto L 2 , and that D̂(L) and
Im(L) are Banach spaces. Therefore, by a consequence of the open mapping theorem,
L̂−1 is continuous. This means there exists a K > 0 such for any h ∈ L 2 the unique
solution xh to Lx = h satisfies

K‖h‖� ‖xh‖H2 � ‖xh‖∞

and

K‖h‖� ‖xh‖H2 � ‖x′h‖∞

as required. �

LEMMA 1. The map L−1 : Im(L) → L 2 is compact.

Proof. Consider the map L̃ : D̃(L) → Im(L) defined by

[
L̃x
]
(t) =

[(
1− t2

)
x′(t)

]′
+ μx(t),

where D̃(L) consists of the same set of functions as D(L) but endowed with the norm
‖ · ‖∞ . Note that L̃ is invertible due to the fact that L is invertible. We wish to show
that L̃ is compact using the Arzela-Ascoli theorem. Let M > 0 and define S to be the
set S = {z ∈ Im(L) : ‖z‖ � M} . Let h ∈ S and observe that∥∥L̃−1h

∥∥
∞ � K‖h‖ � KM.

Therefore, the L̃−1(S) is a uniformly bounded set of functions in C . We now wish
to show that this set is equicontinuous. Let h ∈ S and let ε > 0. By the previous
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corollary along with the mean value theorem, for any h ∈ L 2 L̃−1h is Lipschitz on S
with constant KM . Let δ = ε/KM and |t1− t2| < δ . Then we have that

|L̃−1h(t1)− L̃−1h(t2)| � KM|t1 − t2| < ε.

Therefore, L̃−1(S) is an equicontinuous set of functions in C . By the Arzelá-Ascoli
theorem, L̃−1 : Im(L) → D(L) is compact. Therefore, it follows that L−1 : Im(L) →
D(L) is a compact operator. �

We now discuss the issue of whether we can guarantee a solution to the nonlinear
boundary value problem

[(
1− t2

)
x′(t)

]′
+ μx(t) = f (x(t)),

where x satisfies the condition that limits in (2) exist and are finite. Define F : L 2 →
L 2 by

F(x) = f ◦ x.

It is evident that the boundary value problem (1)-(2) is equivalent to the operator equa-
tion Lx = F(x) .

THEOREM 1. Suppose that f : R → R is Lipschitz and that μ �= k(k+1) , for all
nonnegative integers k . Then if

lim
|s|→∞

| f (s)|
|s| = 0,

there exists a solution to the boundary value problem

[(
1− t2

)
x′(t)

]′
+ μx(t) = f (x(t))

subject to the condition that the limits in (2) exist and are finite.

The proof of this theorem is a standard application of Schauder’s fixed point the-
orem applied to the operator L−1F . We omit the details. Note that results in this
subsection depended heavily on L having an inverse, which is only the case if we as-
sume μ �= k(k+1) , for any k ∈ N . The following subsections analyze situations where
L is not invertible.

2.2. The case of non-invertible L

We will now assume that μ = k(k + 1) , for some k ∈ {0,1,2, . . .} . As a con-
sequence of the general Sturm-Liouville theory outlined in the previous section, μ =
k(k + 1) implies that the kernel of L is one-dimensional and spanned by Pk . Further,
as stated in [11], we have that h ∈ Im(L) if and only if

〈h,Pk〉 = 0.
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Therefore, it follows that Im(L)=[Ker(L)]⊥ . In this section we will assume that
lims→∞ f (s) and lims→−∞ f (s) exist and are finite. We denote these values by

f (∞) ≡ lim
s→∞

f (s) and f (−∞) ≡ lim
s→−∞

f (s).

We employ the Lyapunov-Schmidt procedure. For the readers convenience, we
now outline the basic elements of this process. For more details, the reader may consult
[5].

First define U : L 2 → L 2 by

[Ux](t) =
(

k+
1
2

)
〈x,Pk〉Pk(t).

Note that U is a projection onto Ker(L) = span{Pk} . Define the projection E : L 2 →
L 2 onto [Ker(L)]⊥ = Im(L) by E = I−U . Note that the map L restricted to D(L)∩
Im(L) is a bijection onto Im(L) = Im(E) . Therefore, it follows that there exists a
linear map M : Im(E) → D(L)∩Im(L) satisfying LMh = h , for all h ∈Im(L) and
MLx = Ex = (I−U)x , for all x ∈ D(L) . In fact, we can represent this map M with the
eigenfunction expansion

[Mh](t) = ∑
l �=k

(l + 1
2 )〈h,Pl〉

[μ − l(l +1)]
Pl(t).

Note that M : Im(L) → Im(L)∩D(L) is a compact operator as a consequence of the
argument appearing in Lemma 1 along with the fact that Im(L) is a closed subspace
of L 2 . Using these projections, we analyze the operator equation Lx = F(x) in the
following way:

Lx = F(x) ⇐⇒

⎧⎪⎨
⎪⎩

E(Lx−F(x)) = 0

and

(I−E)(Lx−F(x)) = 0

⇐⇒

⎧⎪⎨
⎪⎩

(I−U)x−MEF(x) = 0

and

F(x) ∈ Im(L)

⇐⇒

⎧⎪⎨
⎪⎩

x = Ux+MEF(x)
and∫ 1

−1 f (x(t))Pk(t)dt = 0

⇐⇒

⎧⎪⎨
⎪⎩

x = αPk +w(x)
and∫ 1

−1 f [αPk(t)+w(x(t))]Pk(t)dt = 0,
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where w(x) = MEF(x) .

Define the constants J1 and J2 as follows:

J1 = f (∞)
∫
{t:Pk(t)>0}

Pk(t)dt + f (−∞)
∫
{t:Pk(t)<0}

Pk(t)dt,

J2 = f (∞)
∫
{t:Pk(t)<0}

Pk(t)dt + f (−∞)
∫
{t:Pk(t)>0}

Pk(t)dt.

Note that if k = 0, then J1 = g(∞) and J2 = g(−∞) . If k � 1, then

J1 =
(∫

{t:Pk(t)>0}
Pk(t)dt

)
[ f (∞)− f (−∞)],

J2 =
(∫

{t:Pk(t)>0}
Pk(t)dt

)
[ f (−∞)− f (∞)].

THEOREM 2. Suppose that f : R → R is continuous and that f (−∞) and f (∞)
exist and are finite. Then we can guarantee a solution to the boundary value problem
(1)-(2) in either of the following cases:

(i) if k = 0 and f (−∞) f (∞) < 0 ,

(ii) if k � 1 and f (−∞) �= f (∞) .

Proof. We begin by noting that

∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt

=
∫
{t:Pk(t)<0}

f [αPk(t)+w(x(t))]Pk(t)dt +
∫
{t:Pk(t)>0}

f [αPk(t)+w(x(t))]Pk(t)dt.

Since w is bounded, we have by the Lebesgue dominated convergence theorem that

lim
α→∞

∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt

= f (∞)
∫
{t:Pk(t)>0}

Pk(t)dt + f (−∞)
∫
{t:Pk(t)<0}

Pk(t)dt = J1

and

lim
α→−∞

∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt

= f (∞)
∫
{t:Pk(t)<0}

Pk(t)dt + f (−∞)
∫
{t:Pk(t)>0}

Pk(t)dt = J2.

Condition iii) implies that J1J2 < 0 and we proceed by supposing without loss of
generality that J2 < 0 < J1 .
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Therefore there exists α0 > 0 such that for α � α0∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt > 0 (3)

and for α � −α0 ∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt < 0. (4)

Note that M is a compact linear map from Im(L) onto D(L)∩ Im(L) and E is a pro-
jection, so w is a nonlinear compact mapping.
Define H1 : L 2 ×R → L 2 by

H1(x,α) = αPk +w(x)

and H2 : L 2×R → R by

H2(x,α) = α −
∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt.

Let H : L 2×R → L 2 ×R be defined by

H(x,α) = (H1(x,α),H2(x,α)).

Guaranteeing a fixed point for H is equivalent to guaranteeing a solution to (1)-(2). We
endow the space L 2×R with the norm

‖(x,α)‖ = max{‖x‖, |α|}.
Define

r = sup
t∈R

| f (t)|.

The existence of r is guaranteed by the continuity of f : R→R along with the fact that
f (∞) and f (−∞) exist and are finite. Choose α0 > r so that (3) and (4) are satisfied
and let δ = α0 + r . As stated in [3], |Pk(t)| � 1, for all t ∈ [−1,1] . We know that f
and ME are bounded, so there exists b1 > 0 such that for any x ∈ L 2 , α ∈ R

‖H1(x,α)‖ � b1.

Let B be the set

B =
{
(x,α) ∈ L 2 ×R : ‖x‖ � b1, |α| � δ

}
.

Clearly ‖H1(x,α)‖ � b1 for all (x,α) ∈ B by construction, so it suffices to show that
‖H2(x,α)‖ � δ for all (x,α) ∈ B in order to show that H(B) ⊂ B .
Suppose that α ∈ [α0,δ ] . Then

∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt > 0
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and therefore H2(x,α) < α � δ . Further, since
∣∣∣∫ 1

−1 f [αPk(t)+w(x(t))]Pk(t)dt
∣∣∣� r it

follows that

α −
∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt � α0− r � 0.

Therefore, if α ∈ [α0,δ ] , then |H2(x,α)| ∈ [0,δ ] . Suppose that α ∈ [0,α0) . Then

|H2(x,α)| =
∣∣∣∣α −

∫ 1

−1
f [αPk(t)+w(x(t))]Pk(t)dt

∣∣∣∣� α0 + r = δ .

Therefore, if (x,α) ∈ B and α ∈ [0,δ ] , then |H2(x,α)| � δ .
A symmetric argument can be used to show that if (x,α) ∈ B and α ∈ [−δ ,0] ,

then |H2(x,α)| � δ . Therefore, H(B) ⊂ B . Since H : L 2 ×R → L 2 ×R is com-
pact (following from the compactness of M ) and B is closed, bounded and convex, it
follows that H is guaranteed a fixed point by Schauder’s fixed point theorem. �

2.3. The case of weak nonlinearities

In this subsection, assume that our nonlinearity is of the form ε f (x(t)) , where
ε is a real parameter and f : R → R is continuously differentiable. That is, we now
examine boundary value problems of the form[(

1− t2
)
x′(t)

]′
+ μx(t) = ε f (x(t))

subject to the condition that the limits appearing in (2) exist and are finite. Due to
the fact that we will impose differentiability conditions on the function-valued operator
representing our nonlinearity, we consider operators defined on the space of continuous
functions. Again let C denote the space of continuous functions on [−1,1] endowed
with the supremum norm and let

D =
(
C2[−1,1],‖ · ‖∞

)⊂ C ,

where C2[−1,1] denotes the set of twice continuously differentiable functions on [−1,1] .
In this section, denote L : D → C by

[L x](t) =
[(

1− t2
)
x′(t)

]′
+ μx(t)

and F : C ×R → C by

[F(x,ε)](t) = ε f (x(t)).

Suppose again that μ = k(k+1) .
In this section, for x ∈ C and l ∈ N we denote

xl =

[(
l +

1
2

)∫ 1

−1
Pl(t)x(t)dt

]
.
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Define the projections U : C → C by

[Ux](t) = xkPk(t)

and E : C → C by E = I −U . Note that the map L restricted to D∩ Im(L) is
a bijection onto Im(L) = Im(E) . Therefore, it follows that there exists a linear map
M : Im(E) → D∩ Im(L) satisfying

L Mh = h,

for all h ∈ Im(L) and

ML x = Ex = (I−U)x,

for all x ∈ D . Note that M is simply

[
L |D∩Im(L)

]−1

and observe further that M is continuous. We note that solving

L x = F(x,ε)

is equivalent to solving the system⎧⎪⎨
⎪⎩

(I−U)x−MEF(x,ε) = 0

and

U( f ◦ x) = 0.

Define the map G : D ×R → Im(L)× Ker(L) by

G(x,ε) =
[

(I−U)x−MEF(x,ε)
U( f ◦ x)

]
.

It is well known that F is continuously differentiable with respect to x and for any
x ∈ C , ε ∈ R (

∂F
∂x

(x,ε)h
)

(t) = ε f ′(x(t))h(t).

From that it follows that

∂G
∂x

(x,ε)

exists for all (x,ε) ∈ C ×R and is given by

∂G
∂x

(x,ε)w =

[
[(I−U)− εME( f ′ ◦ x)]w

U( f ′ ◦ x)w

]
.
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Let x = αPk , for α ∈ R . For (x ,0) and w ∈ C :

∂G
∂x

(x ,0)w =
[

(I−U)w
U( f ′ ◦ x)w

]
.

Since F ∈C1 and M is continuous, it follows that G ∈C1 . For w ∈ C , we can decom-
pose w as w = u+ v , where

u = wkPk,

v = w−wkPk.

With this in mind, we can rewrite the previous expression as

∂G
∂x

(x ,0)(u+ v) =
[

v
U( f ′ ◦ x)(u+ v)

]
.

Define the maps H1 :Ker(L) → R by

H1(u) =
∫ 1

−1
Pk(t) f (u(t))dt,

H2 : R →Ker(L) by H2(α) = αPk and finally H : R → R by H = H1 ◦H2 . That is,

H(α) =
∫ 1

−1
Pk(t) f (αPk(t))dt.

Therefore for any number in R , H ′ : Ker(L) → R exists and for β ∈ R

[H ′(α)](β ) =
∫ 1

−1
Pk(t)[ f ′(αPk(t))](βPk(t))dt.

We are now ready to give conditions for the solvability of our boundary value problems
examined this section.

THEOREM 3. Suppose that there exists α0 ∈R such that H(α0)= 0 and H ′(α0) �=
0 . Then there exists and open neighborhood I ⊂ R of 0 such that for any ε ∈ I there
exists a solution to [(

1− t2
)
x′(t)

]′
+ μx(t) = ε f (x(t))

satisfying the condition that the limits appearing in (2) exist and are finite.

Proof. Recall that G ∈ C1 and let x = α0Pk . Then (I −U)x −MEF(x ,0) = 0
and

UF(x) =
∫ 1

−1
Pk(t) f (α0Pk(t))dt = H(α0Pk(t)) = 0.
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Therefore G(x ,0) = 0. We now wish to show that ∂G
∂x (x ,0) is a bijection from C

onto Im(L)× Ker(L) . Since ∂G
∂x (x ,0) is linear, in order to show this map is injective

it suffices to show that it has a trivial kernel. Suppose that ∂G
∂x (x ,0)(u+ v) = 0. Then

0 = v

and so

0 = U( f ′ ◦ x)u =
[∫ 1

−1
Pk(t)[ f ′(α0Pk(t))]u(t)dt

]
,

implying that u = 0, due to our assumption that H ′(α0) �= 0. Note that since H ′(α0)
is a nonzero linear map from R → R , then it is a bijection from R onto R . This
implies that the map U( f ′ ◦ x) restricted to Ker(L) is a bijection onto Ker(L) . Given
h1 ∈Im(L) and h2 ∈ Ker(L) , we have that

∂G
∂x

(x ,0)
(
h1 + ĥ2

)
= (h1,h2),

where ĥ2 is the unique element of Ker(L) that maps to h2 under U( f ′ ◦ x) . So ∂G
∂x (x ,0)

is surjective and therefore a bijection from C onto Im(L)×Ker(L) . By the implicit
function theorem [12], there exists a neighborhood V0 ⊂ R of 0 on which there exists
a continuous function φ : V0 → D satisfying

G(φ(ε),ε) = 0,

for all ε ∈V0 . Denoting φ(ε) = xε we have that

0 = G(φ(ε),ε) = G(xε ,ε) = L xε −F(xε ,ε).

In other words, for any ε ∈V0 we can guarantee a solution to

[(1− t2)x′(t)]′ + μx(t) = ε f (x(t))

satisfying the condition that the limits in (2) exist and are finite. �

REMARK 1. Let xε denote the solution in D guaranteed by the implicit function
theorem to [(

1− t2
)
x′(t)

]′
+ μx(t) = ε f (x(t)).

Note that

lim
ε→0

xε = x,

where this limit is in the sense of uniform convergence. That is, solutions guaranteed
by the above theorem are ones that emanate from a certain solution to the linear homo-
geneous problem.
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EXAMPLE 1. Consider the boundary value problem

[(
1− t2

)
x′(t)

]′
= ε f (x(t))

on (−1,1) subject to the condition that the limits in (2) exist and are finite.
Suppose that there exists a number α0 such that f (α0) = 0 and f ′(α0) �= 0. Then,

since the constant Legendre polynomial is P0(t) = 1, for α ∈ R

∫ 1

−1
P0(t) f (αP0(t))dt =

∫ 1

−1
f (α)dt,

so then
∫ 1
−1 P0(t) f (α0P0(t))dt = 0. However, provided β �= 0,

∫ 1

−1
P0(t)[ f ′(α0P0(t))](βP0(t))dt = β

∫ 1

−1
f ′(α0)dt,

so then
∫ 1
−1 P0(t)[ f ′(α0P0(t))](βP0(t))dt �= 0.

EXAMPLE 2. Consider the boundary value problem

[(
1− t2

)
x′(t)

]′
+2x(t) = ε f (x(t))

subject to the condition that the limits in (2) exist and are finite. The constant Legendre
polynomial is P1(t) = t , so the condition in Theorem 3 is satisfied provided there exists
a number α0 satisfying

∫ 1

−1
t f (α0t)dt = 0

and f (α0) �= f (−α0) .
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[19] J. RODRÍGUEZ, A. J. SUAREZ, On nonlinear perturbations of Sturm-Liouville problems in discrete
and continuous settings, Differential Equations and Applications 8, 3 (2016), 319–334.
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