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POSITIVE SOLUTIONS FOR A SINGULAR COUPLED SYSTEM OF

NONLINEAR HIGHER–ORDER FRACTIONAL q–DIFFERENCE

BOUNDARY VALUE PROBLEMS WITH TWO PARAMETERS

WENGUI YANG
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Abstract. In this paper, we are concern with the existence of positive solutions for a singular
system of nonlinear fractional q -difference equations with coupled integral boundary conditions
and two parameters. By using the properties of the Green’s function and Guo-Krasnosel’skii
fixed point theorem, some existence results of at least one positive solution are obtained. As
applications, two examples are presented to illustrate the main results.

1. Introduction

The subject of fractional differential equations has gained considerable popular-
ity and importance due mainly to its fact that fractional differential equations describe
many phenomena than the corresponding integer order differential equations in various
fields of engineering and scientific disciplines such as physics, biophysics, chemistry,
biology, etc. For the theory and applications of fractional calculus, reader can see
[18, 22]. Many researchers pay more attentions to the existence of positive solutions
for a system of nonlinear fractional differential equations with integral and multi-point
boundary conditions, see [9, 13, 21, 25, 26, 34] and the references therein. In [35],
by applying a nonlinear alternative of Leray-Schauder type and Krasnosel’skii fixed
point theorems, Yuan et al. considered the multiple positive solutions for four-point
coupled boundary value problem for systems of the nonlinear semipositone fractional
differential equation. In [14, 16], the authors investigated the existence of positive so-
lutions for nonlinear Riemann-Liouville fractional differential equations with coupled
integral boundary conditions, respectively. In [24], Wang et al. studied the existence
of a class of higher-order singular semipositone fractional differential systems with
coupled integral boundary conditions and parameters. By using the properties of the
Green’s function and the Guo-Krasnosel’skii fixed point theorem, Henderson and Luca
[15] focused on the introduction of positive solutions for boundary value problems for
systems of fractional differential equations. By applying the corresponding Green’s
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function and Guo-Krasnosel’skii fixed point theorems, the author [30, 31] investigated
the positive solutions for nonlinear semipositone Hadamard fractional differential sys-
tems with coupled integral and four-point coupled boundary conditions, respectively.

Recently, fractional q -difference equations, regarded as q -analog of fractional dif-
ferential equations, have been studied by a lot of researchers. In papers [3, 5, 7, 8, 11,
19, 20, 23, 27, 28, 32, 38], the authors studied the existence and uniqueness of solutions
or positive solutions for the nonlinear fractional q -difference equations with boundary
conditions by using some standard fixed point theorems as well as monotone iterative
technique and lower-upper solution method. By applying the properties of the Green
function, the upper and lower solutions method and some well-known fixed-point the-
orems, Yuan and Yang [36, 37] considered the positive solutions to nonlinear boundary
value problems for delayed fractional q -difference systems and four-point boundary
value problems of fractional q -difference equations with p -Laplacian operator, respec-
tively. In [1] and [2], some important q -fractional inequalities were proved. Those
inequalities are necessary for the development of q -fractional systems. In [4], by ap-
plying some standard fixed point theorems, Ahmad et al. showed some existence re-
sults for sequential q -fractional integro-differential equations with nonlocal four-point
boundary conditions. Graef and Kong [10] investigated the existence of positive so-
lutions for boundary value problems with fractional q -derivatives. In [40], Zhou and
Liu obtained the uniqueness and existence of solutions for fractional q -difference sys-
tem with four-point boundary conditions obtained based on the nonlinear alternative
of Leray-Schauder type and Banach’s fixed point theorem. In [29], by applying the
nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed point theorems,
the author gave the existence results of nonlinear semipositone fractional q -difference
systems with boundary value conditions. By using some well-known fixed point the-
orems, Yang and Qin [33] investigated the existence of positive solutions for a class
of nonlinear Caputo type fractional q -difference equations with integral boundary con-
ditions. By applying a mixed monotone method and Guo-Krasnoselskii fixed point
theorem, Zhao and Yang [39] studied the existence and uniqueness results of positive
solutions for the singular coupled integral boundary value problem of nonlinear higher-
order fractional q -difference equations.

Motivated by the wide applications of coupled boundary value problems and the
results mentioned above, we consider the following singular fractional q -difference
systems and two parameters

Dα1
q u(t)+ λ1 f1(t,u(t),v(t)) = 0, Dα2

q v(t)+ λ2 f2(t,u(t),v(t)) = 0, t ∈ (0,1), (1)

with the coupled integral boundary value conditions

Dj1
q u(0) = Dj2

q v(0) = 0, 0 � ji � ni−2,

u(1) = μ1

∫ 1

0
g1(s)v(s)dqs, v(1) = μ2

∫ 1

0
g2(s)u(s)dqs, (2)

where μi > 0, αi ∈ (ni − 1,ni] with 3 � ni ∈ N , Dαi is the Riemann-Liouville type
fractional q -derivative of fractional order αi , i = 1,2; λ1,λ2 are two positive param-
eters, f1, f2 : (0,1)× [0,∞)× [0,∞) → R are two continuous functions and may be
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singular at t = 0,1. In this article, we will obtain some existence results of at least one
positive solution for singular coupled boundary value problem (1) and (2) by applying
the properties of the Green’s function and Guo-Krasnoselskii fixed point theorem. At
the end, two examples are given to illustrate our main results.

2. Preliminaries

For the convenience of the reader, we present some necessary definitions and lem-
mas of fractional q -calculus theory to facilitate analysis of the q -fractional boundary
value problem (1). These details can be found in the recent literature; see [6, 17] and
references therein.

Let q ∈ (0,1) and define

[a]q =
qa−1
q−1

, a ∈ R.

The q -analogue of the power (a−b)n with n ∈ N0 = {0,1,2, . . .} is

(a−b)(0) = 1, (a−b)(n) =
n−1

∏
k=0

(a−bqk), n ∈ N0, a,b ∈ R.

More generally, if α ∈ R , then

(a−b)(α) = aα
∞

∏
n=0

a−bqn

a−bqα+n .

Note that, if b = 0, then a(α) = aα . Here we point out that the following equality holds

(a−b)(α) = a(a−bqα−1)(a−b)(α−1).

The q -gamma function is defined by

Γq(x) = (1−q)(x−1)(1−q)1−x, x ∈ R\ {0,−1,−2, . . .}
and satisfies Γq(x+1) = [x]qΓq(x) .

The q -derivative of a function f is here defined by

(Dq f )(x) =
f (x)− f (qx)

(1−q)x
, (Dq f )(0) = lim

x→0
(Dq f )(x)

and q -derivatives of higher order by

(D0
q f )(x) = f (x) and (Dn

q f )(x) = Dq(Dn−1
q f )(x), n ∈ N.

The q -integral of a function f defined in the interval [0,b] is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

f (xqn)qn, x ∈ [0,b].
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If a ∈ [0,b] and f is defined in the interval [0,b] , its integral from a to b is defined by∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f )(x) = f (x) and (In

q f )(x) = Iq(In−1
q f )(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq , i.e.,

(DqIq f )(x) = f (x),

and if f is continuous at x = 0, then

(IqDq f )(x) = f (x)− f (0).

Basic properties of the two operators can be found in the book [6]. We now point out
five formulas that will be used later ( iDq denotes the derivative with respect to variable
i)∫ b

a
f (s)(Dqg)(s)dqs = [ f (s)g(s)]s=b

s=a −
∫ b

a
(Dq f )(s)g(qs)dqs (q−integration by parts),

tDq(t − s)(α) = [α]q(t− s)(α−1), sDq(t − s)(α) = −[α]q(t−qs)(α−1),

[a(t− s)](α) = aα(t− s)(α),

(
xDq

∫ x

0
f (x,t)dqt

)
(x) =

∫ x

0
xDq f (x,t)dqt + f (qx,x).

Denote that if α > 0 and a � b � t , then (t−a)(α) � (t −b)(α) [7].

DEFINITION 2.1. [18] Let α � 0 and f be function defined on [0,1] . The frac-
tional q -integral of the Riemann-Liouville type is I0

q f (x) = f (x) and

(Iα
q f )(x) =

1
Γq(α)

∫ x

0
(x−qt)(α−1) f (t)dqt, α > 0, x ∈ [0,1].

DEFINITION 2.2. [6] The fractional q -derivative of the Riemann-Liouville type
of order α � 0 is defined by D0

q f (x) = f (x) and

(Dα
q f )(x) = (Dm

q Im−α
q f )(x), α > 0,

where m is the smallest integer greater than or equal to α .

LEMMA 2.1. [6] Let α,β � 0 and f be a function defined on [0,1] . Then the
next formulas hold:

(1) (Iβ
q Iα

q f )(x) = Iα+β
q f (x);

(2) (Dα
q Iα

q f )(x) = f (x) .
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LEMMA 2.2. [8] Let α > 0 and p be a positive integer. Then the following equal-
ity holds:

(Iα
q Dp

q f )(x) = (Dp
qIα

q f )(x)−
p−1

∑
k=0

xα−p+k

Γq(α + k− p+1)
(Dk

q f )(0).

For the sake of simplicity, we always assume that the following assumptions hold.

(H1) g1,g2 : [0,1]→ [0,∞) are two continuous functions and satisfy

ν1 =
∫ 1

0
sα2−1g1(s)dqs, ν2 =

∫ 1

0
sα1−1g2(s)dqs, κ = 1− μ1μ2ν1ν2 > 0.

(H2) fi : (0,1)× [0,+∞)× [0,+∞)→ (−∞,+∞) is continuous and satisfies the follow-
ing inequality −qi(t) � fi(t,u,v) � pi(t)hi(t,u,v) , (t,u,v) ∈ (0,1)× [0,+∞)2 ,
i = 1,2, where hi ∈C([0,1]× [0,+∞)2, [0,+∞)) , qi, pi ∈C((0,1), [0,+∞)) , and

0 <

∫ 1

0
pi(s)dqs < +∞, 0 <

∫ 1

0
qi(s)dqs < +∞, i = 1,2.

LEMMA 2.3. [39] Assume that (H1) holds. Then for x,y ∈C[0,1] , the boundary
value problem

Dα1
q u(t)+ x(t) = 0, Dα2

q v(t)+ y(t) = 0, t ∈ (0,1),

with the coupled integral boundary value conditions (2) has a unique integral represen-
tation

u(t) =
∫ 1

0
K1(t,qs)x(s)dqs+

∫ 1

0
H1(t,qs)y(s)dqs,

v(t) =
∫ 1

0
K2(t,qs)y(s)dqs+

∫ 1

0
H2(t,qs)x(s)dqs,

where

K1(t,s) =G1(t,s)+ κ−1μ1μ2ν1t
α1−1

∫ 1

0
g2(τ)G1(τ,s)dqτ,

H1(t,s) =κ−1μ1t
α1−1

∫ 1

0
g1(τ)G2(τ,s)dqτ,

K2(t,s) =G2(t,s)+ κ−1μ1μ2ν2t
α2−1

∫ 1

0
g1(τ)G2(τ,s)dqτ,

H2(t,s) =κ−1μ2t
α2−1

∫ 1

0
g2(τ)G1(τ,s)dqτ,

Gi(t,s) =
1

Γq(αi)

{
tαi−1(1− s)(αi−1)− (t− s)(αi−1), 0 � s � t � 1,

tαi−1(1− s)(αi−1), 0 � t � s � 1,
i = 1,2.
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LEMMA 2.4. [39] The functions Ki(t,s) and Hi(t,s) (i = 1,2) defined by Lemma
2.3 satisfy the following conditions:

(a) Ki(t,s) and Hi(t,s) are continuous functions on (t,s)∈ [0,1]× [0,1] and Ki(t,qs)
� 0 and Hi(t,qs) � 0 , for (t,s) ∈ [0,1]2 , i = 1,2 ;

(b) �tαi−1ϕi(qs) � Ki(t,qs) � ρϕi(qs) , Ki(t,qs) � ρtαi−1 , �tα1−1ϕ2(qs) � H1(t,qs)
� ρϕ2(qs) , �tα2−1ϕ1(qs)� H2(t,qs)� ρϕ1(qs) and Hi(t,qs)� ρtαi−1 for ψi(t)
= tαi−1(1− t) and ϕi(s) = (1− s)αi−1s, (t,s) ∈ [0,1]2 , i = 1,2 , where � =
min{�1,�2,�3, �4} , ρ = max{ρ1,ρ2,ρ3,ρ4} and

�1 =
qα1−2μ1μ2ν1

κΓq(α1)

∫ 1

0
g2(τ)ψ1(τ)dqτ, �2 =

qα2−2μ1

κΓq(α2)

∫ 1

0
g1(τ)ψ2(τ)dqτ,

�3 =
qα2−2μ1μ2ν2

κΓq(α2)

∫ 1

0
g1(τ)ψ2(τ)dqτ, �4 =

qα1−2μ2

κΓq(α1)

∫ 1

0
g2(τ)ψ1(τ)dqτ,

ρ1 =
[α1 −1]q
Γq(α1)

(
1+ κ−1μ1μ2ν1

∫ 1

0
g2(τ)dqτ

)
, ρ2 =

μ1[α2 −1]q
κΓq(α2)

∫ 1

0
g1(τ)dqτ,

ρ3 =
[α2 −1]q
Γq(α2)

(
1+ κ−1μ1μ2ν2

∫ 1

0
g1(τ)dqτ

)
, ρ4 =

μ2[α1 −1]q
κΓq(α1)

∫ 1

0
g2(τ)dqτ.

REMARK 2.1. [39] From Lemma 2.4, for t,τ,s ∈ [0,1] , we have

K1(t,qs) �ωtα1−1H2(τ,qs),K2(t,qs) � ωtα2−1H1(τ,qs),H1(t,qs) � ωtα1−1K2(τ,qs),

H2(t,qs) �ωtα2−1K1(τ,qs),Ki(t,qs) � ωtαi−1Ki(τ,qs),Hi(t,qs) � ωtαi−1Hi(τ,qs),

where i = 1,2, ω = �/ρ , �,ρ are defined as Lemma 2.4, 0 < ω < 1.

LEMMA 2.5. Assume that (H1) and (H2) hold, then the coupled integral bound-
ary value problem

−Dα1
q ω1(t) = λ1q1(t), −Dα2

q ω2(t) = λ2q2(t), t ∈ (0,1), λ > 0,

with the coupled integral boundary value conditions

Dj1
q ω1(0) = Dj2

q ω2(0) = 0,ω1(1) = μ1

∫ 1

0
g1(s)ω2(s)dqs,ω2(1) = μ2

∫ 1

0
g2(s)ω1(s)dqs,

where 0 � ji � ni−2 , has an unique integral representation⎧⎪⎪⎨⎪⎪⎩
ω1(t) =λ1

∫ 1

0
K1(t,qs)q1(s)dqs+ λ2

∫ 1

0
H1(t,qs)q2(s)dqs,

ω2(t) =λ2

∫ 1

0
K2(t,qs)q2(s)dqs+ λ1

∫ 1

0
H2(t,qs)q1(s)dqs,

which satisfies

ω i(t) � ρtαi−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
, t ∈ [0,1], i = 1,2. (3)
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Proof. It follows from Lemmas 2.3 and 2.4 and the condition (H2) that the proof
of Lemma 2.5 is easily proved. �

Let X = C[0,1]×C[0,1] , then X is a Banach space with the norm ‖(u,v)‖ =
max{‖u‖,‖v‖} , ‖u‖ = maxt∈[0,1] |u(t)| , ‖v‖ = maxt∈[0,1] |v(t)| . Denote P = {(u,v) ∈
X : u(t) � ωtα1−1‖(u,v)‖,v(t) � ωtα2−1‖(u,v)‖, t ∈ [0,1]} , where ω is defined as
Remark 2.1. It is easy to see that P is a positive cone in X . It can be easily seen that P
is a cone in X . For any real constants r and R with 0 < r < R , define Pr = {(u,v) ∈
P : ‖(u,v)‖ < r} , P[r,R] = {(u,v) ∈ P : r � ‖(u,v)‖ � R} .

Next we only consider the following fractional q -difference system with boundary
conditions (2):{

Dα1
q u(t)+ λ1( f1(t, [u(t)−ω1(t)]∗, [v(t)−ω2(t)]∗)+q1(t)) = 0, t ∈ (0,1), λ1 > 0,

Dα2
q v(t)+ λ2( f2(t, [u(t)−ω1(t)]∗, [v(t)−ω2(t)]∗)+q2(t)) = 0, t ∈ (0,1), λ2 > 0,

(4)
where a modified function [z(t)]∗ for any z ∈C[0,1] by [z(t)]∗ = z(t) , if z(t) � 0, and
[z(t)]∗ = 0, if z(t) < 0.

LEMMA 2.6. If (u,v)∈ X with u(t) > ω1(t) and v(t) > ω2(t) , for any t ∈ (0,1) ,
is a positive solution of the singular system (4) and (2), then (u−ω1,v−ω2) is a
positive solution of the singular system (1) and (2).

Proof. In fact, if (u,v) ∈ X is a positive solution of the singular system (4) such
that u(t) > ω1(t) and v(t) > ω2(t) , for any t ∈ (0,1] , then from (4) and the definition
of [·]∗ , we have the following system with boundary conditions (2):{

Dα1
q u(t)+ λ1( f1(t,u(t)−ω1(t),v(t)−ω2(t))+q1(t)) = 0, t ∈ (0,1), λ1 > 0,

Dα2
q v(t)+ λ2( f2(t,u(t)−ω1(t),v(t)−ω2(t))+q2(t)) = 0, t ∈ (0,1), λ2 > 0.

(5)
Let x = u−ω1 and y = v−ω2 , then Dα1

q x(t) = Dα1
q u(t)−Dα1

q ω1(t) and Dα2
q y(t) =

Dα2
q v(t)−Dα2

q ω2(t) , for t ∈ (0,1) , which imply that −Dα1
q x(t) =−Dα1

q u(t)−λ1q1(t) ,
−Dα2

q y(t) = −Dα2
q v(t)−λ2q2(t), t ∈ (0,1) . Thus (5) becomes

Dα1
q x(t)+ λ1 f1(t,x(t),y(t)) = 0,Dα2

q y(t)+ λ2 f2(t,x(t),y(t)) = 0,t ∈ (0,1),λ1,λ2 > 0,

with the coupled integral boundary value conditions

Dj1
q x(0) = Dj2

q y(0) = 0, x(1) = μ1

∫ 1

0
g1(s)y(s)dqs, y(1) = μ2

∫ 1

0
g2(s)x(s)dqs,

where 0 � ji � ni−2, i.e., (u−ω1,v−ω2) is a positive solution of the singular system
(1) and (2). The proof is completed. �

Employing Lemma 2.3, the singular system (4) can be expressed as

u(t) =λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs,
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v(t) =λ2

∫ 1

0
K2(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

+ λ1

∫ 1

0
H2(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs, (6)

for t ∈ [0,1] , we always assume that x = u−ω1 and y = v−ω2 . By a solution of
the singular system (4), we mean a solution of the corresponding system of integral
equation (6). Defined an operator T : P → P by T (u,v) = (T1(u,v),T2(u,v)) , where
operators Ti : P →C[0,1] (i = 1,2) are defined by

T1(u,v)(t) =λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs,

T2(u,v)(t) =λ2

∫ 1

0
K2(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

+ λ1

∫ 1

0
H2(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs, (7)

for t ∈ [0,1] . Clearly, if (u,v) ∈ P is a fixed point of T , then (u,v) is a solution of the
singular system (1) and (2).

LEMMA 2.7. Assume that (H1) and (H2) hold, then T : P → P is a completely
continuous operator.

Proof. For any fixed (u,v) ∈ P , there exists a constant L > 0 such that ‖(u,v)‖�
L . Then we have

[u(s)−ω1(s)]∗ � u(s) � ‖u‖ � ‖(u,v)‖ � L,

[v(s)−ω2(s)]∗ � v(s) � ‖v‖ � ‖(u,v)‖ � L,

where s ∈ [0,1] . For any t ∈ [0,1] , it follows from (7) and Lemma 2.5 that

T1(u,v)(t) =λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

�λ1ρ
∫ 1

0
ϕ1(qs)(p1(s)h1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2ρ
∫ 1

0
ϕ2(qs)(p2(s)h2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

�λ1ρ
∫ 1

0
ϕ1(qs)(Mp1(s)+q1(s))dqs+ λ2ρ

∫ 1

0
ϕ2(qs)(Mp2(s)+q2(s))dqs

�λ1Mρ
∫ 1

0
(p1(s)+q1(s))dqs+ λ2Mρ

∫ 1

0
(p2(s)+q2(s))dqs < +∞,
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where M = max
{

maxt∈[0,1],u,v∈[0,L] h1(t,u,v),maxt∈[0,1],u,v∈[0,L] h2(t,u,v)
}

+ 1. Simi-
larly, we have

T2(u,v)(t) � λ1Mρ
∫ 1

0
(p1(s)+q1(s))dqs+ λ2Mρ

∫ 1

0
(p2(s)+q2(s))dqs < +∞.

Thus T : P →C[0,1]×C[0,1] is well defined.
Next, we show that T : P → P . For any fixed (u,v) ∈ P and t,τ ∈ [0,1] , by

Remark 2.1, we obtain

T1(u,v)(t) =λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

�λ1

∫ 1

0
ωtα1−1K1(τ,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
ωtα1−1H1(τ,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

=ωtα1−1
(

λ1

∫ 1

0
K1(τ,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+λ2

∫ 1

0
H1(τ,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

)
=ωtα1−1T1(u,v)(τ),

and

T1(u,v)(t) =λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

�λ1

∫ 1

0
ωtα1−1H2(τ,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
ωtα1−1K2(τ,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

=ωtα1−1
(

λ1

∫ 1

0
K2(τ,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

+λ2

∫ 1

0
H2(τ,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

)
=ωtα1−1T2(u,v)(τ).

Then, we have

T1(u,v)(t) � ωtα1−1‖T1(u,v)‖, T1(u,v)(t) � ωtα1−1‖T2(u,v)‖,
that is, T1(u,v)(t) � ωtα1−1‖(T1(u,v),T2(u,v))‖ . In the same way, we can prove that

T2(u,v)(t) � ωtα2−1‖T2(u,v)‖, T2(u,v)(t) � ωtα2−1‖T1(u,v)‖,
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that is, T2(u,v)(t) � ωtα2−1‖(T1(u,v),T2(u,v))‖ . This implies that T (P) ⊂ P . Ac-
cording to the Ascoli-Arzela theorem, we can easily get that T : P → P is completely
continuous. The proof is completed. �

In order to obtain the main results in this paper, we will use the following fixed
point theorem.

LEMMA 2.8. [12] Let X be a Banach space, and let P ⊂ X be a cone in X .
Assume Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 , and let S : P → P be a
completely continuous operator such that, either

(a) ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω1 , ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω2 , or

(b) ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω1 , ‖Sw‖ � ‖w‖ , w ∈ P∩∂Ω2 .

Then S has at least one fixed point in P∩ (Ω2\Ω1) .

3. Main results

THEOREM 3.1. Assume that (H1), (H2) hold and for any fixed λ1,λ2 ∈ (0,∞) ,
the following conditions hold:

(H3) There exists a constant r1 > max
{

L1,L2,
ρ
ω

(
λ1

∫ 1
0 q1(s)dqs+ λ2

∫ 1
0 q2(s)dqs

)}
,

such that hi(t,u,v) � (r1/Li)−1 for (t,u,v) ∈ [0,1]× [0,r1]2 , i = 1,2 .

(H4) 0 < l1 � liminf
u→+∞

inft∈[c,d]⊂(0,1)
v∈[0,∞)

f1(t,u,v)
u � ∞ , or 0 < l1 � liminf

v→+∞
inft∈[c,d]⊂(0,1)

u∈[0,∞)

f1(t,u,v)
v �

∞ ,

where ω is defined as Remark 2.1, ρ is defined as Lemma 2.5, γ = min{cα1−1,cα2−1} ,

Li = 3

(
λiρ

∫ 1

0
(pi(s)+qi(s))dqs

)−1

, i = 1,2, l1 =
3
2

(
λ1�ωγ2

∫ d

c
ϕ1(qs)dqs

)−1

.

Then the singular coupled boundary value problem (1) and (2) has at least one positive
solution (u, v) . Moreover, (u, v) satisfies u(t) � l tα1−1 and v(t) � l tα2−1 , t ∈ [0,1] ,
for some positive constant l .

Proof. For any (u,v)∈ ∂Pr1 and s ∈ [0,1] , by the definition of ‖ ·‖ , we know that

[u(s)−ω1(s)]∗ � u(s) � ‖u‖ � ‖(u,v)‖ � r1,

[v(s)−ω2(s)]∗ � v(s) � ‖v‖ � ‖(u,v)‖ � r1,
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where s ∈ [0,1] . For any (u,v) ∈ ∂Pr1 , by condition (H3) and Lemma 2.5, we get

‖T1(u,v)‖ = max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
� max

t∈[0,1]

∣∣∣∣λ1

∫ 1

0
ρtα1−1(p1(s)h1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+λ2

∫ 1

0
ρtα1−1(p2(s)h2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
�ρλ1

∫ 1

0

(
p1(s)

(
r1

L1
−1

)
+q1(s)

)
dqs

+ ρλ2

∫ 1

0

(
p2(s)

(
r1

L2
−1

)
+q2(s)

)
dqs

� r1

L1
ρλ1

∫ 1

0
(p1(s)+q2(s))dqs+

r1

L2
ρλ2

∫ 1

0
(p2(s)+q2(s))dqs

=
2r1

3
< r1 = ‖(u,v)‖.

Similarly, for any (u,v)∈ ∂Pr1 , by condition (H3) and Lemma 2.5, we have ‖T2(u,v)‖
< r1 = ‖(u,v)‖ . Consequently,

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} < r1 = ‖(u,v)‖, ∀(u,v) ∈ ∂Pr1 . (8)

On the other hand, by the inequalities in (H4), there exists ε0 > 0 such that l1 +
ε0 > 0, and also there exists r0 > 0 such that

| f1(t,u,v)| �(l1 + ε0)u, u � r0, v � 0, t ∈ [0,1]; or

| f1(t,u,v)| �(l1 + ε0)v, u � 0, v � r0, t ∈ [0,1]. (9)

Choose r2 = max{3r1,3r0/(2ωγ)} . For any (u,v) ∈ ∂Pr2 and t ∈ [0,1] , by the defini-
tion of ‖ · ‖ and (3), we obtain

x(t) �ωtα1−1r2 −ρtα1−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα1−1

(
ωr2 −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωr2 −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�ωγ(r2 − r1) � 2ωγr2

3
� r0, t ∈ [c,d] (10)
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and

y(t) �ωtα2−1r2 −ρtα2−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα2−1

(
ωr2−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωr2−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�ωγ(r2 − r1) � 2ωγr2

3
� r0, t ∈ [c,d]. (11)

Thus, for any (u,v) ∈ ∂Pr2 and t ∈ [0,1] , by (9)-(11), we have

f1(s, [x(s)]∗, [y(s)]∗) � (l1 + ε0)[y(s)]∗ or f2(s, [x(s)]∗, [y(s)]∗) � (l1 + ε0)[y(s)]∗,(12)

where t ∈ [c,d] . Hence, for any (u,v) ∈ ∂Pr2 , by (12) and Lemma 2.4, we conclude
that

‖T1(u,v)‖ = max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
� max

t∈[0,1]
λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

� min
t∈[c,d]

λ1

∫ d

c
�tα1−1ϕ1(qs) f1(s, [x(s)]∗, [y(s)]∗)dqs

�λ1�γ
∫ d

c
ϕ1(qs)(l1 + ε0)[x(s)]∗dqs

�2λ1�γ2(l1 + ε0)ωr2

3

∫ d

c
ϕ1(qs)dqs � r2 = ‖(u,v)‖

or

‖T2(u,v)‖ � min
t∈[c,d]

λ1

∫ d

c
�tα1−1ϕ1(qs) f1(s, [x(s)]∗, [y(s)]∗)dqs

�2λ1�γ2(l1 + ε0)ωr2

3

∫ d

c
ϕ1(qs)dqs � r2 = ‖(u,v)‖.

Consequently, we have

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} � r2 = ‖(u,v)‖, ∀(u,v) ∈ ∂Pr2 . (13)

It follows from the above discussion, (8), (13), Lemmas 2.5 and 2.8 that for any fixed
λ1,λ2 ∈ (0,∞) , T has a fixed point (u,v) ∈ P[r1,r2] and r1 � ‖(u,v)‖ � r2 . Since

‖(u,v)‖ � r1 , we get u(t)−ω1(t) � l tα1−1 and v(t)−ω2(t) � l tα2−1 , t ∈ (0,1] ,
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where l = ωr1 − ρ
(

λ1
∫ 1
0 q1(s)dqs+ λ2

∫ 1
0 q2(s)dqs

)
. Let u(t) = u(t)−ω1(t) and

v(t) = v(t)−ω2(t) , then we have u(t) � l tα1−1 and v(t) � l tα2−1 , t ∈ (0,1] .
By Lemma 2.6, we know that for any fixed λ1,λ2 ∈ (0,∞) , the singular coupled

boundary value problem (1) and (2) has at least one positive solution (u, v) . More-
over, (u, v) satisfies u(t) � l tα1−1 and v(t) � l tα2−1 , t ∈ [0,1] . The proof is com-
pleted. �

REMARK 3.1. From the proof of Theorem 3.1, we know that the conclusion of
Theorem 3.1 is valid if condition (H4) is replaced by

(H4’) 0 < l2 � liminf
u→+∞

inft∈[c,d]⊂(0,1)
v∈[0,∞)

f2(t,u,v)
u � ∞ or 0 < l2 � liminf

v→+∞
inft∈[c,d]⊂(0,1)

u∈[0,∞)

f2(t,u,v)
v �

∞ , where l2 = 3
2

(
λ2�ωγ2 ∫ d

c ϕ2(qs)dqs
)−1

.

THEOREM 3.2. Assume that (H1) and (H2) and for any fixed λ1,λ2 ∈ (0,∞) , the
following conditions hold:

(H5) there exists a constant R1 > ρ
ω

(
λ1

∫ 1
0 q1(s)dqs+ λ2

∫ 1
0 q2(s)dqs

)
, such that

f1(t,u,v) � R1/l1 , for (t,u,v) ∈ [c,d]× [0,R1]2 ;

(H6) 0 � limsup
u→+∞

sup t∈[0,1]
v∈[0,∞)

hi(t,u,v)
u < Li or 0 � limsup

v→+∞
sup t∈[0,1]

u∈[0,∞)

hi(t,u,v)
v < Li , i = 1,2 ,

where [c,d]⊂ (0,1) , Li (i = 1,2) and l1 are defined as Theorem 3.1. Then the singular
coupled boundary value problem (1) and (2) has at least one positive solution (u∗, v∗) .
Moreover, (u∗, v∗) satisfies u∗(t) � l

∗
tα1−1 and v∗(t) � l

∗
tα2−1 , t ∈ [0,1] , for some

positive constant l
∗
.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1 and so we omit
it. �

REMARK 3.2. The conclusion of Theorem 3.2 is valid if the condition (H5) is
replaced by

(H5’) f2(t,u,v) � R1/l2 , for (t,u,v)∈ [c,d]× [0,R1]2, where R1 is defined in Theorem
3.2 and l2 is defined in Remark 3.1.

THEOREM 3.3. Assume that (H1) and (H2) and the following condition (H7)
hold:

lim
u→+∞

inf
t∈[c,d]⊂(0,1)

v∈[0,∞)

f1(t,u,v)
u

= +∞ or lim
v→+∞

inf
t∈[c,d]⊂(0,1)
u∈[0,∞)

f1(t,u,v)
v

= +∞.

Then there exist λ 1 > 0 and λ 2 > 0 such that the singular coupled boundary value
problem (1) and (2) has at least one positive solution (u�, v�) , provided that λ1 ∈
(0,λ 1) and λ2 ∈ (0,λ 2) . Moreover, (u�, v�) satisfies u�(t) � l

�
tα1−1 and v�(t) �

l
∗
tα2−1 , t ∈ [0,1] , for some positive constant l

�
.
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Proof. Let SiR = sup{hi(t,u,v) : t ∈ [0,1],u,v∈ [0,R]} , i = 1,2, where we choose

R >
ρ
ω

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
, λ i = min

{
1,

R

2ρ
∫ 1
0 (pi(s)SiR +qi(s))dqs

}
,

where i = 1,2, ω and ρ are defined as Remark 2.1 and Lemma 2.5, respectively.
For any (u,v) ∈ ∂PR and s ∈ [0,1] , by the definition of ‖ · ‖ , we know that

[x(s)]∗ =[u(s)−ω1(s)]∗ � u(s) � ‖u‖ � ‖(u,v)‖ � R,

[y(s)]∗ =[v(s)−ω2(s)]∗ � v(s) � ‖v‖ � ‖(u,v)‖ � R, s ∈ [0,1].

So, for any (u,v) ∈ ∂PR , λ1 ∈ (0,λ 1) and λ2 ∈ (0,λ 2) , by Lemma 2.4, we get

‖T1(u,v)‖ = max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
K1(t,qs)( f1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
H1(t,qs)( f2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
� max

t∈[0,1]

∣∣∣∣λ1

∫ 1

0
ρtα1−1(p1(s)h1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
ρtα1−1(p2(s)h2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
�ρλ1

∫ 1

0
(p1(s)S1R +q1(s))dqs+ ρλ2

∫ 1

0
(p2(s)S2R +q2(s))dqs

<R = ‖(u,v)‖.

Similarly, for any (u,v) ∈ ∂PR , by Lemma 2.5, we also get ‖T2(u,v)‖ < R = ‖(u,v)‖ .
Consequently, we have

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} < R = ‖(u,v)‖, ∀(u,v) ∈ ∂PR. (14)

On the other hand, by the condition (H7), choose M1 such that

λ1�γ2M1ω
∫ d

c
ϕ1(qs)dqs > 2 or λ1�γ2M1ω

∫ d

c
ϕ2(qs)dqs > 2,

where γ = min{cα1−1,cα2−1} , ω and � are defined as Remark 2.1 and Lemma 2.5,
respectively. Then there exists N� > 0 such that

f1(t,u,v) �M1u, u � N�, v � 0, t ∈ [c,d] or

f1(t,u,v) �M1v, u � 0, v � N�, t ∈ [c,d]. (15)

Let R′ > max{2R,2N�/(γω)} . For any (u,v) ∈ ∂PR′ and t ∈ [0,1] , by the definition
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of ‖ · ‖ and (3), we obtain

x(t) �ωtα1−1R′ −ρtα1−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα1−1

(
ωR′ −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωR′ −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�ωγ(R′ −R) � 2ωγR′

3
� N�, t ∈ [c,d] (16)

and

y(t) �ωtα2−1R′ −ρtα2−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα2−1

(
ωR′ −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωR′ −ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�ωγ(R′ −R) � 2ωγR′

3
� N�, t ∈ [c,d]. (17)

Thus, for any (u,v) ∈ ∂PR′ and t ∈ [0,1] , by (15)-(17), we have

f1(s, [x(s)]∗, [y(s)]∗) � M1[x(s)]∗ or f1(s, [x(s)]∗, [y(s)]∗) � M1[y(s)]∗, t ∈ [c,d].
(18)

Hence, for any (u,v) ∈ ∂PR′ , by (18) and Lemma 2.4, we conclude that

‖T1(u,v)‖ � min
t∈[c,d]

λ1

∫ d

c
�tα1−1ϕ1(qs) f1(s, [x(s)]∗, [y(s)]∗)dqs

�2λ1�γ2M1ωR′

3

∫ d

c
ϕ1(qs)dqs � R′ = ‖(u,v)‖

or

‖T1(u,v)‖ � min
t∈[c,d]

λ1

∫ d

c
�tα1−1ϕ1(qs) f1(s, [x(s)]∗, [y(s)]∗)dqs

�2λ1�γ2M1ωR′

3

∫ d

c
ϕ1(qs)dqs � R′ = ‖(u,v)‖.

Consequently, we have

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} � R′ = ‖(u,v)‖, ∀(u,v) ∈ ∂PR′ . (19)

It follows from the above discussion, (14), (19), Lemmas 2.5 and 2.8 that for any λ1 ∈
(0,λ 1) and λ2 ∈ (0,λ 2) , T has a fixed point (u,v) ∈ P[R′,R] and R � ‖(u,v)‖ � R′ .
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Since ‖(u,v)‖ � R , we get u(t)−ω1(t) � l
�
tα1−1 and v(t)−ω2(t) � l

�
tα2−1 , for

t ∈ (0,1] , where l
�

= ωR− ρ
(

λ1
∫ 1
0 q1(s)dqs+ λ2

∫ 1
0 q2(s)dqs

)
. Let u�(t) = u(t)−

ω�
1(t) and v�(t) = v(t)−ω2(t) , then we have u�(t) � l

�
tα1−1 and v�(t) � l

�
tα2−1 ,

t ∈ (0,1] .
By Lemma 2.6, we know that for any λ1 ∈ (0,λ 1) and λ2 ∈ (0,λ 2) , the singular

coupled boundary value problem (1) and (2) has at least one positive solution (u�, v�) ,
provided that λ1 ∈ (0,λ 1) and λ2 ∈ (0,λ 2) . Moreover, (u�, v�) satisfies u�(t) �
l
�
tα1−1 and v�(t) � l

∗
tα2−1 , t ∈ [0,1] . The proof is completed. �

REMARK 3.3. From the proof of Theorem 3.3, we know that the conclusion of
Theorem 3.3 is valid if the condition (H7) is replaced by

(H7’) lim
u→+∞

inft∈[c,d]⊂(0,1)
v∈[0,∞)

f2(t,u,v)
u = +∞ or lim

v→+∞
inft∈[c,d]⊂(0,1)

u∈[0,∞)

f2(t,u,v)
v = +∞ .

THEOREM 3.4. Assume that (H1) and (H2) hold. And

(H8) Λ < liminf
u→+∞

inft∈[c,d]⊂(0,1)
v∈[0,∞)

f1(t,u,v) = +∞ or Λ < liminf
v→+∞

inft∈[c,d]⊂(0,1)
u∈[0,∞)

f1(t,u,v) =

+∞ , where Λ = 4
∫ 1
0 (q1(s)+q2(s))dqs

/(
γω2 max

{∫ d
c ϕ1(qs)dqs,

∫ d
c ϕ2(qs)dqs

})
and γ = min

{
cα1−1,cα2−1

}
.

(H9) limsup
u→+∞

sup t∈[0,1]
v∈[0,∞)

hi(t,u,v)
u = 0 or limsup

v→+∞
sup t∈[0,1]

v∈[0,∞)

hi(t,u,v)
v = 0 , i = 1,2 .

Then there exist λ̃1 > 0 and λ̃2 > 0 such that the singular coupled boundary value
problem (1) and (2) has at least one positive solution (ũ, ṽ) , provided that λ1 ∈ (λ̃1,∞)
and λ2 ∈ (λ̃2,∞) . Moreover, (ũ, ṽ) satisfies ũ(t) � l̃tα1−1 and ṽ(t) � l̃tα2−1 , t ∈ [0,1] ,
for some positive constant l̃ .

Proof. It follows from (H8) that there exists Ñ > 0 such that

f1(t,u,v) � Λ, u � Ñ, v � 0 or f1(t,u,v) � Λ, u � 0, v � Ñ, (20)

where t ∈ [c,d] . Put λ̃i = Ñ
/(

2ργ
∫ 1
0 qi(s)dqs

)
, i = 1,2 and R1 =

max
{
(λ1 + λ2,2λ1,2λ2)

2ρ
ω

∫ 1
0 (q1(s)+q2(s))dqs

}
. For any (u,v)∈ ∂PR1 and t ∈ [0,1] ,

by the definition of ‖ · ‖ and (3), we obtain

x(t) �ωtα1−1R1−ρtα1−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα1−1

(
ωR1−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωR1−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
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�ργ
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
� Ñ (21)

and

y(t) �ωtα2−1R1−ρtα2−1
(

λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
=tα2−1

(
ωR1−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�γ

(
ωR1−ρ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

))
�ργ

(
λ1

∫ 1

0
q1(s)dqs+ λ2

∫ 1

0
q2(s)dqs

)
� Ñ, (22)

for t ∈ [c,d] . Thus, for any (u,v) ∈ ∂PR1 and t ∈ [0,1] , by (20)-(22), we have

f1(s, [u(s)−ω1(s)]∗, [v(s)−ω2(s)]∗) � Λ, t ∈ [c,d]. (23)

Hence, for any (u,v) ∈ ∂PR1 , by (23) and Lemma 2.4, we conclude that

‖T1(u,v)‖ � min
t∈[c,d]

λ1

∫ d

c
�tα1−1ϕ1(qs) f1(s, [x(s)]∗, [y(s)]∗)dqs � λ1�γΛ

∫ d

c
ϕ1(qs)dqs

�R1 = ‖(u,v)‖.

Consequently, we have

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} � R1 = ‖(u,v)‖, ∀(u,v) ∈ ∂PR1 . (24)

On the other hand, choose εi > 0 such that εi =
(
3λiρ

∫ 1
0 pi(s)dqs

)−1
, i = 1,2.

Then, for the above εi , by the first inequality in (H9), there exists N̂ > 0 such that for
any t ∈ [0,1] we have

hi(t,u,v) � εiu, u � N̂, v � 0 or hi(t,u,v) � εiv, u � 0, v � N̂,

where t ∈ [0,1] , i = 1,2. Then we have

hi(t,u,v) �Φ+ εiu, u � N̂, v � 0, t ∈ [0,1] or

hi(t,u,v) �Φ+ εiv, u � 0, v � N̂, t ∈ [0,1], i = 1,2, (25)

where Φ = {hi(t,u,v) : 0 � x � N̂, 0 � x � N̂, t ∈ [0,1], i = 1,2} . Choose

R2 = max

{
2R1,ρ(Φ+1)

(
λ1

∫ 1

0
(p1(s)+q1(s))dqs+ λ2

∫ 1

0
(p2(s)+q2(s))dqs

)}
.
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For any (u,v) ∈ ∂PR2 , by (25) and Lemma 2.5, we get

‖T1(u,v)‖ � max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
ρtα1−1(p1(s)h1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
ρtα1−1(p2(s)h2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
�ρλ1

∫ 1

0
(p1(s)(Φ+ ε1[x(s)]∗)+q1(s))dqs

+ ρλ2

∫ 1

0
(p2(s)(Φ+ ε2[x(s)]∗)+q2(s))dqs

�ρ(Φ+1)
(

λ1

∫ 1

0
(p1(s)+q1(s))dqs+ λ2

∫ 1

0
(p2(s)+q2(s))dqs

)
+ ρ‖u‖

(
λ1ε1

∫ 1

0
p1(s)dqs+ λ2ε2

∫ 1

0
p2(s)dqs

)
� R2 = ‖(u,v)‖

or

‖T1(u,v)‖ � max
t∈[0,1]

∣∣∣∣λ1

∫ 1

0
ρtα1−1(p1(s)h1(s, [x(s)]∗, [y(s)]∗)+q1(s))dqs

+ λ2

∫ 1

0
ρtα1−1(p2(s)h2(s, [x(s)]∗, [y(s)]∗)+q2(s))dqs

∣∣∣∣
�ρλ1

∫ 1

0
(p1(s)(Φ+ ε1[y(s)]∗)+q1(s))dqs

+ ρλ2

∫ 1

0
(p2(s)(Φ+ ε2[y(s)]∗)+q2(s))dqs

�ρ(Φ+1)
(

λ1

∫ 1

0
(p1(s)+q1(s))dqs+ λ2

∫ 1

0
(p2(s)+q2(s))dqs

)
+ ρ‖v‖

(
λ1ε1

∫ 1

0
p1(s)dqs+ λ2ε2

∫ 1

0
p2(s)dqs

)
� R2 = ‖(u,v)‖.

Similarly, for any (u,v)∈ ∂PR2 , by Lemma 2.5, we also get ‖T2(u,v)‖<R2 = ‖(u,v)‖ .
Consequently, we have

‖T (u,v)‖ = max{‖T1(u,v)‖,‖T2(u,v)‖} < R2 = ‖(u,v)‖, ∀(u,v) ∈ ∂PR2 . (26)

It follows from the above discussion, (24), (26), Lemmas 2.5 and 2.8 that for any λ1 ∈
(λ̃1,∞) and λ2 ∈ (λ̃2,∞) , T has a fixed point (u,v) ∈ P[R1,R2] and R1 � ‖(u,v)‖� R2 .
Since ‖(u,v)‖ � R1 , by the same method as Theorem 3.3, we know that for any λ1 ∈
(λ̃1,∞) and λ2 ∈ (λ̃2,∞) , the singular coupled boundary value problem (1) and (2) has
at least one positive solution (ũ, ṽ) , satisfies ũ(t) � l̃tα1−1 and ṽ(t) � l̃tα2−1 , t ∈ [0,1] .
The proof is completed. �

REMARK 3.4. From the proof of Theorem 3.4, we know that the conclusion of
Theorem 3.4 is valid if the condition (H8) is replaced by
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(H8’) Λ < liminf
u→+∞

inft∈[c,d]⊂(0,1)
v∈[0,∞)

f2(t,u,v) = +∞ or Λ < liminf
v→+∞

inft∈[c,d]⊂(0,1)
u∈[0,∞)

f2(t,u,v) =

+∞ , where Λ is defined in Theorem 3.4.

4. Two examples

EXAMPLE 4.1. Consider the following fractional q -difference system with cou-
pled integral boundary conditions

D2.5
0.5u(t)+ λ1 f1(t,u(t),v(t)) = 0, D2.5

0.5v(t)+ λ2 f2(t,u(t),v(t)) = 0, t ∈ (0,1),

Dj1
0.5u(0) = Dj2

0.5v(0) = 0, 0 � ji � 1,

u(1) =
1
2

∫ 1

0

√
sv(s)dqs, v(1) =

1
2

∫ 1

0

1√
s
u(s)dqs, (27)

where λ1 andλ2 are two parameters. We have ν1 = 4/7, ν2 = 2/3, κ = 19/21, which
implies (H1).

Let p1(t) = p2(t) = 1/
√

t(1− t), q1(t) = q2(t) = − ln t , h1(t,u,v) = u2 + v2 ,
h2(t,u,v) = 1+ eu + ev , and

f1(t,u,v) =
u2 + v2√
t(1− t)

+ lnt, f2(t,u,v) =
1+ eu + ev√

t(1− t)
+ lnt, (t,u,v)∈(0,1)×[0,+∞)2.

Then −qi(t) � fi(t,u,v) � pi(t)hi(t,u,v) , (t,u,v) ∈ (0,1)× [0,+∞)2 , i = 1,2. By
direct calculation, we obtain∫ 1

0
p1(s)dqs =

∫ 1

0
p2(s)dqs ≈ 3.39926,

∫ 1

0
q1(s)dqs =

∫ 1

0
q2(s)dqs ≈ 0.69315,

which implies (H2). On the other hand, choosing [1/3,2/3]⊂ [0,1] , we can see that

lim
u→+∞

inf
t∈[1/3,2/3]⊂(0,1)

v∈[0,∞)

f1(t,u,v)
u

= +∞ or lim
v→+∞

inf
t∈[1/3,2/3]⊂(0,1)

u∈[0,∞)

f1(t,u,v)
v

= +∞.

So condition (H7) of Theorem 3.3 is satisfied. Therefore, by Theorem 3.3, the coupled
system (27) has at least one positive solution, provided λi>0 (i = 1,2) is small enough.

EXAMPLE 4.2. Consider the fractional q -difference system (27), where

f1(t,u,v) =

√
2(u+ v)

3
√

t2(1− t)(1+ t2(t +1))
− 2√

t
, f2(t,u,v) =

√
2

eu+v+1 3
√

t2(1− t)
− 2√

t
,

where (t,u,v)∈ (0,1)× [0,+∞)2 . Let p1(t)= p2(t)=
√

2
/

3
√

t2(1− t), q1(t)= q2(t)=
2
/√

t , h1(t,u,v) =
√

u+ v
/
(1+ t2(t + 1)) and h2(t,u,v) = 1

/
eu+v+1 , then −qi(t) �

fi(t,u,v) � pi(t)hi(t,u,v) , (t,u,v) ∈ (0,1)× [0,+∞)2 , i = 1,2. By direct calculation,
we obtain∫ 1

0
p1(s)dqs =

∫ 1

0
p2(s)dqs ≈ 6.10606,

∫ 1

0
q1(s)dqs =

∫ 1

0
q2(s)dqs ≈ 3.41530,
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which implies (H2). On the other hand, choosing [1/3,2/3] ⊂ [0,1] , we can see that
limsup
u→+∞

sup t∈[0,1]
v∈[0,∞)

(hi(t,u,v)/u) = 0, i = 1,2 and liminf
u→+∞

inft∈[1/3,2/3]⊂(0,1)
v∈[0,∞)

f1(t,u,v) = +∞

or liminf
v→+∞

inft∈[1/3,2/3]⊂(0,1)
u∈[0,∞)

f1(t,u,v) = +∞ . So conditions (H8) and (H9) of Theorem 3.4

are satisfied. Therefore, by Theorem 3.4, the coupled system in Example 4.2 has at
least one positive solution, provided λi > 0 (i = 1,2) is large enough.
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