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Abstract. An existence result for positive solutions to a fourth order differential inclusion with
boundary values is given. This is accomplished by using a fixed point theorem on cones for
multivalued maps, L1 selections and a generalization of the Ascoli theorem. The inclusion
allows the function and its first three derivatives to be on the right-hand side. The proof involves
a Green’s function and a positive eigenvalue of a particular operator. An example is provided.

1. Introduction

A multivalued map F : [0,1]×Rn → P(Rn) is an L1−Caratheodory map provided
the following hold:

1) F(·,x) : [0,1] → P(Rn) is a measurable function, for all x ∈ Rn ;

2) for almost all t ∈ [0,1], the mapping F(t, ·) : Rn → P(Rn) is upper semicontinu-
ous;

3) F is integrably bounded on bounded sets, i.e. for each ω > 0 there exists a func-
tion kω(t) ∈ L1([0,1],R+) such that sup{| y |: y ∈ F(t,x)} � kω(t) , for almost
all t ∈ [0,1] with ‖x‖Rn � ω .

In this paper we will prove the following theorem. The parameter λ1 will be
specified later.

THEOREM 1. Let F : [0,1]×R4 → P(R+)be an L1 -Caratheodory map with non-
empty, compact and convex values. Also assume that there exist α , β ∈ L1[0,1] , non-
negative almost everywhere, such that sup{| y |: y ∈ F(t,x)} � α(t)+ β (t)‖x‖R4 , for
almost all t ∈ [0,1] and x ∈ R4 . If this condition holds it is said that F is integrally
bounded as in [14].

We assume that F satisfies the two assumptions below.
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A1) There exist positive constants b0 and b1 with b0 + b1 > λ1 and δ > 0 such
that for almost all t ∈ [0,1] and all (x0,x1,x2,x3) ∈ [0,δ ]3 × [−δ ,0] , inf{y : y ∈
F(t,x0,x1,x2,x3)} � b0x0 +b1x1 .

A2) There exist positive constants a0,a1,a2,a3 and C0 with a0 + a1 + a2 + a3 < 1
such that for almost all t ∈ [0,1] and all (x0,x1,x2,x3) ∈ R3

+ ×R− , sup{y : y ∈
F(t,x0,x1,x2,x3)} � a0x0 +a1x1 +a2x2 +a3 | x3 | + C0 .

Then the boundary value differential inclusion (BVI) below has at least one posi-
tive solution

BVI

⎧⎪⎨
⎪⎩

u(4)(t) ∈ F(t,u(t),u′(t),u′′(t),u′′′(t)) a.e. on [0,1],
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

u ∈ AC(3)[0,1],

where u ∈ AC(3)[0,1] means that u,u′,u′′ and u′′′ are absolutely continuous on [0,1] .
Note that by Theorem 6.12, page 219–220 and Theorems 6.43 and 6.45 on page

228 in [14] it can be easily shown that for any u∈C(3)[0,1] , F(t,u(t),u′(t),u′′(t),u′′′(t))
will have an integrable selection. Also note that of course any integrally bounded mul-
tivalued function is also integrably bounded on bounded sets. Basic definitions of prop-
erties of multivalued functions may be found in many sources such as [1, 4, 5].

The above theorem generalizes Theorem 3.2 in [10] which states that a positive
solution exists for the problem{

u(4)(t) = f (t,u(t),u′(t),u′′(t),u′′′(t)),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f : [0,1]×R3
+ ×R− is continuous and satisfies assumptions similar to A1) and

A2) above. It is also similar to Theorem 2 in [18].
There have been a number of papers concerning positive solutions of fourth order

differential equations and inclusions. For example, see [6, 10, 11, 12, 15, 18]. We will
also make use of a Green’s function, an approach which can also be found in [6, 10, 17].
In addition, our approach will involve the use of a fixed point theorem. Such techniques
are quite common. In [3], the Covitz-Nadler theorem is used for existence results and
in [16] the Ky Fan fixed point theorem is used. In [7], a contraction mapping principle
is employed and in [2] three different theorems are proven using fixed point theorems.
In our current work we will make use of the following fixed point theorem, which is
Corollary 3.3 in [8]. It requires a condensing map, which is a type of operator defined
in terms of the measure of non-compactness. It is always the case that a completely
continuous map is condensing, so that is the approach we will take here. Recall that
a subset K of a Banach space is a cone provided that whenever x,y ∈ K , α � 0 and
β � 0, then αx + βy ∈ K. We will not assume as some do in the definition that if
z,−z ∈ K , then z = 0. Again, see [8] for details.

THEOREM 2. Let X be a Banach space, K be a cone in X and r1,r2 ∈ (0,∞)
with r = max{r1,r2} and let T : B(0,r)∩K → 2K be u.s.c. and condensing. Suppose
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there exists some w ∈ K with w �= 0 such that x /∈ T (x)+ tw, for any t > 0 and x ∈
∂KB(0,r1) , and λx /∈ T (x) , for all λ > 1 and x ∈ ∂KB(0,r2) . Then T has a fixed point
x0 with min{r1,r2} � ‖x0‖ � max{r1,r2} .

We will also need the following result, which is a special case of Proposition 1.7
in [13], which will permit us to show that a certain operator is completely continu-
ous. In other words, the operator is upper semicontinuous and maps bounded sets to
precompact sets.

THEOREM 3. Let F : [0,1]×R4 → R be L1 -Caratheodory and thus integrably
bounded on bounded sets. Let E1 and E2 be Banach spaces. Let ϕ : C

(
[0,1],R4

) →
L1([0,1],R) be the mapping ϕ(x) = {z ∈ L1([0,1],R)|z(t) ∈ F(t,x(t)) a.e. on [0,1]}
and let T1 : E1 → C([0,1],R4) and T2 : L1([0,1],R) → E2 be continuous linear map-
pings. Assume further that for each bounded set A ⊆C

(
[0,1],R4

)
the set T2 ◦ϕ(A) is

compact. Then the multivalued mapping T2◦ϕ ◦T1 : E1 → E2 is completely continuous.

Finally we will state and prove a generalization of the Ascoli theorem for C(3)[0,1] .
This theorem is very similar to Theorem 3 in [15]. For this we define the Banach

space C(3)
0 [0,1] by C(3)

0 [0,1] =
{

u ∈C(3)[0,1] : u(0) = u′(0) = u′′(1) = u′′′(1) = 0
}

.

The norm in this space will be given by

‖u‖
C

(3)
0 [0,1]

= sup{| u′′′(t) |: t ∈ [0,1]}.

That space is a Banach space because it is clearly closed in C(3)[0,1] and if u ∈
C(3)

0 [0,1] , we have the following basic calculus facts. See page 225 of [10].

• | u(t) |� ∫ 1
0 | u′(t) | dt � ‖u′‖C[0,1] ;

• | u′(t) |� ∫ 1
0 | u′′(t) | dt � ‖u′′‖C[0,1] ;

• | u′′(t) |� ∫ 1
t | u′′′(t) | dt � (1− t)‖u′′′‖C[0,1] � ‖u′′′‖C[0,1] .

Recall that the norm on C(3)[0,1] is

‖u‖C(3)[0,1] = sup
{‖u‖C[0,1],‖u′‖C[0,1],‖u′′‖C[0,1],‖u′′′‖C[0,1]

}
.

Thus ‖u‖C(3)[0,1]=‖u′′′‖C[0,1] , so the norm above will coincide with the norm on C(3)[0,1] .

THEOREM 4. Let A ⊆C(3)
0 [0,1] be closed and assume:

1) sup f∈A‖ f ′′′‖C[0,1] < ∞ .

2) For all ε > 0 and all t ∈ [0,1] , there exists δ > 0 such that for all y ∈ [0,1]
with | t − y |< δ , we have | f ′′′(t)− f ′′′(y) |< ε , for all f ∈ A. In other words,
{ f ′′′ | f ∈ A} is equicontinuous.

Then A is compact in C(3)
0 [0,1] .

Proof. We will split our proof into several parts.
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a) Let Y > sup f∈A‖ f ′′′‖C[0,1] . Note that Y > 0. Therefore we have that A , A′ ≡
{ f ′ | f ∈ A} , A′′ ≡ { f ′′ | f ∈ A} and A′′′ ≡ { f ′′′ | f ∈ A} are all bounded by Y
in C[0,1] .

b) Let ε > 0, t ∈ [0,1] , f ∈ A . For any y ∈ [0,1] we have

∣∣f ′′(t)− f ′′(y)
∣∣ =

∣∣∣∣
∫ t

1
f ′′′(s)ds−

∫ y

1
f ′′′(s)ds

∣∣∣∣ =
∣∣∣∣
∫ t

y
f ′′′(s)ds

∣∣∣∣ �Y

∣∣∣∣
∫ t

y
ds

∣∣∣∣=Y |t−y| .

Thus A′′ is equicontinuous. Identical arguments will show that A′ and A are also
equicontinuous.

c) We now know that A , A′ , A′′ and A′′′ have compact closure in C[0,1] , by the
Ascoli theorem. Let { fn} be a sequence in A . By taking subsequences of sub-
sequences and relabeling we can assume that there exist f ,g,h and k such that
fn → f , f ′n → g , f ′′n → h and f ′′′n → k in C[0,1] . Note that f (0) = g(0) =
h(1) = k(1) = 0. We need to show that f

′ = g , f
′′ = h and f

′′′ = k . This is
accomplished using the bounded convergence theorem three times since for all
n ∈ N , we know that supt∈[0,1]{| fn(t) |, | f ′n(t) |, | f ′′n (t) |, | f ′′′n (t) |} � Y . Thus

fn(t) =
∫ t
0 f ′n(s)ds → ∫ t

0 g(s)ds and since we know that fn → f , it follows that
f
′ = g , as desired. f ′n(1)− f ′n(t) =

∫ 1
t f ′′n (s)ds → ∫ 1

t h(s)ds and since f ′n → g ,
we know that f ′n(1) → g(1) . This implies g(1)−g(t) =

∫ 1
t h(s)ds . Differentiat-

ing each side yields −g′(t) = −h(t) and so f
′′ = g′ = h . To show that f

′′′ = k ,
the proof is similar. Also the closure of A implies that f ∈ A . Thus we have

shown that every sequence in A has a convergent subsequence in C(3)
0 [0,1] and

therefore A is compact in C(3)
0 [0,1] . �

2. Basic lemmas

The proofs of the lemmas in this section are virtually the same as those found
in [10], except for the fact that u(4)(t) is only almost everywhere equal to h(t) in
Lemma 1, u ∈ AC(3)[0,1] and h ∈ L1[0,1] . For this reason we will not repeat all of
the details here. All integrals are understood to be Lebesque integrals where, of course,

expressions like
∫ b
a k(t)dt will be assumed to mean the Lebesque integral

∫
[a,b]

k .

Consider the following linear boundary value problem (LBVP) where h∈ L1[0,1].

LBVP

⎧⎪⎨
⎪⎩

u(4)(t) = h(t) a.e. on [0,1],
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

u ∈ AC(3)[0,1].

LEMMA 1. The above LBVP has a unique solution u(t) = Sh(t)∈ AC(3)[0,1] and
S : L1[0,1] →C(3)[0,1] is a completely continuous linear operator.
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Proof. As in [10] we will let

G(t,s) =

⎧⎪⎨
⎪⎩

1
6
t2(3s− t),0 � t � s � 1,

1
6
s2(3t− s),0 � s � t � 1.

It is easy to show by integration that the solution is

u(t) = S1h(t) ≡
∫ t

0

(∫ τ

0

[∫ 1

r

{∫ 1

s
h(ν)dν

}
ds

]
dr

)
dτ.

See [15].
However, we will need to obtain some estimates as in [10], so we will use G to

obtain this unique solution. In order to do this let us define S : L1[0,1] →C[0,1] by

Sh(t) =
∫ 1

0
G(t,s)h(s)ds = u(t)

and see whether or not this will generate the unique solution S1h(t) above. Note that
Sh(0) = u(0) = 0, as desired.

The following facts are apparent:

∂G(t,s)
dt

=

⎧⎪⎨
⎪⎩

1
2
t(2s− t), 0 � t � s � 1,

1
2
s2, 0 � s � t � 1,

∂ 2G(t,s)
dt2

=
{

s− t, 0 � t � s � 1,

0, 0 � s � t � 1,

∂ 3G(t,s)
dt3

=
{ −1, 0 � t � s � 1,

0, 0 � s � t � 1.

We will need to apply the well known theorems for differentiation under the integral
sign for the Lebesgue integral. From the above partial derivatives and our definition of
S we obtain

u′(t) =
∫ 1

0

∂G(t,s)
dt

h(s)ds, u′′(t) =
∫ 1

t
(s− t)h(s)ds and

u′′′(t) = −
∫ 1

t
h(s)ds, for all t ∈ [0,1].

Clearly this indicates that u(4)(t) exists a.e., u(4)(t) = h(t) a.e., u′′′ is absolutely con-
tinous, since it is represented by the integral −∫ 1

t h(s)ds and u satisfies the boundary

conditions since ∂G(0,s)
dt = 0. Thus, u(t) = Sh(t) is a solution to LBVP. The uniqueness

of the result can be obtained by appealing to the above mentioned integral representa-
tion in [15] or by observing that the only solution to the LBVP, where h(t) = 0 a.e., is
the zero solution.
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To show that S is a bounded linear operator simply notice that, since G(t,s), ∂G(t,s)
dt ,

∂ 2G(t,s)
dt2

and ∂ 3G(t,s)
dt3

are bounded above by some M > 0 on [0,1]× [0,1] , we have

‖Sh‖C(3)[0,1] � M
∫ 1
0 | h(s) | ds = M‖h‖L1[0,1] , for h ∈ L1[0,1] . Thus S is continu-

ous. �
LEMMA 2. Let h ∈ L1[0,1] such that h � 0 a.e. Then u = Sh has the following

properties:

a) u(t) � 0, u′(t) � 0 , u′′(t) � 0 and u′′′(t) � 0 on [0,1];

b) u(t) � 2
3 t

2‖u‖C[0,1] ,u
′(t) � t‖u′′‖C[0,1] , for all t ∈ [0,1];

c) ‖u‖C[0,1] � ‖u′‖C[0,1] � ‖u′′‖C[0,1] � ‖u′′′‖C[0,1] and ‖u‖C(3)[0,1] = ‖u′′′‖C[0,1] ;

d) ‖u‖C[0,1] = u(1) , ‖u′‖C[0,1] = u′(1) , ‖u′′‖C[0,1] = u′′(0) and ‖u′′′‖C[0,1]=−u′′′(0);

e) u′(t) � u(t) and −u′′′(t) � u′′(t) , for every t ∈ [0,1] .

The proof of this lemma is the same in most parts as the proof of Lemma 2.2 in
[10], since differentiation under the integral sign is valid in our case and we are using
exactly the same Green’s function. Thus we will not include all of the details here.
In [10], u has four continuous derivatives. Since in our case u ∈ AC(3)[0,1] , the only
differences might occur with the relationship between u(4) and h . This is because we
only know that u(4) is positive almost everywhere. For example, when proving the last
statement in part d), that ‖u′′′‖C[0,1] = −u′′′(0) , the argument is as follows. u′′′(t) =
−∫ 1

t h(s)ds , for all t ∈ [0,1] , because u′′′ is absolutely continuous and its derivative is
h a.e. Since h � 0 a.e., we know that | u′′′(t) |= ∫ 1

t h(s)ds , for all t ∈ [0,1] . Thus, if
t1 > t2 , it is clearly the case that | u′′′(t1) |=

∫ 1
t1

h(s)ds �
∫ 1
t2

h(s)ds =| u′′′(t2) | , which
implies that | u′′′(t) | is a decreasing function on [0,1] . Thus ‖u′′′‖C[0,1] = |u′′′(0)| =
−u′′′(0) , since by part a) u′′′(t) � 0 on [0,1] .

The following is a restatement of Lemma 2.3 of [10], which considers the restric-
tion of our operator to C[0,1] with codomain C[0,1] . This restriction turns out to be a
completely continuous bounded linear operator. Since [10] is concerned with solving
LBVP for a continuous h and for all t ∈ [0,1] , the range of this restriction is contained
in C(4)[0,1] . Since C[0,1]⊆ L1[0,1] and C(4)[0,1]⊆C(3)[0,1] , eigenvalues and eigen-
vectors of the operator in [10] will be eigenvalues and eigenvectors for our operator
S : L1[0,1] → C(3)[0,1] . We can think of the lemma below as stating that our opera-
tor S has a positive eigenvalue with a positive eigenfunction, which happens to be in
C(4)[0,1] . The proof involves showing that the spectral radius of the aforementioned
restriction of our operator is strictly positive. Then the Krein-Rutman theorem is used
to show that this spectral radius is in fact an eigenvalue with a positive eigenvector. For
details see [9, 10].

LEMMA 3. There exist φ1 ∈C(4)[0,1] and λ1 > 0 such that φ1(t) � 0 , for all t ∈
[0,1] , ‖φ1‖C[0,1] = 1, φ1(0) = φ ′

1(0) = φ ′′
1 (1) = φ ′′′

1 (1) = 0 and φ (4)
1 (t) = λ1φ1(t) , for

all t ∈ [0,1] . Note that in this case the linearity of S will imply that since S(λ1φ1) = φ1 ,
then Sφ1 = 1

λ1
φ1.
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3. Proofs of main results

In what follows we will consider the following cone in C(3)[0,1] . K =
{

u ∈
C(3)[0,1]

∣∣∣u(t) � 2
3 t2‖u‖C[0,1],u(t) � 0,u′(t) � 0,u′′(t) � 0 and u′′′(t) � 0 on [0,1]

}
.

Note that K is closed in C(3)[0,1] and by Lemma 2a) for h ∈ L1[0,1] such that h � 0
a.e. we have Sh ∈ K.

Now recall that we assume F : [0,1]×R4 → P(R+) is an integrally bounded L1 -
Caratheodory map with nonempty, compact and convex values. We will define the

multivalued operator A : C(3)[0,1] → P
(
C(3)

0 [0,1]
)

by

A = S ◦ϕ ◦T1,

where T1 : C(3)[0,1] →C
(
[0,1],R4

)
is given by

(T1u)(t) =
(
u(t),u′(t),u′′(t),u′′′(t)

)
and

ϕ(x) =
{
h ∈ L1[0,1] with h(t) ∈ F(t,x(t)) a.e.

}
, for x ∈C

(
[0,1],R4) .

In other words, for w ∈C(3)[0,1] , Aw = S◦ϕ ◦T1(w) = {v | v solves the LBVP for h ∈
L1[0,1] with h(t) ∈ F(t,w(t),w′(t),w′′(t),w′′′(t)) a.e.} . Also observe that A : K →
P

(
K ∩C(3)

0 [0,1]
)

.

We will need to show that A is completely continuous which means that it is
upper semicontinuous and takes bounded sets to precompact sets. Then we will be able
to apply Theorem 2 in order to find a fixed point for A , which will be a solution for our
boundary value inclusion, BVI. For the complete continuity of A , we will use Theorem
4.

THEOREM 5. A : C(3)[0,1] →C(3)[0,1] is completely continuous.

Proof. First we will show that S ◦ϕ maps bounded sets to bounded sets. Let

Λ =
{

y ∈C
(
[0,1],R4) : ‖y‖C[0,1] = supt∈[0,1]‖y(t)‖R4 < r

}
.

Now let x∈ Λ . Then we have S◦ϕ(x) = {Sh | h(s)∈ F(s,x(s)) a.e. on [0,1]} . Since F
is integrally bounded, then for all h such that h(s) ∈ F(s,x(s)) a.e. on [0,1] , we have
h(s) � α(s)+ β (s)r a.e., so ‖h‖L1[0,1] �

∫ 1
0 [α(s)+ β (s)r]ds ≡ Kr < ∞ . Now, since by

Lemma 2c) and differentiation under the integral sign, if u = Sh for h(s) ∈ F(s,x(s))
a.e. on [0,1] , then ‖u‖

C
(3)
0 [0,1]

= ‖u′′′‖C[0,1] = supt∈[0,1]
∫ 1
t h(s)ds � Kr , so it follows

that ‖Sh‖
C(3)

0 [0,1]
� Kr . Thus

S ◦ϕ(Λ) ⊆
{

y ∈C(3)
0 [0,1] : ‖y‖

C
(3)
0 [0,1]

< Kr

}
,
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so S ◦ϕ maps bounded sets to bounded sets. Note that this also shows that assumption
1) of Theorem 4 applies to the set S ◦ϕ(Λ) .

Now we will show that { f ′′′ | f ∈ S ◦ ϕ(Λ)} is equicontinuous. Let u = Sh ∈
S ◦ϕ(Λ) and suppose t,y ∈ [0,1] with y � t . Then | u′′′(t)−u′′′(y) |=

∣∣∣− ∫ 1
t h(s)ds+∫ 1

y h(s)ds
∣∣∣ =

∣∣∣∫ t
y h(s)ds

∣∣∣ �
∫ y
t [α(s)+ β (s)r]ds . Let ε > 0. Since the function τ �−→∫ τ

0 [α(s)+β (s)r]ds is absolutely continuous, there exists δ > 0 such that whenever the
measure of E is less than δ , it is the case that

∫
E [α(s)+ β (s)r]ds < ε . Note that δ

depends on α(·) and β (·) , but not on the choice of u ∈ S ◦ϕ(Λ) . Thus we can make
| u′′′(t)−u′′′(y) |< ε , whenever | t − y |< δ , for all u ∈ S ◦ϕ(Λ) . This means that we
have the equicontinuity that we need.

Therefore by Theorem 4 we know that S ◦ϕ(Λ) is a compact subset of K ∩
C(3)

0 [0,1] and thus is also compact in C(3)[0,1] , because K and C(3)
0 [0,1] are closed

in C(3)[0,1] .

Now we will use Theorem 3 to show that A is completely continuous. In Theorem
3, let C(3)[0,1] = E1 = E2 , S = T2 and let T1 : C(3)[0,1] → C

(
[0,1],R4

)
and ϕ be

defined as above. Clearly, T1 is a continous linear operator and Lemma 1 shows that
S is a bounded linear operator also. Then by Theorem 3 we have that T2 ◦ϕ ◦ T1 =
S ◦ϕ ◦T1 = A is a completely continuous mapping from C(3)[0,1] to C(3)[0,1] . �

In order to complete our proof of Theorem 1, we will find a fixed point for A . This
will be accomplished by the use of Theorem 2.

Proof of Theorem 1. The argument below is very similar to that in [10], though it
involves multivalued functions.

Now let us attempt to verify the first condition of Theorem 2. λ1 and φ1 will be
as specified above. Let r1 = r ∈ (0,δ ) . First note that φ1 ∈ K \ {0} and φ1 satisfies
the initial conditions for our problem. This is because it is the solution for LBVP with
h = λ1φ1 and, as noted previously, it is also the case that φ1 ∈C(4)[0,1] and of course
φ1 ∈ L1[0,1] . Now we will attempt to show that x /∈ Ax + tφ1 , for any t > 0 and
x ∈ ∂KB(0,r) , as required by Theorem 2. By Ax+ tφ1 we mean {y+ tφ1 | y ∈ Ax a.e.} .
Suppose this does not hold. Then there exist t1 > 0 and y1 ∈ K with ‖y1‖C(3)[0,1] = r

such that y1 ∈ Ay1 + t1φ1 . Recall that Ay1 = S ◦ϕ ◦T1(y1) =
{

u ∈ AC(3)[0,1]
∣∣∣u(t) =∫ 1

0 G(t,s)h1(s)ds,h1 ∈ L1[0,1] and h1(t) ∈ F(t,y1(t),y′1(t),y
′′
1(t),y

′′′
1 (t)) a.e.

}
. Thus

Ay1 + t1φ1 =
{

u1 ∈ AC(3)[0,1]
∣∣∣u1(t) =

∫ 1
0 G(t,s)z(s)ds+ t1φ1(t),z ∈ L1[0,1],z(t) ∈

F(t,y1(t),y′1(t),y
′′
1(t),y

′′′
1 (t)) a.e.

}
. Now the facts that 1

λ1
is an eigenvalue of S with

eigenvector φ1 and S is linear together imply that S(t1λ1φ1) = t1λ1S(φ1) = t1λ1
1

λ1
φ1 =

t1φ1 . Thus Ay1 + t1φ1 = S ◦ (ϕ ◦ T1(y1)+ t1λ1φ1) and y1 ∈ Ay1 + t1φ1 . This implies
that there exists h1(t) ∈ F(t,y1(t),y′1(t),y

′′
1(t),y

′′′
1 (t)) a.e. such that y1 is the unique

solution of our LBVP found in Lemma 1 for h = h1 + t1λ1φ1 . In other words, y1 ∈
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AC(3)[0,1]∩∂KB(0,r) and satisfies{
y(4)
1 (t) = h1(t)+ t1λ1φ1(t) a.e. on [0,1],

y1(0) = y′1(0) = y′′1(1) = y′′′1 (1) = 0.

By Lemma 2a) for every t ∈ [0,1] , y1(t) , y′1(t) and y′′1(t) are all nonnegative and
less than or equal to ‖y1‖C(3)[0,1] = r < δ and y′′′1 (t) � 0, for all t ∈ [0,1] . Thus we
have −δ � −‖y1‖C(3)[0,1] = −‖y′′′1 ‖C[0,1] = −supt∈[0,1] | y′′′1 (t) |� y′′′1 (t) � 0, for all t ∈
[0,1] . By assumption A1) we know that inf[F(s,y1(s),y′1(s),y

′′
1(s),y

′′′
1 (s))] � b0y1(s)+

b1y′1(s) a.e. � (b0 +b1)y1(s) a.e. The last inequalty comes from Lemma 2e). Since we

know that y(4)
1 (s) = h1(s)+ t1λ1φ1(s) a.e. on [0,1] and h1(s) ∈

F(t,y1(s),y′1(s),y
′′
1(s),y

′′′
1 (s)) a.e. , it follows that y(4)

1 (s) � h1(s) � (b0 +b1)y1(s) a.e.
Now let us multiply by the positive function φ1(t) to obtain

φ1(s)y
(4)
1 (s) � (b0 +b1)φ1(s)y1(s) a.e.

We will integrate by parts on the left hand side several times. We can do so since
φ1 ∈C(4)[0,1] and y1 ∈ AC(3)[0,1] . Recall that both φ1 and y1 satisfy the initial con-

ditions for our BVI.
∫ 1
0 φ1(s)y

(4)
1 (s)ds = −∫ 1

0 φ ′
1(s)y

′′′
1 (s)ds =

∫ 1
0 φ ′′

1 (s)y′′1(s)ds = . . . =∫ 1
0 φ (4)

1 (s)y1(s)ds . Lemma 3 implies that φ (4)
1 (t) = λ1φ1(t) . Thus we can write

λ1

∫ 1

0
φ1(s)y1(s)ds � (b0 +b1)

∫ 1

0
φ1(s)y1(s)ds. (1)

Note that Lemma 2b) shows that
∫ 1
0 φ1(s)y1(s)ds �

∫ 1
0

(
2
3 s2‖y1‖C[0,1]

)(
2
3s2‖φ1‖C[0,1]

)
ds

= 4
9(‖y1‖C[0,1])(‖φ1‖C[0,1])

∫ 1
0 s4ds = 4

45(‖y1‖C[0,1])(‖φ1‖C[0,1]) = 4
45(‖y1‖C[0,1]) > 0,

since ‖φ1‖C[0,1] = 1 and y1 ∈ ∂KB(0,r) . Now we divide both sides of inequaltiy (1)

by
∫ 1
0 φ1(s)y1(s)ds , which implies that λ1 � b0 +b1 . This contradicts assumption A1).

We have verified the first condition of Theorem 2.
Now, set R0 = C0

1−(a0+a1+a2+a3)
and choose r2 > max(R0,δ ) , where δ is the

value specified in assumption A1). We ensure that λv /∈ A(v) , for all λ > 1and
v∈ ∂KB(0,r2) . Suppose that this does not hold. Then there exist u0 ∈K∩∂B(0,r2) and

λ0 > 1 such that λ0u0 ∈ Au0 . Thus λ0u0 ∈
{

u ∈C(3)[0,1]
∣∣∣u(t) =

∫ 1
0 G(t,s)h(s)ds,h ∈

L1[0,1] and h(t) ∈ F(t,u0(t),u′0(t),u
′′
0(t),u

′′′
0 (t)) a.e.

}
. Let h0 be the L1[0,1] selection

of F(t,u0(t),u′0(t),u
′′
0(t),u

′′′
0 (t)) associated with λ0u0 . Then we have λ0u0(t) =∫ 1

0 G(t,s)h0(s)ds , for t ∈ [0,1] . Also λ0u0 ∈ Au0 , so it must be a solution for LBVP,

where h=h0 . Thus λ0u0 ∈ AC(3)[0,1] and λ0u
(4)
0 (t)∈F(t,u0(t),u′0(t),u

′′
0(t),u

′′′
0 (t))a.e.

Since λ0u0 ∈ K and λ0 > 0, we know that u0(t) � 0, u′0(t) � 0, u′′0(t) � 0 and

u′′′0 (t) � 0 on [0,1] . Now by assumption A2) we have λ0u
(4)
0 (t) � a0u0(t)+a1u′0(t)+

a2u′′0(t)+a3 | u′′′0 (t) | +C0 a.e. on [0,1] and thus, using the fact that 1
λ0

< 1, we have

u(4)
0 (t) � 1

λ0
(a0u0(t)+a1u

′
0(t)+a2u

′′
0(t)+a3 | u′′′0 (t) | +C0)
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� a0u0(t)+a1u
′
0(t)+a2u

′′
0(t)+a3 | u′′′0 (t) | + C0

� (a0 +a1 +a2 +a3)‖u0‖C(3)[0,1] + C0 a.e. on [0,1].

Now integrate.
∫ 1
0 u(4)

0 (s)ds � (a0 +a1 +a2 +a3)‖u0‖C(3)[0,1] +C0 . Since we know that

u′′′0 (1) = 0 and u0 ∈ AC(3)[0,1] , we obtain −u′′′0 (0) � (a0 +a1 +a2 +a3)‖u0‖C(3)[0,1] +

C0 . Since ‖u0‖C(3)[0,1] = −u′′′0 (0) , we have ‖u0‖C(3)[0,1] � C0
1−(a0+a1+a2+a3)

. Then

‖u0‖C(3)[0,1] � R0 < r2 , which contradicts the fact that u0 ∈ K ∩ ∂B(0,r2) . Thus we
have λv /∈ Av , for all λ > 1 and v ∈ ∂KB(0,r2) , as desired. We have verified the
second condition in Theorem 2, which is our fixed point theorem.

Therefore Theorem 2 implies that A has some fixed point v0 with v0 ∈ B(0,r2)\
B(0,r1) . This fixed point is positive, since v0 ∈ K \ {0} and is a solution for our BVI.
This concludes the proof of Theorem 1. �

We will conclude with an example for which Theorem 1 applies.

EXAMPLE 1. Let F : [0,1]×R4 → P(R+) be given by

F(t,x0,x1,x2,x3) = [a(t,x0,x1,x2,x3),b(t,x0,x1,x2,x3)],

where

a(t,x0,x1,x2,x3) = 2+ t
5
√| x0 | · | x1 | · | x2 | · | x3 |

1+ x2
0 + x2

1 + x2
2 + x2

3

and

b(t,x0,x1,x2,x3) = 2+ t 5
√
| x0 | · | x1 | · | x2 | · | x3 |.

Clearly F has nonempty, compact, and convex values in P(R+) and, since
a(t,x0,x1,x2,x3) and b(t,x0,x1,x2,x3) are continuous functions on [0,1]×R4− , F is
also upper semicontinuous for any fixed t ∈ [0,1] . Clearly F is measurable in t .
Now choose δ < 1

λ1
and let b0 = b1 = λ1 , so that b0 + b1 = 2λ1 > λ1 . Also for

(x0,x1,x2,x3) ∈ [0,δ ]3× [−δ ,0] , it is clear that

b0x0 +b1x1 < 2(λ1 · 1
λ1

) = 2 � a(t,x0,x1,x2,x3) = inf[F(t,x0,x1,x2,x3)].

Therefore assumption A1) is satisfied.
Let (x0,x1,x2,x3) ∈ R3

+ × R− . Apply the arithmetic mean-geometric mean in-
equality to the nonnegative values 1,x0,x1,x2 and | x3 | to obtain

sup[F(t,x0,x1,x2,x3)] = b(t,x0,x1,x2,x3) = 2+ t 5
√

x0 · x1 · x2· | x3 |

� 2+ 5
√

x0 · x1 · x2· | x3 | � 2+
1+ x0 + x1 + x2+ | x3 |

5

=
1
5
x0 +

1
5
x1 +

1
5
x2 +

1
5
| x3 | +11

5
.

Thus condition A2) is satisfied for a0 = a1 = a2 = a3 = 1
5 and C0 = 11

5 .
By Theorem 1, the BVI for the above F has at least one positive solution.
Note that in Lemma 2.4 of [10] it is shown that λ1 ∈ [8,21) . This means that one

does not have to calculate λ1 in order to apply Theorem 1. Simply select b0 and b1

such that b0 +b1 � 21.
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