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STABILITY AND CONTROLLABILITY RESULTS OF EVOLUTION

SYSTEM WITH IMPULSIVE CONDITION ON TIME SCALES
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(Communicated by M. Federson)

Abstract. In this manuscript, we examine the Hyer’s-Ulam stability and exact controllability
results for impulsive evolution system on time scales. This manuscript has two segments: the first
segment of the work is concerned with the Hyer’s-Ulam type’s stability analysis and the other
segment is to exact controllability results. We used the Banach fixed point theorem, evolution
operator theory and nonlinear functional analysis to establish these results. At last, we have
presented some theoretical and numerical examples to outcome the utilization of these developed
analytical results.

1. Introduction

Many real-world problems can be represented by the evolutionary processes which
are liable to sudden change in its state because of outer unsettling influences that act
instantaneously in the form of impulses. Many evolutionary processes, for example,
bursting rhythm models in biology, blood flow, heartbeats, some motions of satellites
and population dynamics are impulsive in nature [1, 2]. Specifically, impulsive models
are described by dynamical systems which are continuous in time, except at the finite
number of points, where the system exhibits discrete time behaviour due to the sudden
disturbances in the form of impulses. On the other hand, stability analysis of func-
tional and differential equations becomes an important research area and various form
of stabilities have been developed including Mittag-Leffler function, exponential and
Lyapunov stability for dynamical equations. However, an interesting type of stability
was introduced by Ulam and Hyers is known as Ulam-Hyer’s stability, which is highly
useful in numerical analysis and optimization for dynamical equations. As we know
so far, the Hyers-Ulam stability has been employed for several dynamical equations
of integer and fractional order [3, 4, 5]. Andrs and Mszros [6], examined the Hyer-
Ulam’s stability results for integral equations and differential equations on time scales
by defining the Picard operators and it is proved the proposed results are more general
than some existing works.
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Further, the time scales calculus was introduced by Hilger in [7] as a unification
of the usual real calculus, the theory of difference equations and the q-calculus. Since
then this theory has been widely utilized in the difference and differential equations
to get a superior comprehension and a unified perspective of scientific phenomenons
occurring there. More recently, several authors discussed the existence, uniqueness
of periodic, antiperiodic solutions and stability of abstract equations on time scales
[8, 9]. For more details on time scales one can refer the books [10, 11] and the papers
[12, 13, 14, 15, 16, 17].

Eventhough controllability results of linear and nonlinear dynamical systems have
turned into an essential territory of research since a very long while (see [18,19,20,21]
and references there in), controllability results of differential equations on time scales
is a relatively newer field and only a few works have been reported [22, 23, 24, 25, 26,
27, 28, 29]. Particularly, the controllability and observability of the dynamical systems
on time scales in the finite dimensional spaces is reported in [23]. In [22] Lupulescu
et al. considered the dynamical system with impulsive conditions on time scales and
established the necessary and sufficient conditions for the state observability and state
controllability. According to as far as anyone is concerned, there is no manuscript which
examined the exact controllability and Ulam’s type stability analysis for an impulsive
evolution dynamical systems on time scales. Motivated by the above facts, in this paper
we obtain the Ulam’s type stability results for the following impulsive evolution system
on time scales

yΔ(t) = A (t)y(t)+M (t,y(t)), t ∈ I = [0,b]T, t �= tl,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1,2, . . . , p, (1.1)

y(0) = y0

and for the exact controllability results, we consider the following impulsive evolution
system on time scales

yΔ(t) = A (t)y(t)+Bu(t)+M (t,y(t)), t ∈ I,t �= tl,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1,2, . . . , p, (1.2)

y(0) = y0,

where T is a time scale with 0,tl,b ∈ T . y(t) ∈ Y be a state function. Also, A (t)
is a family of linear operators which generates an evolution operator {V (t,s) : (t,s) ∈
T×T : 0 � s � t � b} . Throughout the paper, it is assumed that the point of impulses
tl for l = 1,2, . . . , p, are right dense with 0 � t0 < t1 < .. . < tp < tp+1 = b, y(t−l ) =
limh→0+ y(tl −h), y(t+l ) = limh→0+ y(tl +h) represent the left and right limit of y(t) at
t = tl. B is a bounded linear operator from a Banach space U to Y and u(·) is control
function given in L2(I,U) . M : I ×Y → Y and Jl : I ×Y → Y are suitably defined
functions.

Note that the problems (1.1) and (1.2) considered in this manuscript are new and
start the investigation of evolution system with impulsive conditions on time scales.
We trust that the acquired outcomes will be a helpful and significant contribution to the
existing literature on the topic. The plan of the manuscript is as follows. In Section 2,
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we give some preliminaries, fundamental definitions and some useful lemmas. In the
subsequent sections, main results of the paper are discussed. At last, to outcome the
utilization of these obtained analytical results, an example is given.

2. Preliminaries and definitions

Below, we recall some notations, fundamental definitions, and lemmas which will
be used to prove our main results. Let (Y,‖.‖) be a Banach space and the space
of all linear bounded operators from Y into Y is represented by B(Y ) . The space
C(I,Y ) of all continuous functions f̃ : I → Y is a Banach space with the norm ‖ f̃‖C =
supt∈I ‖ f̃ (t)‖ . The space of functions from I into Y which are Lebesgue integrable are
represented by L1(I,Y ) . PC(I,Y ) = {y : I →Y : y ∈C((tl ,tl+1]T,Y ), l = 0,1, . . . , p and
there exists y(t+l ) and y(t−l ), l = 1,2, . . . , p with y(t−l ) = y(tl)} denotes the space of
piecewise continuous functions. One can easily find that PC(I,Y ) is a Banach space
induced with the norm, ‖y‖PC = supt∈I ‖y(t)‖ .

A non-empty closed subset of real number is called time scales T . We set T
k =

T\{maxT} if maxT exists, otherwise T
k = T. A time scale interval is defined as

[a,b]T = {t ∈ T : a � t � b} , similarly, we define (a,b]T,(a,b)T etc.
The forward jump operator σ : T → T is defined by σ(t) := inf{s ∈ T : s > t}

with the substitution inf{ /0}= supT. The backward jump operator ρ : T→T is defined
by ρ(t) := sup{s ∈ T : s < t} with the substitution sup{ /0} = infT. We say t is right-
scattered or left-scattered if σ(t) > t or ρ(t) < t . Also, t is called right dense or left
dense if t < supT and σ(t) = t or t > infT and ρ(t) = t , respectively. The point t is
called the dense point if it is right and left dense at the same time. Finally, the graininess
function μ : T → [0,∞) is defined by μ(t) := σ(t)− t .

A function f : T → Y is called regulated if its right-hand limit exists (finite) at
all right-dense points in T and its left-hand limit exists (finite) at all left-dense points
in T . A function ψ : T → Y is said to be rd-continuous, if it is regulated and it is
continuous at all right-dense points. We denote Crd(T,Y ) for the collections of all rd-
continuous functions. Moreover, function ψ is piecewise rd-continuous if it is regulated
and rd-continuous at all, except possibly at finitely many, right-dense points t ∈ T . The
collections of all piecewise rd-continuous functions from T to Y will be denoted by
PCrd(T,Y ) .

DEFINITION 1. (Delta derivative, [10]) Let ψ : T → Y be a function and t ∈ T
k .

Then the delta derivative (or Δ−derivative) of ψ at the point t is defined to be the
number ψΔ(t) (provided it exists) with the property that for each ε > 0 there is a
neighborhood U of t such that∣∣∣[ψ(σ(t))−ψ(s)]−ψΔ(t)[σ(t)− s]

∣∣∣ � ε|σ(t)− s|, ∀ s ∈ U .

DEFINITION 2. (Delta integral, [10]) Let Ψ be a function, it is called the an-
tiderivative of ψ : T → Y provided ΨΔ(t) = ψ(t) , for each t ∈ T

k , then the delta



546 V. KUMAR AND M. MALIK

integral is given by ∫ t

t0
ψ(s)Δs = Ψ(t)−Ψ(t0).

DEFINITION 3. ( [10]) A function q : T → R is said to be regressive if ∀ t ∈
T,1+ μ(t)q(t) �= 0 . The collections of all regressive function is represented by R .

DEFINITION 4. ( [10]) For q ∈ R , the exponential function in the sense of time
scales, is given by

eq(t,s) = exp

(∫ t

s
ξμ(τ)(q(τ))Δτ

)
, t,s ∈ T,

where ξμ(τ)(q(τ)) is the cylinder transformation given by

ξμ(τ)(F) =

⎧⎨
⎩

1
h

log(1+Fh), if h �= 0,

F, if h = 0.

DEFINITION 5. ( [10]) Let p,q ∈ R, then:

(i) �p =
−p

1+ μ(t)p
;

(ii) p⊕q = p+q+ μ(t)pq ;

(iii) p�q = p⊕ (�q) .

LEMMA 1. ( [10]) If q ∈ R , then:

(i) eq(t, t) = 1 and e0(t,s) = 1 ;

(ii) (e�q(t,s))Δ = �q(t)e�q(t,s);

(iii) eq(t,s) = e�q(s,t);

(iv) eq(t,s)eq(s,r) = eq(t,r);

(v) eq(σ(t),s) = (1+ μ(t)q(t))eq(t,s) .

LEMMA 2. ( [10]) If t0,t1,a ∈ T and q ∈ R , then

∫ t1

t0
q(s)eq(a,σ(s))Δs = eq(a,t0)− eq(a,t1).

LEMMA 3. ( [16, 8]) If α > 0 , then e�α(t,s) � 1 , for t,s ∈ T such that t > s.

DEFINITION 6. ( [15]) A two parameter family V (t,s) : T×T → B(Y ) is said to
be linear evolution operator if it satisfies the conditions:
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(a) (t,s) → V (t,s)y is continuous mapping for any fixed y ∈ Y ;

(b) V (t, t) = Ĩ , where Ĩ is the identity operator in Y ;

(c) V (t,s)V (s,r) = V (t,r) .

DEFINITION 7. An evolution operator V (t,s) is said to be exponentially stable if
there exist two constants K0 � 1 and ν > 0 such that

‖V (t,s)‖ � K0e�ν(t,s),t � s.

Now onwards, for the notational convenience, we set:

(i) μ = supt∈I μ(t) ;

(ii) K1 = supt∈I{e�ν(t,tl), l = 1,2, . . . , p} ;

(iii) K2 = max{e�ν(b,tl), l = 1,2, . . . , p} and K = max{K1,K2}.

Assumptions:

(A1): Function M : I×Y →Y is continuous and there exist positive constants LM and
CM such that:

(a) ‖M (t,y)−M (t,z)‖ � LM ‖y− z‖, ∀ y,z ∈ Y, t ∈ I ;

(b) ‖M (t,y)‖ � CM ,∀ t ∈ I and y ∈Y .

(A2): Jl(tl ,y(t−l )) ∈C(I×Y,Y ), l = 1,2, . . . , p and there exist positive constants LJ

and MJ such that:

(a) ‖Jl(t,y)−Jl(t,z)‖ � LJ ‖y− z‖, ∀ t ∈ I, y,z ∈Y ;

(b) ‖Jl(t,y)‖ � MJ ,∀ t ∈ I and y ∈Y .

(A3): The family {A (t) : t ∈ T} of bounded linear operators in Y generates an expo-
nentially stable evolution operator {V (t,s) : t � s} , i.e. there exist K0 � 1 and
ν such that ‖V (t,s)‖ � K0e�ν(t,s) .

(A4): The linear operator Πb
0 : L2(I,U) → Y given by

Πb
0u =

∫ b

0
V (b,σ(s))Bu(s)Δs

has a bounded invertible operator (Πb
0)

−1 , which takes values in L2(I,U)\kerΠb
0 .

Also, B is continuous operator from U to Y and there exist positive constants
MΠ,MB such that

∥∥(Πb
0)

−1
∥∥ � MΠ and ‖B‖ � MB .
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DEFINITION 8. ( [15]) A function y ∈ PC(I,Y ) is called a mild solution of the
system (1.2) if it satisfies y(0) = y0,Δy(tl) = Jl(tl,y(t−l )), l = 1,2, . . . , p and the fol-
lowing equation

y(t) = V (t,0)y0 + ∑
0<tl<t

V (t,tl)Jl(tl,y(t−l ))+
∫ t

0
V (t,σ(s))[Bu(s)+M (s,y(s))]Δs.

(2.1)

For ε > 0, we consider the following inequality{∥∥xΔ(t)−A (t)x(t)−M (t,x(t))
∥∥ � ε, t ∈ I, t �= tl,∥∥Δx(tl)−Jl(tl,x(t−l ))

∥∥ � ε, l = 1,2, . . . , p.
(2.2)

DEFINITION 9. Equation (1.1) is called Ulam-Hyer’s stable if there exists a con-
stant H(LM ,LJ ,p,ν) > 0 such that for ε > 0 and for each solution x of inequality (2.2)
there exists a mild solution y of equation (1.1) satisfies the following inequality

‖x(t)− y(t)‖� H(LM ,LJ ,p,ν)ε, ∀ t ∈ I.

DEFINITION 10. Equation (1.1) is said to be generalized Ulam-Hyer’s stable if
there exists H(LM ,LJ ,p,ν) ∈C(R+,R+),H(LM ,LJ ,p,ν)(0) = 0 such that for each solu-
tion x of inequality (2.2) there exists a mild solution y of equation (1.1) satisfies the
following inequality

‖x(t)− y(t)‖� H(LM ,LJ ,p,ν)(ε), ∀ t ∈ I.

REMARK 1. Definition 9 =⇒ Definition 10.

REMARK 2. A function x ∈ PC(I,Y ) is a solution of inequality (2.2) iff there is a
sequence Gl , for l = 1,2, . . . , p , and a G ∈ PC(I,Y ) such that:

(a) ‖G(t)‖ � ε,∀ t ∈ I, t �= tl and ‖Gl‖ � ε , ∀ l = 1,2, . . . , p ;

(b) xΔ(t) = A (t)x(t)+M (t,x(t))+G(t), t ∈ I, t �= tl ;

(c) Δx(tl) = Jl(tl ,x(t−l ))+Gl, l = 1,2, . . . , p.

From the above remark, we have

xΔ(t) = A (t)x(t)+M (t,x(t))+G(t), t ∈ I, t �= tl ,

Δx(tl) = Jl(tl,x(t−l ))+Gl, l = 1,2, . . . , p,

then by Definition 8, we find the solution x(t) of the above equation with x(0) = y0 is
given by
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x(t)=V (t,0)y0+ ∑
0<tl<t

V (t,tl)[Jl(tl,x(t−l ))+Gl]+
∫ t

0
V (t,σ(s))[M (s,x(s))+G(s)]Δs.

Consequently, we get∥∥∥∥∥x(t)−V (t,0)y0− ∑
0<tl<t

V (t,tl)Jl(tl ,x(t−l ))−
∫ t

0
V (t,σ(s))M (s,x(s))Δs

∥∥∥∥∥
�K0ε

p

∑
l=1

e�ν(t, tl)+K0ε
∫ t

0
e�ν(t,σ(s))Δs

�K0ε
p

∑
l=1

e�ν(t, tl)+
K0ε(1− e�ν(t,0))(1+ μν)

ν
.

Hence, we have∥∥∥∥x(t)−V (t,0)y0 − ∑
0<tl<t

V (t,tl)Jl(tl,x(t−l ))−
∫ t

0
V (t,σ(s))M (s,x(s))Δs

∥∥∥∥
�Me�ν (t,0)ε, (2.3)

where M = K0

[
∑p

l=1 e�ν(0,tl)+
(1+ μν)(eν (b,0)−1)

ν

]
.

LEMMA 4. ( [15]) If v ∈ PCrd(T,R+) satisfies the given inequality

v(t) � α +
∫ t

a
p(s)v(s)Δs+ ∑

a<tl<t
βlv(tl), ∀ t ∈ T,

then
v(t) � α ∏

a<tl<t
(1+ βl)ep(t,a).

3. Ulam’s type stability

In this section, we give some sufficient condition for the Ulam-Hyer’s stability of
the equation (1.1) in the Banach space Y .

THEOREM 1. If the assumptions (A1)-(A3) are satisfied, then the equation (1.1)
is Ulam-Hyer’s stable.

Proof. Let y be the solution of equation (1.1) and x be solution of inequality (2.2).
Then, by Definition 8, we have

y(t) = V (t,0)y0 + ∑
0<tl<t

V (t,tl)Jl(tl ,y(t−l ))+
∫ t

0
V (t,σ(s))M (s,y(s))Δs
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and we get

‖x(t)− y(t)‖

�
∥∥∥∥x(t)−V (t,0)y0−

∫ t

0
V (t,σ(s))M (s,y(s))Δs− ∑

0<tl<t

V (t,tl)Jl(tl ,y(t−l ))
∥∥∥∥

�εMe�ν (t,0)+
∥∥∥∥

∫ t

0
V (t,σ(s))(M (s,x(s))−M (s,y(s)))Δs

∥∥∥∥
+

∥∥∥∥∥ ∑
0<tl<t

V (t, tl)(Jl(tl ,x(t−l ))−Jl(tl,y(t−l )))

∥∥∥∥∥
�εMe�ν (t,0)+K0LM

∫ t

0
e�ν(t,σ(s))‖x(s)− y(s)‖Δs

+K0LJ

p

∑
l=1

e�ν(t,tl)‖x(t−l )− y(t−l )‖.

Subsequently, we get

‖x(t)− y(t)‖�εMe�ν (t,0)+K0LM (1+ μν)
∫ t

0
e�ν(t,s)‖x(s)− y(s)‖Δs

+K0LJ

p

∑
l=1

e�ν(t,tl)‖x(t−l )− y(t−l )‖.

Now, we set ‖x(t)− y(t)‖eν(t,0) = z(t) , in the above inequality, we get

z(t) � Mε +K0LM (1+ μν)
∫ t

0
z(s)Δs+K0LJ

p

∑
l=1

z(t−l ).

Now, by using the Lemma 4, we get

‖x(t)− y(t)‖� Mε
p

∏
l=1

(1+K0LJ )eγ(b,0) � H(LM ,LJ ,p,ν)ε, t ∈ I,

where H(LM ,LJ ,p,ν) = M∏p
l=1(1+K0LJ )eγ (b,0)> 0 and γ = K0LM (1+μν) . Hence,

the equation (1.1) is Ulam-Hyer’s stable. In addition, if we set H(LM ,LJ ,p,ν)(ε) =
H(LM ,LJ ,p,ν)ε, H(LM ,LJ ,p,ν)(0) = 0, then equation (1.1) is generalized Ulam-Hyer’s
stable. �

4. Exact controllability

DEFINITION 11. The system (1.2) is called exactly controllable on [0,b]T , if for
every y0,yb ∈ Y there exists a control function u ∈ L2([0,b]T,U) such that the mild
solution (2.1) satisfies y(b) = yb .
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LEMMA 5. If the assumptions (A1)-(A4) are satisfied, then for t ∈ [0,b]T , the
control function

u(t) = (Πb
0)

−1
[
yb−V (b,0)y0−

p

∑
l=1

V (b,tl)Jl(tl,y(t−l ))

−
∫ b

0
V (b,σ(s))M (s,y(s))Δs

]
(t) (4.1)

steers the state function y(t) from initial state y0 to final state yb at time t = b. Also,
the estimate for the control function u(t) is Mu where

Mu = MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+

K0CM (1+ μν)(1− e�ν(b,0))
ν

+mK0K2MJ

]
.

Proof. By substituting t = b, in the mild solution (2.1) of the system (1.2), we get

y(b) =V (b,0)y0 + Πb
0u(t)+

p

∑
l=1

V (b,tl)Jl(tl ,y(t−l ))+
∫ b

0
V (b,σ(s))M (s,y(s))Δs

=V (b,0)y0 +
p

∑
l=1

V (b,tl)Ji(tl ,y(t−l ))+
[
yb −

p

∑
l=1

V (b,tl)Jl(tl ,y(t−l ))

−V (b,0)y0−
∫ b

0
V (b,σ(s))M (s,y(s))Δs

]
+

∫ b

0
V (b,σ(s))M (s,y(s))Δs

=yb.

Hence, the control function (4.1) steers the state function y(t) from initial state y0 to
final state yb at time t = b . Also,

‖u(t)‖ �MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+K0CM

∫ b

0
e�ν(b,σ(s))Δs+K0MJ

m

∑
l=1

e�ν(b,tl)
]

�MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+

K0CM (e�ν(b,0)−1)
�ν

+mK0K2MJ

]
=Mu. �

THEOREM 2. If the assumptions (A1)-(A4) are satisfied along with

K0

(
1+

K0MBMΠ(1+ μν)
ν

)(
mKLJ +

LM (1+ μν)
ν

)
< 1,

then the control system (1.2) is exactly controllable on I .

Proof. For β = K0‖y0‖+
K0(MBMu +CM )(1+ μν)

ν
+ mK0K1MJ , consider a

subset Ω ⊆ PC(I,Y ) such that

Ω = {y ∈ PC(I,Y ) : ‖y‖PC � β}.
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Now, define an operator Γ : Ω → Ω by

(Γy)t=V (t,0)y0+ ∑
0<tl<t

V (t,tl)Jl(tl ,y(t−l ))+
∫ t

0
V (t,σ(s))[Bu(s)+M (s,y(s))]Δs.

(4.2)

For t ∈ I and y ∈ Ω we have

‖(Γy)t‖ �K0e�ν(t,0)‖y0‖+K0MJ

p

∑
l=1

e�ν(t,tl)+K0(MBMu+CM )
∫ t

0
e�ν(t,σ(s))Δs

� K0‖y0‖+K0MJ

p

∑
l=1

e�ν(t,tl)+
K0(MBMu +CM )(1− e�ν(t,0))(1+ μν)

ν
.

Hence

‖Γy‖PC � K0‖y0‖+mK0K1MJ +
K0(MBMu +CM )(1+ μν)

ν
� β .

Therefore, Γ : Ω → Ω . Also, for y,z ∈ Ω and t ∈ I

‖(Γy)t− (Γz)t‖

�
∥∥∥∥

∫ t

0
V (t,σ(τ))B(Πb

0)
−1

[∫ b

0
V (b,σ(s))(M (s,y(s))−M (s,z(s)))Δs

+
p

∑
l=1

V (b,tl)(Jl(tl ,y(t−l ))−Jl(tl ,z(t−l )))
]

Δτ
∥∥∥∥

+
∥∥∥∥ p

∑
l=1

V (t, tl)(Jl(tl ,y(t−l ))−Jl(tl ,z(t−l )))
∥∥∥∥

+
∥∥∥∥

∫ t

0
V (t,σ(s))(M (s,y(s))−M (s,z(s)))Δs

∥∥∥∥
�K2

0MBMΠ‖y− z‖PC

(
LM (e�ν (b,0)−1)

�ν
+LJ

p

∑
l=1

e�ν(b,tl)
)
×

(
e�ν(t,0)−1

�ν

)

+
K0LM (e�ν(t,0)−1)

�ν
‖y− z‖PC + pK0K1LJ ‖y− z‖PC.

Hence

‖Γy−Γz‖PC � Lα‖y− z‖PC,

where

Lα =
[
K2

0MBMΠ(1+ μν)
ν

(
LM (1+ μν)

ν
+mLJK2

)
+

K0LM (1+ μν)
ν

+mK0K1LJ

]
.

Therefore, Γ is a strict contraction operator. Thus, by means of Banach fixed point
principle, Γ has a unique fixed point on I . Therefore, system (1.2) has a mild solution
on I and hence we conclude that the control system (1.2) is exactly controllable on
I . �
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5. Exact controllability of integro differential system

Consider the following integro-differential equation of the form

yΔ(t) = A (t)y(t)+Bu(t)+
∫ t

0
ζ (t,s)g(s,y(s))Δs+M (t,y(t)), t ∈ I,t �= tl ,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1,2, . . . , p, (5.1)

y(0) = y0.

(A5): ζb =
∫ t
0 |ζ (t,s)|Δs.

(A6): g : I×Y → Y is a continuous function and there exist positive constants Lg and
Mg such that

(a) ‖g(t,y)−g(t,z)‖� Lg‖y− z‖, ∀ y,z ∈ Y, and t ∈ I.

(b) ‖g(t,y)‖ � Mg, ∀ t ∈ I and y ∈Y .

DEFINITION 12. A function y ∈ PC(I,Y ) is called a mild solution of the system
(5.1) if it satisfies y(0) = y0,Δy(tl) = Jl(tl,y(t−l )), l = 1,2, . . . , p and the following
equation

y(t) =V (t,0)y0 + ∑
0<tl<t

V (t,tl)Jl(tl ,y(t−l ))+
∫ t

0
V (t,σ(s)) [Bu(s)+M (s,y(s))

+
∫ s

0
ζ (s,τ)g(τ,y(τ))Δτ

]
Δs. (5.2)

LEMMA 6. If the assumptions (A1)-(A6) are satisfied, then for t ∈ I, the control
function

u(t) =
(

Πb
0

)−1
[
yb−V (b,0)y0−

p

∑
l=1

V (b,tl)Jl(tl ,y(t−l ))

−
∫ b

0
V (b,σ(s))

(∫ s

0
ζ (s,τ)g(τ,y(τ))Δτ +M (s,y(s))

)
Δs

]
(t)

(5.3)

steers the state function y(t) from initial state y0 to yb at time b. Also, the estimate for
the control function u(t) is M′

u , where

M′
u = MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+mK0K2MJ +

K0(CM + ζbMg)(1+ μν)
ν

]
.

Proof. By substituting t = b in the mild solution (5.2) of the system (5.1), we get

y(b) =V (b,0)y0 +
p

∑
l=1

V (b,tl)Jl(tl ,y(t−l ))+
∫ b

0
V (b,σ(s))M (s,y(s))Δs
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+
∫ b

0
V (b,σ(s))

∫ s

0
ζ (s,τ)g(τ,y(τ))ΔτΔs+ Πb

0

(
Πb

0

)−1
[
yb−V (b,0)y0

−
∫ b

0
V (b,σ(s))

(∫ s

0
ζ (s,τ)g(τ,y(τ))Δτ +M (s,y(s))

)
Δs

−
p

∑
l=1

V (b,tl)Jl(tl,y(t−l ))
]

=yb.

Hence, the control function (5.3) steers the state function y(t) from initial state y0 to
final state yb at time t = b . Also,

‖u(t)‖ � MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+K0MJ

m

∑
l=1

e�ν(b,tl)

+K0(CM + ζbMg)
∫ b

0
e�ν(b,σ(s))Δs

]

� MΠ

[
‖yb‖+K0e�ν(b,0)‖y0‖+mK0MJ +

K0(CM + ζbMg)(1+ μν)
ν

]
= M′

u. �

THEOREM 3. If the assumptions (A1)-(A6) are satisfied along with

K0

(
1+

K0MBMΠ(1+ μν)
ν

)(
mKLJ +

LM (1+ μν)
ν

+
ζbLg(1+ μν)

ν

)
< 1,

then the control system (5.1) is exactly controllable on I .

Proof. Consider a subset Ω ′ ⊆ PC(I,Y ) such that

Ω ′ = {y ∈ PC(I,Y ) : ‖y‖PC � β ′},
where

β ′ = K0‖y0‖+
K0(MBM′

u +CM + ζbMg)(1+ μν)
ν

+mK0K1MJ .

Now, define an operator Γ ′ : Ω ′ → Ω ′ by

(Γ ′y)t =V (t,0)y0 +
∫ t

0
V (t,σ(s))

[
Bu(s)+M (s,y(s))+

∫ s

0
ζ (s,τ)g(τ,y(τ))Δτ

]
Δs

+ ∑
0<tl<t

V (t,tl)Jl(tl ,y(t−l )). (5.4)

For t ∈ I and y ∈ Ω ′ , we have

‖(Γ ′y)t‖ �K0e�ν(t,0)‖y0‖+K0(MBM′
u +CM + ζbMg)

∫ t

0
e�ν(t,σ(s))Δs
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+K0MJ

p

∑
l=1

e�ν(t,tl)

�K0‖y0‖+
K0(MBM′

u +CM + ζbMg)(1+ μν)
ν

+K0MJ

p

∑
l=1

e�ν(t,tl)

�β ′.

Therefore, Γ ′ : Ω ′ → Ω ′ . For y,z ∈ Ω ′ and t ∈ I

‖(Γ ′y)t− (Γ ′z)t‖

�
∥∥∥∥

∫ t

0
V (t,σ(τ))B

(
Πb

0

)−1
[∫ b

0
V (b,σ(s))(M (s,y(s))−M (s,z(s)))Δs

+
p

∑
l=1

V (b,tl)(Jl(tl,y(t−l ))−Jl(tl,z(t−l )))

+
∫ b

0
V (b,σ(s))

∫ s

0
ζ (s,η)(g(η ,y(η))−g(η ,z(η)))ΔηΔs

]
Δτ

∥∥∥∥
+

∥∥∥∥ p

∑
l=1

V (t, tl)(Jl(tl ,y(t−l ))−Jl(tl ,z(t−l )))
∥∥∥∥

+
∥∥∥∥

∫ t

0
V (t,σ(s))

∫ s

0
ζ (s,η)(g(η ,y(η))−g(η ,z(η)))ΔηΔs

∥∥∥∥
+

∥∥∥∥
∫ t

0
V (t,σ(s))(M (s,y(s))−M (s,z(s)))Δs

∥∥∥∥.

Hence

‖Γ ′y−Γ ′z‖PC � L′
α‖y− z‖PC,

where

L′
α =

[
K2

0MBMΠ(1+ μν)
ν

(
LM (1+ μν)

ν
+mLJK2 + ζbLg

(1+ μν)
ν

)

+
K0LM (1+ μν)

ν
+mK0K1LJ + ζbLg

(1+ μν)
ν

]
.

Therefore, Γ ′ is a strict contraction operator. Thus, by means of Banach fixed point
principle, Γ ′ has a unique fixed point on I . Therefore, the system (5.1) has a mild
solution on I and hence we conclude that the system (5.1) is exactly controllable on
I . �

REMARK 3. Under some suitable conditions and adopting the strategies of Theo-
rem 2, one can set up the exact controllability results for the following non-local system:

yΔ(t) = A (t)y(t)+Bu(t)+M (t,y(t)), t ∈ I,t �= tl,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1,2, . . . , p, (5.5)
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y(0) = r(y)+ y0,

where r : Y → Y is a continuous function.

REMARK 4. Under some suitable conditions and by adopting the strategies of
Theorem 3, Remark 3, one can set up the exact controllability results for the following
non-local integro-differential equation:

yΔ(t) = A (t)y(t)+Bu(t)+
∫ t

0
ζ (t,s)g(s,y(s))Δs+M (t,y(t)), t ∈ I,t �= tl ,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1,2, . . . , p, (5.6)

y(0) = r(y)+ y0,

where r : Y → Y is a continuous function.

6. Illustrative examples

EXAMPLE 1. We consider the partial differential equation on time scale T in the
following form

∂
Δ1t

(Z(t,η)) = c(t,η)
∂ 2

Δ2η2 (Z(t,η))+b(η)W(t,η)+G(t,Z(t,η)),

t ∈ [0,b]T,t �= tl,η ∈ [0,π ]T,

Z(t,π) = Z(t,0) = 0, t ∈ [0,b]T, (6.1)

ΔZ(tl ,η) = Z(t+l ,η)−Z(t−l ,η) = Jl(tl ,Z(t−l ,η)), l = 1,2, . . . , p,

Z(0,η) = Z0, η ∈ [0,π ]T,

where c(t,η) is a continuous function. Let Y = L2[0,π ]T . Define an operator A (t)

by A (t)y = c(t,η)
∂ 2

Δ2η2 y,∀ y ∈ D(A ) =
{
y ∈ H1

0 [0,π ]T ∩H2[0,π ]T
}

. Further, it is

known that A (t) generates an evolution operator {V (t,s) : t � s} (please see [15])
which satisfies V (t,s) � K0e�ν(t,s) , ∀ (t,s) (t � s) with K0 = 1 and ν = 1

2 . De-
fine B ∈ B(U,Y ) by Bu(t)(η) = b(η)W (t,η), η ∈ [0,π ]T, b(η) ∈ L2[0,π ]T. With
the above formulations, the equation (6.1) can be rewritten as the following abstract
equation Y = L2[0,π ]T,

yΔ(t) = A (t)y(t)+Bu(t)+M (t,y(t)), t ∈ [0,b]T,

Δy(tl) = y(t+l )− y(t−l ) = Jl(tl ,y(t−l )), l = 1, . . . , p, (6.2)

y(0) = y0,

where y(t) = Z(t, .) that is y(t)(η) = Z(t,η) and M (t,y(t))η = G(t,Z(t,η)),η ∈
[0,π ]T . Suppose that the functions M (t,y) and Jl(t,y) satisfy the conditions of
Theorem 2. Therefore, based on the Theorem 2, it can be concluded that the equation
(6.1) is controllable.
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EXAMPLE 2. Let us consider the following non-linear system with impulsive con-
dition when Y = R

yΔ(t) = A (t)y(t)+M (t,y(t)), t ∈ I = [0,3]T \ t1,

Δy(t1) = J1(t1,y(t−1 )), (6.3)

y(0) = 1,

where A(t) =
−2

(1+2μ(t))
, t0 = 0, t1 = 1/3, t2 = b = 3, M (t,y(t)) =

3+ sin(y(t))
(t +4)2 ,

J1(t,y(t−1 )) =
3+ sin(y(t−1 ))

(t1 +3)2 . Here V (t,s) = e�2(t,s). Also, ‖V (t,s)‖ � e�2(t,s),

i.e. it is exponentially stable with K0 = 1 and ν = 2.
Now, we consider the following two cases.
Case A: When we take T = R , then I = [0,3]R = [0,3] , ep(t,s) = ep(t−s) and μ = 0.
Now, we choose y(3) = 5. The trajectory of the system (6.3) is given in Figure 1.
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Figure 1: Trajectory of the system (6.3), when T = R .

Clearly, we can see that the trajectory reaches to the desire point y(3) = 5. But if we
add a function u(t) with B = 1 in the system (6.3), then the system (6.3) becomes

yΔ(t) = A (t)y(t)+M (t,y(t))+u(t), t ∈ I = [0,3]T \ t1,

Δy(t1) = J1(t1,y(t−1 )), (6.4)

y(0) = 1.

Also, we have

Π3
0 =

∫ 3

0
e�2(3,σ(s))Δs =

1
2
(1− e�2(3,0)) =

1
2
(1− e−6).

Hence, Π3
0 is invertible. Thus, (A1)-(A4) are satisfied with Lα = 0.1779. Thus, from

Theorem 2, we conclude that the system (6.3) is controllable and the controlled trajec-
tory is shown in Figure 2.
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Figure 2: Trajectory of the controlled system (6.4), when T = R,y(3) = 5.

Case B: When we take T = P1,1 = ∪∞
i=0[2i,2i+1], then I = [0,3]T = [0,1]∪ [2,3] and

ep(t,0) = (1− p)lep(t−l),∀t ∈ [2l,2l +1], l = 0,1, . . . . Now, we choose y(3) = 2. The
trajectory of the system (6.3) is shown in Figure 3. Clearly, we can see that the trajec-
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Figure 3: Trajectory of the system (6.3), when T = P1,1.

tory does not reach to the desire point y(3) = 5. But if we add a function u(t) with
B = 1 in the system (6.3), then the system (6.3) becomes

yΔ(t) = A (t)y(t)+M (t,y(t))+u(t), t ∈ I = [0,3]T \ t1,

Δy(t1) = J1(t1,y(t−1 )), (6.5)

y(0) = 1.
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Also, we have

Π3
0 =

∫ 3

0
e�2(3,σ(s))Δs =

3
2

(
1− 1

3
e−2

)
.

Hence, Π3
0 is invertible. Thus, (A1)-(A4) are satisfied with Lα = 0.6657. Thus, from

Theorem 2, we can conclude that the system (6.3) is controllable and the controlled
trajectory is shown in Figure 4.
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Figure 4: Trajectory of the controlled system (6.5), when T = P1,1,y(3) = 2.

7. Conclusion

In this paper, we have studied the Hyer’s-Ulam stability and exact controllability
results for the system (1.1) and (1.2), respectively. Also, we have studied the exact
controllability results for the integro-differential system (5.1). We used the Banach
fixed point principle, evolution operator theory and non-linear functional analysis to
examine these results. At last, we have given some theoretical and numerical examples
to validate the developed analytical results.
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