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APPLICATIONS OF GENERALIZED TRIGONOMETRIC

FUNCTIONS WITH TWO PARAMETERS II

SHINGO TAKEUCHI

Abstract. Generalized trigonometric functions (GTFs) are simple generalization of the classical
trigonometric functions. GTFs are deeply related to the p -Laplacian, which is known as a
typical nonlinear differential operator. Compared to GTFs with one parameter, there are few
applications of GTFs with two parameters to differential equations. We will apply GTFs with two
parameters to studies on the inviscid primitive equations of oceanic and atmospheric dynamics,
new formulas of Gaussian hypergeometric functions, and the Lq -Lyapunov inequality for the
one-dimensional p -Laplacian.
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