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Abstract. Generalized trigonometric functions (GTFs) are simple generalization of the classical
trigonometric functions. GTFs are deeply related to the p -Laplacian, which is known as a
typical nonlinear differential operator. Compared to GTFs with one parameter, there are few
applications of GTFs with two parameters to differential equations. We will apply GTFs with two
parameters to studies on the inviscid primitive equations of oceanic and atmospheric dynamics,
new formulas of Gaussian hypergeometric functions, and the Lq -Lyapunov inequality for the
one-dimensional p -Laplacian.

1. Introduction

Let p, q ∈ (1,∞) be any constants. We define sinp,q x by the inverse function of

sin−1
p,q x :=

∫ x

0

dt

(1− tq)1/p
=

1
q
Bxq

(
1
q
,

1
p∗

)
, 0 � x � 1,

and πp,q by

πp,q := 2sin−1
p,q 1 = 2

∫ 1

0

dt

(1− tq)1/p
=

2
q
B

(
1
q
,

1
p∗

)
, (1.1)

where p∗ := p/(p−1) . Here, Bx(a,b) denotes the incomplete beta function

Bx(a,b) :=
∫ x

0
ta−1(1− t)b−1dt, 0 � x � 1, a, b > 0,

and B(a,b) denotes the beta function

B(a,b) := B1(a,b), a, b > 0.
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Clearly, the function sinp,q x is increasing in [0,πp,q/2] onto [0,1] . For x ∈
(πp,q/2,πp,q] , we define sinp,q x := sinp,q (πp,q− x) . Since sinp,q x∈C1[0,πp,q] , we can
define cosp,q x by cosp,q x := (d/dx)(sinp,q x) . In case of p = q , we denote sinp,p x ,
cosp,p x and πp,p briefly by sinp x , cosp x and πp , respectively. It is obvious that
sin2 x, cos2 x and π2 are reduced to the ordinary sinx, cosx and π , respectively. This
is the reason why these functions and the constant are called generalized trigonometric
functions (GTFs) with parameter (p,q) and the generalized π . As the trigonometric
functions satisfy cos2 x+ sin2 x = 1, so it is shown that for x ∈ [0,πp,q/2]

cosp
p,q x+ sinq

p,q x = 1. (1.2)

In addition, one can see that u = sinp,q x satisfies the nonlinear differential equation
with p -Laplacian

− (|u′|p−2u′)′ =
q
p∗

|u|q−2u, (1.3)

which is reduced to the equation −u′′ = u of simple harmonic motion for u = sinx in
case of p = q = 2.

GTFs with one parameter are often used to study problems of existence, bifur-
cation and oscillation of solutions of differential equations related to the p -Laplacian
(see [12] and the references given there). However, there are few applications of GTFs
with two parameters to differential equations and we can refer only to Drábek and
Manásevich [6] and Kobayashi and Takeuchi [12], though GTFs are simple generaliza-
tion of the classical trigonometric functions.

The present paper is the sequel to [12] and we will give applications of GTFs with
two parameters.

In Section 2, we will investigate the profiles of positive solutions of the following
nonlocal boundary value problem:⎧⎨

⎩ϕ ′ − (ϕ ′)2 + ϕϕ ′′ +
2
H

∫ H

0
(ϕ ′(t))2 dt = 0,

ϕ(0) = ϕ(H) = 0.
(1.4)

This problem was studied in C. Cao et al. [5] to investigate the self-similar blowup for
the inviscid primitive equations of oceanic and atmospheric dynamics. In [12, Corollary
1], it is shown that all the positive solutions of (1.4) are given in terms of GTFs as

ϕr(x) =
2H

(2− r)πr
sinr

( πr

2H
x
)

cosr−1
r

( πr

2H
x
)
, (1.5)

where r ∈ (1,2) is a free parameter. Figure 1 shows the graphs of ϕr for some r .
From the graphs in Figure 1, it is to be expected that any positive solution of (1.4)

takes the maximum at a point less than x = H/2. Indeed, we can actually prove the
following theorem.

THEOREM 1. Any positive solution ϕr with r ∈ (1,2) of (1.4) has one and only
one extremum

ϕr(xr) =
2H

(2− r)πrr1/r(r∗)1/r∗ ,
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Figure 1: Graphs of solutions of (1.4) with H = 1 for r = 1.2, 1.5 and 1.9.

which is the maximum, at

xr =
2H
πr

sin−1
r

1

r1/r
.

Moreover, xr < H/2 .

It is worth pointing out that the fact xr < H/2 in Theorem 1 is deduced from the
nontrivial inequality

sinr
πr

4
>

1

r1/r
, r ∈ (1,2),

which will be proved in Corollary 1. The proof of this inequality relies on the estimate
for median of the beta distribution. We will give such inequalities in the form of two
parameters (Lemma 1 and Corollary 2).

Section 3 establishes the following new formulas of Gaussian hypergeometric
function F(a,b;c;x) related to GTFs. For the definition of F(a,b;c;x) , see (3.1) in
Section 3.

THEOREM 2. For p, q ∈ (1,∞) and x ∈ (0,1) ,

F

(
1
q
,
1
p
−1;1+

1
q
;x

)
=

qsin−1
p,q (x1/q)+ p∗x1/q(1− x)1/p∗

(p∗ +q)x1/q
,

F

(
1+

1
q
,
1
p
;2+

1
q
;x

)
=

p∗(q+1)(sin−1
p,q (x1/q)− x1/q(1− x)1/p∗)

(p∗ +q)x1+1/q
.

In particular, one can find these formulas for p = q = 2 on the web sites [9] and
[10], respectively, in the Mathematical functions site by Wolfram research. Theorem 2
gives generalizations of those formulas.

Section 4 is devoted to the study of the Lq -Lyapunov inequality for the one-
dimensional p -Laplacian. GTFs yield an exact expression to the best constant of the
inequality. Let p∈ (1,∞) and a∈ L∞(0,L) . Then, we consider the following boundary
value problem: {

−(|u′|p−2u′)′ = a(x)|u|p−2u, 0 < x < L,

u(0) = u(L) = 0.
(1.6)
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A function u is called a solution of (1.6) if u ∈W 1,p
0 (0,L) satisfies the first equation of

(1.6) in the weak sense. We define

Λ := {a ∈ L∞(0,L) : (1.6) has nontrivial solutions}.

We denote the Lq(0,L)-norm for q ∈ [1,∞] by ‖ · ‖q : for a ∈ Lq(0,L) ,

‖a‖q :=

⎧⎪⎪⎨
⎪⎪⎩
(∫ L

0
|a(x)|q dx

)1/q

, q ∈ [1,∞),

esssup
x∈(0,L)

|a(x)|, q = ∞.

In case of q = 1, Elbert [8, Theorem 6] shows that if a ∈ Λ , then

‖a‖1 >
2p

Lp−1 (1.7)

and the constant in the right-hand side is optimal. The inequality (1.7) for p = 2 is
called the Lyapunov inequality (see [3] and [15] for the complete bibliography).

We are interested in the best constant for the Lq -norm of a ∈ Λ when q ∈ (1,∞) .
In the linear case p = 2, Egorov and Kondratiev [7], and Cañada, Montero and Ville-
gas [3] give the best constant for Lq -norm of a (see also [4] and [15]). Pinasco [15]
indicates the possibility to extend their results in [7] to the nonlinear case p �= 2 by
using GTFs and gives, however, no expression of the best constant. By virtue of the
idea of [3] with a result of Drábek and Manásevich [6], we can obtain the best constant
as follows.

THEOREM 3. Let p ∈ (1,∞) . Then, for any a ∈ Λ ,

‖a‖q �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2p(p−1)(q−1)p−1+1/q

Lp−1/qqp−1(pq−1)1/q

(∫ πp/2

0

dx

sin1/q
p x

)p

, q ∈ (1,∞),

(p−1)
(πp

L

)p
, q = ∞,

(1.8)

where ∫ πp/2

0

dx

sin1/q
p x

=
q∗πp,pq∗

2
=

1
p
B

(
1
p∗

,
1

pq∗

)
.

Moreover, the constants of (1.8) are optimal and attained by

a(x) =

⎧⎪⎪⎨
⎪⎪⎩

(p−1)q∗
(πp,pq∗

L

)p
sinp/(q−1)

p,pq∗
(πp,pq∗

L
x
)
, q ∈ (1,∞),

(p−1)
(πp

L

)p
, q = ∞.

In case of p = 2, the constants in the right-hand side of (1.8) are same as in [3,
Theorem 2.1].
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This paper is organized as follows. Section 2 deals with the profiles of positive
solutions of the nonlocal boundary value problem (1.4) and we prove Theorem 1. Sec-
tion 3 provides formulas of Gaussian hypergeometric functions related to GTFs and we
show Theorem 2. Section 4 is intended to obtain the best constant of Lq -Lyapunov
inequality for the one-dimensional p -Laplacian and to prove Theorem 3.

2. Proof of Theorem 1

To show (the latter half of) Theorem 1, the following lemma is crucial.

LEMMA 1. If p∗ > q > 1 , then

sinp,q
πp,q

4
>

(
p∗

p∗ +q

)1/q

; (2.1)

if p∗ = q > 1 , then

sinp,p∗
πp,p∗

4
=

1

21/p∗ ; (2.2)

and if q > p∗ > 1 , then

sinp,q
πp,q

4
<

(
p∗

p∗ +q

)1/q

.

Proof. Let Ix(a,b) denote the regularized incomplete beta function

Ix(a,b) :=
Bx(a,b)
B(a,b)

, 0 � x � 1, a, b > 0.

It is easily seen that Ix satisfies

Ix(a,b) = 1− I1−x(b,a) (2.3)

(see for instance [1, 6.6.3 in p. 263] and [13, 8.17.4 in p. 183]).
Let

Xp,q :=
p

p+q
.

From the definition of sin−1
p,q x ,

sin−1
p,q (X1/q

p∗,q) =
1
q
BXp∗,q

(
1
q
,

1
p∗

)
=

πp,q

2
IXp∗,q

(
1
q
,

1
p∗

)
. (2.4)

Following Payton, Young and Young [14] and setting

s = log
p∗(1− t)

qt
,
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we have

IXp∗,q

(
1
q
,

1
p∗

)
=

1
B(1/q,1/p∗)

∫ 0

∞

(
p∗

p∗+qes

)1/q−1( qes

p∗+qes

)1/p∗−1 −p∗qes

(p∗+qes)2 ds

=
(p∗)1/qq1/p∗

B(1/q,1/p∗)

∫ ∞

0

es/p∗

(p∗ +qes)1/p∗+1/q
ds. (2.5)

Moreover, interchanging p∗ into q , we obtain

IXq,p∗

(
1
p∗

,
1
q

)
=

q1/p∗(p∗)1/q

B(1/p∗,1/q)

∫ ∞

0

es/q

(q+ p∗es)1/q+1/p∗ ds

=
(p∗)1/qq1/p∗

B(1/q,1/p∗)

∫ ∞

0

e−s/p∗

(p∗ +qe−s)1/p∗+1/q
ds. (2.6)

Consider the case p∗ > q > 1. In this case, we can see that for s > 0,

es/p∗

(p∗ +qes)1/p∗+1/q
<

e−s/p∗

(p∗ +qe−s)1/p∗+1/q
. (2.7)

Indeed, it is equivalent to

sinh(Xq,p∗s)
Xq,p∗s

<
sinh(Xp∗,qs)

Xp∗,qs
,

which holds true since sinhx/x is strictly increasing. It follows from (2.5)–(2.7) that

IXp∗,q

(
1
q
,

1
p∗

)
< IXq,p∗

(
1
p∗

,
1
q

)
.

Since Xp∗,q +Xq,p∗ = 1 and (2.3), we have

IXp∗,q

(
1
q
,

1
p∗

)
= 1− IXq,p∗

(
1
p∗

,
1
q

)
< 1− IXp∗,q

(
1
q
,

1
p∗

)
,

so that

IXp∗,q

(
1
q
,

1
p∗

)
<

1
2
. (2.8)

Therefore, by (2.4),

sin−1
p,q (X1/q

p∗,q) <
πp,q

4
and (2.1) is proved. The remaining cases also follow in a similar way. �

REMARK 1. (i) The equality (2.2) is also obtained in [17, Lemma 2.1].

(ii) The inequality (2.8) means that Xp∗,q is less than the median of beta distribution
with parameters 1/q and 1/p∗ .
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COROLLARY 1. If r ∈ (1,2) , then

sinr
πr

4
>

1

r1/r
; (2.9)

if r = 2 , then

sin2
π2

4
=

1√
2
;

and if r ∈ (2,∞) , then

sinr
πr

4
<

1

r1/r
.

Proof. Let r ∈ (1,2) . Then r∗ > r > 1, and hence (2.1) with p = q = r , i.e. (2.9)
holds true. The remaining parts also follow in a similar way. �

We are now in a position to show Theorem 1.

Proof of Theorem 1. Differentiating (1.5) with using (1.3), we have

ϕ ′
r(x) =

1
2− r

(
−(r−1)sinr

r

( πr

2H
x
)

+ cosrr
( πr

2H
x
))

=
1

2− r

(
1− r sinr

r

( πr

2H
x
))

.

Thus, ϕr has the maximum

ϕr(xr) =
2H

(2− r)πrr1/r(r∗)1/r∗

only at

x = xr :=
2H
πr

sin−1
r

1

r1/r
.

Moreover, since r ∈ (1,2) , by (2.9) of Corollary 1,

xr <
2H
πr

· πr

4
=

H
2

,

and the proof is complete. �

REMARK 2. Observing (1.4) directly, one can show the facts: ϕr has no local
minimum in (0,1) ; and ϕr is asymmetric with respect to x = H/2. However, it seems
to be difficult to prove xr < H/2 in this way.

In [12, Theorem 2.1], the authors also study the following problem to solve (1.4):{
(p−q)u′ − pq(u′)2 +(p+q)uu′′+1 = 0,

u(0) = u(H) = 0.
(2.10)

The positive solution of (2.10) is uniquely determined as

u(x) =
2H

qπp∗,q
cosp∗−1

p∗,q

(πp∗,q
2H

x
)

sinp∗,q
(πp∗,q

2H
x
)
.

As in the proof of Theorem 1, with the aid of Lemma 1, we can show the following
result.
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COROLLARY 2. The positive solution u with p, q ∈ (1,∞) of (2.10) has one and
only one extremum

u(xp,q) =
2H

qπp∗,q

(
q

p+q

)1/p( p
p+q

)1/q

,

which is the maximum, at

xp,q =
2H

πp∗,q
sin−1

p∗,q

(
p

p+q

)1/q

.

Moreover, xp,q < H/2 if p > q > 1 ; xp,q = H/2 if p = q > 1 ; xp,q > H/2 if q > p > 1 .

3. Proof of Theorem 2

For a, b∈ R, c �= 0,−1,−2, . . . , a Gaussian hypergeometric function is defined as

F(a,b;c;x) :=
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
, |x| < 1, (3.1)

where

(a)n :=
Γ(a+n)

Γ(a)
= a(a+1)(a+2) . . .(a+n−1), (a)0 := 1.

LEMMA 2. For p, q ∈ (1,∞) and x ∈ [0,πp,q/2] ,

∫ x

0
cosp

p,q xdx =
qx+ p∗ sinp,q xcosp−1

p,q x

p∗ +q
,

∫ x

0
sinq

p,q xdx =
p∗x− p∗ sinp,q xcosp−1

p,q x
p∗ +q

. (3.2)

Proof. Set

I =
∫ x

0
cosp

p,q xdx, J =
∫ x

0
sinq

p,q xdx.

By (1.2), it is easy to see that
I + J = x. (3.3)

Integrating J by parts and using (1.3), we obtain

J =
∫ x

0
sinp,q xsinq−1

p,q xdx =
[
sinp,q x

(
− p∗

q
cosp−1

p,q x

)]x

0
+

p∗

q
I;

thus,

J = − p∗

q
sinp,q xcosp−1

p,q x+
p∗

q
I. (3.4)

From (3.3) and (3.4), we obtain the assertion. �
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COROLLARY 3. Let r ∈ (1,∞) . For x ∈ [0,πr/2]

∫ x

0
cosr

r xdx =
x
r∗

+
sinr xcosr−1

r x
r

,

∫ x

0
sinr

r xdx =
x
r
− sinr xcosr−1

r x
r

;

for x ∈ [0,πr∗,r/2] = [0,π2,r/22/r]

∫ x

0
cosr

r∗,r xdx =
x
2

+
sin2,r (22/rx)

21+2/r∫ x

0
sinr

r∗,r xdx =
x
2
− sin2,r (22/rx)

21+2/r
.

Proof. The former half is Lemma 2 for p = q = r (this was proved by Bushell and
Edmunds [2, Proposition 2.6]). For the latter half, taking p∗ = q = r in Lemma 2 and
using the multiple-angle formula [17, Theorem 1.1]: for x ∈ [0,πr∗,r/2] = [0,π2,r/22/r]

sin2,r (22/rx) = 22/r sinr∗,r xcosr∗−1
r∗,r x,

we immediately conclude the assertion. �

We proceed to show Theorem 2.

Proof of Theorem 2. Let I, J be the integrals in the proof of Lemma 2. The
integral formula [12, (14) in Theorem 3.1] gives: for x ∈ (0,πp,q/2)

I = sinp,q xF

(
1
q
,
1
p
−1;1+

1
q
; sinq

p,q x

)
,

J =
1

q+1
sinq+1

p,q xF

(
1+

1
q
,
1
p
;2+

1
q
; sinq

p,q x

)
.

Combining them with Lemma 2, we have

F

(
1
q
,
1
p
−1;1+

1
q
; sinq

p,q x

)
=

qx+ p∗ sinp,q xcosp−1
p,q x

(p∗ +q)sinp,q x
, (3.5)

F

(
1+

1
q
,
1
p
;2+

1
q
; sinq

p,q x

)
=

p∗(q+1)(x− sinp,q xcosp−1
p,q x)

(p∗ +q)sinq+1
p,q x

, (3.6)

which imply the assertion. In fact, (3.6) is obtained also by differentiating both sides of
(3.5), since (d/dx)F(a,b;c;x) = (ab/c)F(a+1,b+1;c+1;x) . �
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4. Proof of Theorem 3

Let p ∈ (1,∞) and a ∈ L∞(0,L) . Then, we consider (1.6), i.e., the following
boundary value problem:{

−(φ(u′))′ = a(x)φ(u), 0 < x < L,

u(0) = u(L) = 0,
(4.1)

where φ(s) := |s|p−2s , for s �= 0; = 0 for s = 0. Recall

Λ := {a ∈ L∞(0,L) : (4.1) has nontrivial solutions}.
Proof of Theorem 3. First of all, we will show the case q = ∞ . Let a ∈ Λ and u

be any nontrivial solution of (4.1). Then we have

∫ L

0
|u′|p dx =

∫ L

0
a(x)|u|p dx � ‖a‖∞

∫ L

0
|u|p dx.

Therefore,

‖a‖∞ �

∫ L

0
|u′|p dx∫ L

0
|u|p dx

� λ0 := (p−1)
(πp

L

)p
, (4.2)

where λ0 is the first eigenvalue of p -Laplacian (see e.g. [15, Theorem A.4]). Then, the
constant function

a∞(x) := λ0 = (p−1)
(πp

L

)p

is an element of Λ and attains the equalities of (4.2). Indeed, (4.1) for a = a∞ has the
nontrivial solution u = sinp (πpx/L) , the eigenfunction corresponding to λ0 .

Next, we consider the case q ∈ (1,∞) . Let X = W 1,p
0 (0,L)\ {0} , a ∈ Λ and u be

any nontrivial solution of (4.1). Then we have, by Hölder’s inequality,

∫ L

0
|u′|p dx =

∫ L

0
a|u|p dx � ‖a‖q

(∫ L

0
|u|pq∗ dx

)1/q∗

.

Therefore, defining the functional Jq : X → R as

Jq(v) :=

∫ L

0
|v′|p dx(∫ L

0
|v|pq∗ dx

)1/q∗

and its infimum
mq := inf

v∈X
Jq(v), (4.3)

we obtain
‖a‖q � Jq(u) � mq. (4.4)
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It follows from a standard compactness argument and Lagrange’s multiplier technique
(e.g. [11, Theorem 2 in p.489]) that mq is attained by the minimizer uq ∈ X satisfying

{
(φ(u′q))′ +Aq(uq)|uq|pq∗−2uq = 0,

uq(0) = uq(L) = 0,
(4.5)

where

Aq(uq) = mq

(∫ L

0
|uq|pq∗ dx

)−1/q

. (4.6)

In other words, uq satisfies

{
(φ(u′q))′ +aq(x)φ(uq) = 0,

uq(0) = uq(L) = 0,
(4.7)

where
aq(x) := Aq(uq)|uq(x)|p/(q−1). (4.8)

Then, the function aq is an element of Λ and attains the equalities of (4.4). Indeed,
(4.7) implies that (4.1) for a = aq has the nontrivial solution uq and an easy calculation
yields ‖aq‖q = mq . Finally we will evaluate mq and give the expression of function
aq . Since solution uq of (4.5) can be taken to be nonnegative, we can write

Aq(uq) =
pq∗

p∗
(πp,pq∗

L

)p
Rp−pq∗, (4.9)

uq = Rsinp,pq∗
(πp,pq∗

L
x
)
, (4.10)

for some R > 0 (cf. [6] and [16, Theorem 2.1]). Substituting (4.9) and (4.10) into (4.6),
we obtain

mq =
pq∗

p∗
(πp,pq∗

L

)p
Rp−pq∗ ·Rpq∗/q

(∫ L

0

∣∣∣sinp,pq∗
(πp,pq∗

L
x
)∣∣∣pq∗

dx

)1/q

=
pq∗

p∗
(πp,pq∗

L

)p
(

L
πp,pq∗

)1/q(
2
∫ πp,pq∗/2

0
sinpq∗

p,pq∗ t dt

)1/q

=
pq∗π p

p,pq∗

Lp−1/q(p∗)1/q∗(p∗ + pq∗)1/q
.

Here, we used (3.2) for the integral calculation. Moreover, letting tq
∗
= sinp x , we have

πp,pq∗ = 2
∫ 1

0

dt

(1− t pq∗)1/p
=

2
q∗

∫ πp/2

0

dx

sin1/q
p x

.

Thus, we conclude that
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mq =
2p(p−1)(q−1)p−1+1/q

Lp−1/qqp−1(pq−1)1/q

(∫ πp/2

0

dx

sin1/q
p x

)p

.

Function aq follows immediately from (4.8) with (4.9) and (4.10). �

REMARK 3. In a similar way to the proof of [3, Lemma 2.9], it is possible to show
that limq→1+0 mq = 2p/Lp−1 and limq→∞ mq = (p− 1)(πp/L)p . These constants are
the best constants of Lq -Lyapunov inequalities (1.7) for q = 1 and (1.8) for q = ∞ ,
respectively.

REMARK 4. From (4.3), we obtain the Sobolev-Poincaré inequality with best con-
stant. Indeed, we obtain that Jq(v) � mq , for all v ∈ X . Letting pq∗ be replaced by r ,

we see that for all v ∈W 1,p
0 (0,L) ,

‖v‖r �

(
1+ p∗

r

)1/p

(
1+ r

p∗
)1/r

L1/p∗+1/r

πp,r
‖v′‖p.

We emphasize that this result was already known (see [18, (7a) in p.357] and [6, The-
orem 5.1], where the definition of πp,r in [6] is slightly different from (1.1)).
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