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ASYMPTOTIC PROPERTIES OF SOLUTIONS

OF A LANCHESTER–TYPE MODEL

TAKAHIRO ITO, TOSHIKO OGIWARA AND HIROYUKI USAMI ∗

(Communicated by S. Tanaka)

Abstract. An ordinary differential system referred to as Lanchester-type model is studied. Asymp-
totic properties of solutions for such systems are considered. In particular, we examine how the
limit of the solution as time tends to the infinity varies according to the initial data and we find
asymptotic form of solutions that decay to (0,0) .

1. Introduction

The differential system we study is{
x′ = −a(t)xy,
y′ = −b(t)xy, (S)

where we assume throughout the paper that a(t) and b(t) are positive continuous func-
tions on [0,∞) . Additional conditions will be imposed later.

System (S) is known as one of Lanchester-type model, which describes many phe-
nomena appearing in economics, logistics, biology, and so on. It was F. W. Lanchester
[6] who first proposed system (S) to describe combat situations. It is said in [1, 3, 4]
that system (S) is a model of guerrilla engagements.

It seems that several scientists and technicians engaged in operational research
treat such models via numerical methods; see, for example, [1, 3, 10]. However, as
far as we know, there are few results treating mathematical models like system (S)
rigorously. In [4, 9] differential systems similar to (S) were considered mathematically.
In [2, 5, 7, 8] related results are obtained for other Lanchester-type models. Motivated
by these facts, in the paper [11] one of the authors of the present paper has analyzed
system (S) rigorously and proved some asymptotic properties of solutions of (S). In the
present paper we will proceed further in this direction.

Let x(0) > 0 and y(0) > 0. Then we can show that the (local) solution (x(t),y(t))
of (S) exists globally on [0,∞) , and x(t) > 0 and y(t) > 0 there, because for example,
the formulas

x(t) = x(0)exp

(
−

∫ t

0
a(s)y(s)ds

)
and y(t) = y(0)exp

(
−

∫ t

0
b(s)x(s)ds

)
(1)
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hold as long as (x(t),y(t)) exists. Therefore, x(t) and y(t) both decrease and limt→∞ x(t)
and limt→∞ y(t) exist as nonnegative numbers. In this paper, among other things, we
will focus on the values of limt→∞ x(t) and limt→∞ y(t) .

Let x0 > 0 and y0 > 0. Throughout the paper we denote by (x(t;x0,y0),y(t;x0,y0))
the solution of (S) satisfying the initial condition (x(0),y(0)) = (x0,y0) . In the paper
[11] the following result concerning the limits of solutions to (S) is obtained.

THEOREM 0 ([11]). Suppose that a(t) and b(t) satisfy the growth conditions

0 < liminf
t→∞

a(t)
tλ1

� limsup
t→∞

a(t)
tλ2

< ∞ and

0 < liminf
t→∞

b(t)
tμ1

� limsup
t→∞

b(t)
tμ2

< ∞,

for some constants λ1,λ2,μ1 > −1 and μ2 > −1 . Then for arbitrarily fixed x0 > 0
there are unique numbers β1 = β1(x0) > 0 and β2 = β2(x0)(� β1) such that:

(i) if 0 < y0 < β1 , then limt→∞ x(t;x0,y0) > 0 and limt→∞ y(t;x0,y0) = 0;

(ii) if β1 � y0 � β2 , then limt→∞ x(t;x0,y0) = limt→∞ y(t;x0,y0) = 0;

(iii) if y0 > β2 , then limt→∞ x(t;x0,y0) = 0 and limt→∞ y(t;x0,y0) > 0.

EXAMPLE 1. As a typical example of system (S), consider the case where a(t) ≡
a0 and b(t) ≡ b0 for some positive constants a0 and b0 :

{
x′ = −a0xy,
y′ = −b0xy.

(S0)

We note that, for a solution (x(t),y(t)) ≡ (x(t;x0,y0),y(t;x0,y0)) of (S0) ,

(b0x(t)−a0y(t))′ = −a0b0x(t)y(t)+a0b0x(t)y(t) ≡ 0

holds and therefore b0x(t)−a0y(t) ≡ b0x0 −a0y0. Employing this property and intro-
ducing the constant m = m(x0,y0) = b0x0−a0y0 , we can solve system (S0) explicitly:

x(t) =
mx0emt

b0x0(emt −1)+m
and y(t) =

my0

memt +a0y0(emt −1)
if m �= 0

and
x(t) =

x0

b0x0t +1
and y(t) =

y0

a0y0t +1
if m = 0.

This shows that, for system (S0) , the two critical values β1 and β2 obtained by
Theorem 0 are identical: β1 = β2 = b0x0/a0. Further, we find that the decay rates
of solutions decaying to (0,0) are O

(
t−1

)
, whereas decaying components of all of

the other solutions have exponential decay rates as t → ∞. That is, solutions of (S0)
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tending to (0,0) decay slower than those of (S0) tending to non-zero vectors. By (1)
we can find that generally this fact is true.

From this simple example, the following three problems arise naturally.

PROBLEM I. Do the critical numbers β1 and β2 (referred in Theorem 0) coincide?
That is, for arbitrarily fixed x0 > 0, is the solution (x,y) satisfying x(0) = x0 as well
as limt→∞(x(t),y(t)) = (0,0) unique?

PROBLEM II. How do the limit values limt→∞(x(t),y(t)) for solutions (x,y) of
(S) vary according to the initial values (x(0),y(0))?

PROBLEM III. How do solutions that decay to (0,0) behave at +∞?
The aim of the paper is to solve these problems. Under several additional assump-

tions we can answer them concretely. In Section 2 we consider Problems I and II. In
Section 3 we consider Problem III.

2. The properties of limit points of positive solutions

In this section we consider system (S) under the following additional assumptions:

(A1) 0 < inft�0
a(t)
b(t) � supt�0

a(t)
b(t) < ∞ and

(A2)
∫ ∞
0 a(t)dt = ∞ .

REMARK 2. Under assumption (A1), (A2) implies that
∫ ∞
0 b(t)dt = ∞.

Let us define the set S ⊂ R2 by

S = {(C,0) |C > 0} ∪ {(0,0)} ∪ {(0,C) |C > 0}.

By assumption (A2) the limit point of every solution of (S) belongs to S ; see [11,
Remark 2].

For arbitrarily fixed x0 > 0, we introduce the set Sx0 by

Sx0 = {(x,y) ∈ S |x < x0}.

To consider Problems I and II we introduce the mapping ωx0 = ω : (0,∞) → [0,∞)×
[0,∞) defined by

ω(y0) =
(

lim
t→∞

x(t;x0,y0), lim
t→∞

y(t;x0,y0)
)

.

For example, the values of ωx0 associated to the simple system (S0) in Example 1 is
given explicitly by

ωx0(y0) =

⎧⎨
⎩

(x0 −a0y0/b0,0), for y0 ∈ (0,b0x0/a0),
(0,0), for y0 = b0x0/a0,
(0,y0 −b0x0/a0), for y0 ∈ (b0x0/a0,∞).

The following is an answer to Problem II.



4 T. ITO, T. OGIWARA AND H. USAMI

THEOREM 3. Let (A1) and (A2) hold, and x0 > 0 be fixed arbitrarily. Then, the
mapping ωx0 = ω is a continuous bijection from (0,∞) to Sx0 . Therefore, for any
(x∞,y∞) ∈ Sx0 there is one and only one solution (x,y) of (S) satisfying x(0) = x0 and
limt→∞(x(t),y(t)) = (x∞,y∞).

By Theorem 3 we can conclude that the critical values β1 and β2 obtained by
Theorem 0 coincide, which is an answer to Problem I.

COROLLARY 4. Let (A1) and (A2) hold and x0 > 0 be fixed arbitrarily. Then
there is a unique number β0 = β0(x0) > 0 such that:

(i) if 0 < y0 < β0 , then limt→∞ x(t;x0,y0) > 0 and limt→∞ y(t;x0,y0) = 0;

(ii) if y0 = β0 , then limt→∞ x(t;x0,y0) = limt→∞ y(t;x0,y0) = 0;

(iii) if y0 > β0 , then limt→∞ x(t;x0,y0) = 0 and limt→∞ y(t;x0,y0) > 0 .

The following corollary is a simple consequence of Theorem 3 and Lemma 6 be-
low.

COROLLARY 5. Let (A1) and (A2) hold and x0 > 0 be fixed arbitrarily. Then for
the number β0 = β0(x0) obtained by Corollary 4, it holds that:

(i) if 0 < y01 < y02 < β0 , then limt→∞ x(t;x0,y01) > limt→∞ x(t;x0,y02);

(ii) if β0 < y01 < y02 , then limt→∞ y(t;x0,y01) < limt→∞ y(t;x0,y02) .

To establish the results mentioned above we need the following lemma which was
proved in [11].

LEMMA 6. ([11], Lemma 4; Strong comparison principle) Let (x1(t),y1(t)) and
(x2(t),y2(t)) be solutions of system (S). If x1(0) � x2(0),y1(0) � y2(0) and
(x1(0),y1(0)) �= (x2(0),y2(0)) , then x1(t) > x2(t) and y1(t) < y2(t) , for t > 0 .

As an immediate consequence of the lemma, we obtain the following.

COROLLARY 7. (Comparison principle) Let (x1(t),y1(t)) and (x2(t),y2(t)) be
solutions of system (S). If x1(0) � x2(0) and y1(0) � y2(0) , then x1(t) � x2(t) and
y1(t) � y2(t) , for t > 0 .

The next lemma is so simple, however, which plays an important role in proving
Theorem 3.

LEMMA 8. Let (x1(t),y1(t)) and (x2(t),y2(t)) be solutions of system (S) satisfy-
ing x1(0) � x2(0) and y1(0) � y2(0) .

(i) The function x2(t)/x1(t) is nonincreasing, whereas the function y2(t)/y1(t) is
nondecreasing in t > 0 .

(ii) Furthermore, let either x1(0) > x2(0) or y1(0) < y2(0) hold. Then the function
x2(t)/x1(t) is strictly decreasing, whereas y2(t)/y1(t) is strictly increasing in
t > 0 .
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Proof.

(i) The straightforward computations give

d
dt

(
x2(t)
x1(t)

)
= −a(t)x2(t){y2(t)− y1(t)}

x1(t)
and

d
dt

(
y2(t)
y1(t)

)
= −b(t)y2(t){x2(t)− x1(t)}

y1(t)
.

Therefore by Corollary 7 we find that (x2(t)/x1(t))′ � 0 and (y2(t)/y1(t))′ � 0.

(ii) By Lemma 6 and the above computation we find that (x2(t)/x1(t))′ < 0 and
(y2(t)/y1(t))′ > 0 for t > 0.

This completes the proof. �
Proof of Theorem 3.
Part 1: Proof of the continuity of the function ω = ωx0 . By assumption (A1), there

are two positive constants m and M satisfying

m < b(t)/a(t) < M, t > 0.

Then, for any solution (x(t),y(t)) of (S) we have

m < y′(t)/x′(t) ≡ dy/dx < M, t > 0. (2)

(Note that y can be regarded as a function of x because the correspodences t 
→ x(t)
and t 
→ y(t) are both strictly monotone.) We prove that ω is continuous at given
β > 0. The proof is devided into three cases, according to the image ω(β ) .

Case 1: The case where ω(β ) = (C,0) , for some C > 0 . For arbitrary ε > 0
satisfying ε <C , let l1 be the line with slope m passing through the point (C−ε,0) and
l2 be the line with slope M passing through the point (C+ ε,0) . Further, let U be the
open triangular set in R2 surrounded by the lines l1, l2 and the x -axis. For sufficiently
large T > 0, we have (x(T ;x0,β ),y(T ;x0,β )) ∈ U. Therefore, for sufficiently small
δ > 0 the property |y0−β |< δ implies that (x(T ;x0,y0),y(T ;x0,y0)) ∈U .

Then, from (2), we can show that (x(t;x0,y0),y(t;x0,y0)) ∈U , for t � T . In fact,
if this is not true, then there is a T1 > T satisfying

(x(t;x0,y0),y(t;x0,y0)) ∈U, for t ∈ [T,T1) and

(x(T1;x0,y0),y(T1;x0,y0)) exists either on l1 or on l2.

Suppose that (x(T1;x0,y0),y(T1;x0,y0)) exists on l1 . Then, dy/dx � m at t = T1 .
However, this contradicts the property (2). Similarly we can get a contradiction for the
case where (x(T1;x0,y0),y(T1;x0,y0)) exists on l2.

Therefore, (x(t;x0,y0),y(t;x0,y0)) ∈U , for t � T and so ω(y0)∈ [C−ε,C+ε]×
{0} for y0 satisfying |y0−β |< δ . This shows the continuity of ω at y = β .

Case 2: The case where ω(β ) = (0,0) . For arbitrary ε > 0, let l1 be the line
with slope m passing through the point (0,ε) and l2 be the line with slope M passing
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through the point (ε,0) . Further, let U be the open set in R2 surrounded by the lines
l1, l2 and the set S . Then, as in the Case 1, we can show that for sufficiently small
δ > 0, ω(y0) ∈ ([0,ε]×{0})∪ ({0}× [0,ε]) , for y0 satisfying |y0 − β | < δ . This
shows the continuity of ω at y = β .

Case 3: The case where ω(β ) = (0,C) , for some C > 0 . For arbitrary ε > 0
satisfying ε < C , let l1 be the line with slope m passing through the point (0,C + ε)
and l2 be the line with slope M passing through the point (0,C− ε) . Further, let U
be the open triangular set in R2 surrounded by the lines l1, l2 , and the y-axis. Then,
as in Case 1, for sufficiently small δ > 0, we find that ω(y0) ∈ {0}× [C− ε,C+ ε] if
|y0−β |< δ . This shows the continuity of ω at y = β .

Part 2: Proof of the bijectivity of the function ω = ωx0 . Since ω : (0,∞) → S is
continuous as seen above and the set (0,∞) is connected, the image ω((0,∞)) is also
connected in S . Let y0 > 0 and consider the set V ⊂ R2 given by

V = {(x,y)|x > 0,y > 0,M(x− x0)+ y0 < y < m(x− x0)+ y0}.
Then, as in the proof of Part 1, we find that (x(t;x0,y0),y(t,x0,y0) ∈V , for t > 0. So it
is easy to see that

lim
y0→+0

(
lim
t→∞

x(t;x0,y0)
)

= x0, lim
y0→∞

(
lim
t→∞

y(t;x0,y0)
)

= ∞.

Therefore ω is surjective.
To see the injectivity of ω , suppose to the contrary that for some y01 and y02

with y01 < y02 we have ω(y01) = ω(y02) ; that is, limt→∞(x(t;x0,y01),y(t;x0,y01)) =
limt→∞(x(t;x0,y02), y(t;x0,y02)) . By (ii) of Lemma 8 we know that

x(t;x0,y02)
x(t;x0,y01)

� x(t0;x0,y02)
x(t0;x0,y01)

<
x(0;x0,y02)
x(0;x0,y01)

=
x0

x0
= 1, for t � t0 > 0,

from which, we have

lim
t→∞

x(t;x0,y02)
x(t;x0,y01)

< 1.

Since limt→∞ x(t;x0,y01) = limt→∞ x(t;x0,y02) , it follows that

lim
t→∞

x(t;x0,y01) = lim
t→∞

x(t;x0,y02) = 0.

Similarly,
lim
t→∞

y(t;x0,y01) = lim
t→∞

y(t;x0,y02) = 0.

Since (2) implies that −mx′(t;x0,y0i) < −y′(t;x0,y0i) < −Mx′(t;x0,y0i) , for t > 0, i =
1,2, integrations of these inequalities on [t,∞) show that

m <
y(t;x0,y01)
x(t;x0,y01)

,
y(t;x0,y02)
x(t;x0,y02)

< M, t > 0. (3)

Put

Kx = lim
t→∞

x(t;x0,y02)
x(t;x0,y01)

and Ky = lim
t→∞

y(t;x0,y02)
y(t;x0,y01)

.
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As seen above, we observe that 0 � Kx < 1 and similarly 1 < Ky � ∞ . We will show
that Kx = 0. In fact, if 0 < Kx < 1, then L’Hospital’s rule implies that

Kx = lim
t→∞

x′(t;x0,y02)
x′(t;x0,y01)

= lim
t→∞

x(t;x0,y02)y(t;x0,y02)
x(t;x0,y01)y(t;x0,y01)

.

So, Kx = KxKy if Ky < +∞ and Kx = ∞ if Ky = +∞. Both of these cases give a
contradiction. So, Kx = 0. Similarly we can obtain Ky = ∞. Therefore

lim
t→∞

x(t;x0,y02)
x(t;x0,y01)

· y(t;x0,y01)
y(t;x0,y02)

= 0.

On the other hand, by (3) we have

x(t;x0,y02)
x(t;x0,y01)

· y(t;x0,y01)
y(t;x0,y02)

>
m
M

.

This contradiction proves the bijectivity of ω .
Therefore the proof of Theorem 3 is complete. �

3. Asymptotic forms of solutions that decay to (0,0)

In this section we give answers to Problem III in the introduction. That is, we give
asymptotic forms of solutions of system (S) decaying to (0,0) . Thoughout this section
we suppose that

(A3)
∫ ∞
0 a(t)dt =

∫ ∞
0 b(t)dt = ∞

and let us introduce the auxiliary functions A(t) and B(t) by

A(t) ≡
∫ t

0
a(s)ds and B(t) ≡

∫ t

0
b(s)ds.

In what follows, “ f (t) ∼ g(t) , as t → ∞” means, as usual, that limt→∞ f (t)/g(t) = 1,
for positive functions f and g defined near +∞ . Similarly, “( f1(t), f2(t)) ∼
(g1(t),g2(t)) , as t → ∞”, for vector-valued functions means that fi(t) ∼ gi(t) , as t →
∞, i = 1,2.

The first result treats the case where a(t) and b(t) have the same asymptotic be-
havior in some sense, while the second one treats the case where b(t) grows faster than
a(t) .

THEOREM 9. Let (A3) hold and

lim
t→∞

a(t)
b(t)

= const > 0.

Then every solution (x(t),y(t)) of system (S) decaying to (0,0) has the asymptotic form

(x(t), y(t)) ∼
(

1
B(t)

,
1

A(t)

)
, as t → ∞.
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THEOREM 10. Let (A3) hold and a(t) , b(t) be of class C1 . Suppose that

(
a(t)
b(t)

)′
� 0, for sufficiently large t,

lim
t→∞

a(t)B(t)
A(t)b(t)

= k = const > 0 (4)

and

lim
t→∞

(
a(t)B(t)
A(t)b(t)

)′ B(t)
b(t)

= 0. (5)

Then every solution (x(t),y(t)) of system (S) decaying to (0,0) has the asymptotic form

(x(t), y(t)) ∼
(

k
B(t)

,
1

kA(t)

)
, as t → ∞.

COROLLARY 11. Let a(t) and b(t) be of class C1 . Suppose that

a(t) ∼ a0t
λ and b(t) ∼ b0t

μ , as t → ∞

and

lim
t→∞

t

(
a(t)
tλ

)′
= lim

t→∞
t

(
b(t)
tμ

)′
= 0,

where a0 > 0 and b0 > 0 are constants and λ and μ are constants satisfying −1 <
λ < μ . Then every solution (x(t),y(t)) of system (S) decaying to (0,0) has the asymp-
totic form

(x(t), y(t)) ∼
(

λ +1
b0tμ+1 ,

μ +1

a0tλ+1

)
, as t → ∞.

Proof of Theorem 9. Put L = limt→∞ a(t)/b(t). Then, by L’Hospital’ s rule we
have

lim
t→∞

x(t)
y(t)

= lim
t→∞

x′(t)
y′(t)

= lim
t→∞

a(t)
b(t)

= L.

Therefore, again by L’Hospital’ s rule, we obtain

lim
t→∞

A(t)y(t) = lim
t→∞

A(t)
y(t)−1 = lim

t→∞

a(t)
−y(t)−2y′(t)

= lim
t→∞

a(t)y(t)
b(t)x(t)

= L · 1
L

= 1.

Similarly, limt→∞ B(t)x(t) = 1. This completes the proof. �

To see Theorem 10, we need the following lemma.



Differ. Equ. Appl. 12, No. 1 (2020), 1–12. 9

LEMMA 12. Under the assumptions of Theorem 10, every solution (x(t),y(t))
of system (S) decaying to (0,0) satisfies x(t) = O(1/B(t)) and y(t) = O(1/A(t)) , as
t → ∞.

Proof. From system (S) we have −x′(t) = (a(t)/b(t))[−y′(t)] . So an integration
gives

x(t) =
∫ ∞

t

[−x′(s)
]
ds =

∫ ∞

t

a(s)
b(s)

[−y′(s)
]
ds =

a(t)
b(t)

y(t)+
∫ ∞

t

(
a(s)
b(s)

)′
y(s)ds

� a(t)
b(t)

y(t),

that is y(t) � (b(t)/a(t))x(t). Substituting this inequality to (S), we find that −x′(t) �
b(t)x(t)2 . Solving this differential inequality, we have x(t) � 1/B(t) ; therefore x(t) =
O(1/B(t)).

Next we estimate y(t) . Since (b(t)/a(t))x(t) � y(t) → 0, as t → ∞ , by the same
manner as above, we have

y(t) =
∫ ∞

t

[−y′(s)
]
ds =

∫ ∞

t

b(s)
a(s)

[−x′(s)
]
ds =

b(t)
a(t)

x(t)+
∫ ∞

t

(
b(s)
a(s)

)′
x(s)ds. (6)

Assumption (4) implies that b(t)/(a(t)B(t)) � C/A(t) , for some constant C > 0. So
from the fact that x(t) � 1/B(t) , we get

b(t)
a(t)

x(t) � b(t)
a(t)B(t)

� C
A(t)

→ 0, as t → ∞.

Therefore

y(t) = O(1/A(t))+
∫ ∞

t

(
b(s)
a(s)

)′
x(s)ds.

By noting that (b(t)/a(t))′ � 0 and x(t) � 1/B(t) , the second term of the right-hand
side is estimated as follows:

0 �
∫ ∞

t

(
b(s)
a(s)

)′
x(s)ds �

∫ ∞

t

(
b(s)
a(s)

)′
B(s)−1ds = − b(t)

a(t)B(t)
+

∫ ∞

t

b(s)
a(s)

b(s)
B(s)2 ds

� − b(t)
a(t)B(t)

+C2
∫ ∞

t

b(s)
a(s)

b(s)
a(s)2

A(s)2b(s)2 ds = − b(t)
a(t)B(t)

+C2
∫ ∞

t

a(s)
A(s)2 ds

= − b(t)
a(t)B(t)

+
C2

A(t)
� C2

A(t)
.

Here we have employed assumption (4). Hence y(t) = O(1/A(t)). This completes the
proof. �

Proof of Theorem 10. Let us perform the change of variables (t, x, y) 
→ (s, X , Y )
defined by

B(t)x ≡ X , A(t)y ≡ Y and s = logB(t).
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Then system (S) is transformed into the new system
⎧⎪⎪⎨
⎪⎪⎩

Xs = X

(
1− ã(s)B̃(s)

Ã(s)b̃(s)
Y

)
,

Ys = Y

(
ã(s)B̃(s)
Ã(s)b̃(s)

−X

)
,

(S′)

where (·)s = d/ds , and ã(s) = a
(
B−1(es)

)
, Ã(s) = A

(
B−1(es)

)
and so on. (Here, B−1

denotes of course the inverse function of B .) By assumption (A3), s → ∞ if t → ∞.
From Lemma 12, we know that

X(s),Y (s) = O(1), as s → ∞. (7)

For simplicity below we rewrite system (S′) as
{

Xs = X(1− f (s)Y ),
Ys = Y ( f (s)−X), (S′′)

where f (s) =
(
ã(s)B̃(s)

)
/
(
Ã(s)b̃(s)

)
. Assumptions (4) and (5) imply that lims→∞ f (s)

= k and lims→∞ fs(s) = 0.
First we will show that x(t)∼ k/B(t) , as t → ∞ , that is X(s)∼ k , as s→ ∞ . From

system (S′′) we can obtain the single equation of X(s) :

Xss = − fs
f
X +

fs
f
Xs +

(Xs)2

X
− f X +X2 + f Xs−XXs. (8)

We claim that limsups→∞ X(s)� k. To see this by contradiction, suppose to the contrary
that limsups→∞ X(s) < k. Then, by virtue of the fact that lims→∞ f (s) = k , the second
equation of (S′′) implies that Ys � cY , for sufficiently large s > 0, with some constant
c > 0. So lims→∞Y (s) = ∞ , which contradicts to (7). So limsups→∞ X(s) � k.

We claim next that liminfs→∞ X(s) � k. Suppose to the contrary that
liminfs→∞ X(s) > k. Then, the second equation of (S′′) implies that Ys � −cY , for
sufficiently large s > 0, with some constant c > 0. So lims→∞Y (s) = 0. Accordingly by
the first equation of (S′′) we find that Xs � c̃X , for sufficiently large s > 0, with some
constant c̃ > 0. So lims→∞ X(s) = ∞ , which contradicts to (7). So liminfs→∞ X(s) � k.

Since we have established

0 � liminf
s→∞

X(s) � k � limsup
s→∞

X(s) < ∞, (9)

to prove X(s) ∼ k , it suffices to show the existence of lims→∞ X(s) ∈ [0,∞).
Suppose the contrary that 0 � liminfs→∞ X(s) < limsups→∞ X(s) < ∞. Then, by

virtue of (9) there are three possibilities:

Case (a) : liminfs→∞ X(s) < k < limsups→∞ X(s);

Case (b) : liminfs→∞ X(s) = k < limsups→∞ X(s);

Case (c) : liminfs→∞ X(s) < k = limsups→∞ X(s).
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Let Case (a) occur. Then, we can find a sequence {sn} satisfying

lim
n→∞

sn = ∞, Xs(sn) = 0, Xss(sn) � 0 and lim
n→∞

X(sn) = limsupX(s)(> k).

Letting s = sn in (8), we have Xss(sn) = X(sn)
[
X(sn)−

(
f (sn)+ fs(sn)

f (sn)

)]
. Since

lims→∞ fs(s) = 0, this means that Xss(sn) > 0, for sufficiently large n . However, this is
a contradiction to the property Xss(sn) � 0.

When Cases (b) and (c) occur, we can easily get contradictions similarly. So we
find that X(s) ∼ k .

Next, we will show that y(t) ∼ 1/(kA(t)) . Once we got x(t) ∼ k/B(t) , as t → ∞ ,
this fact can be shown merely by computing limt→∞ A(t)y(t).

By (6) we have

A(t)y(t)=
b(t)
a(t)

A(t)x(t)+A(t)
∫ ∞

t

(
b(s)
a(s)

)′
x(s)ds=

b(t)A(t)
a(t)B(t)

B(t)x(t)+

∫ ∞
t

(
b(s)
a(s)

)′
x(s)ds

A(t)−1 .

Using assumption (4) and the result x(t) ∼ k/B(t) , we obtain

lim
t→∞

A(t)y(t) = 1+ lim
t→∞

∫ ∞
t

(
b(s)
a(s)

)′
x(s)ds

A(t)−1 . (10)

On the other hand, a direct computation shows that

(
a(t)B(t)
A(t)b(t)

)′ B(t)
b(t)

=
(

a(t)
b(t)

)′ B(t)2

A(t)b(t)
+

a(t)B(t)
A(t)b(t)

−
(

a(t)B(t)
A(t)b(t)

)2

and so, by assumptions (4) and (5), it follows that

lim
t→∞

(
a(t)
b(t)

)′ B(t)2

A(t)b(t)
= k2 − k.

Then, employing L’Hospital’s rule, we get from (10)

lim
t→∞

A(t)y(t) = 1+ lim
t→∞

(
b(t)
a(t)

)′
x(t)

A(t)−2a(t)
= 1+ lim

t→∞

A(t)2

a(t)B(t)

(
b(t)
a(t)

)′
·B(t)x(t)

= 1+k lim
t→∞

A(t)2

a(t)B(t)

(
b(t)
a(t)

)′
=1−k lim

t→∞

(
a(t)
b(t)

)′ B(t)2

A(t)b(t)
·
(

A(t)b(t)
a(t)B(t)

)3

= 1− k(k2− k)k−3 = 1/k.

Hence y(t) ∼ 1/(kA(t)) , as t → ∞. This completes the proof of Theorem 10. �

Proof of Corollary 11. To prove this corollary it suffices to notice that the fol-
lowing expressions are valid: a(t) = a0tλ (1 + ε(t)) , b(t) = b0tμ(1 + δ (t)) , A(t) =
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a0
λ+1 t

λ+1 (1+ε̂(t)) and B(t)= b0
μ+1 t

μ+1
(
1+δ̂ (t)

)
, where ε,δ , ε̂ and δ̂ are C1 -functions

satisfying ε(t), tε ′(t),δ (t),tδ ′(t) → 0, as t → ∞ and ε̂(t),t ε̂ ′(t), δ̂ (t), tδ̂ ′(t) → 0, as
t → ∞ . �
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