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Abstract. In this paper we consider the existence of antisymmetric solutions for the generalized
quasilinear Schrödinger equation in H1(RN) :

−div(ϑ (u)∇u)+
1
2

ϑ (u)|∇u|2 +V (x)u = f (u) in R
N ,

where N � 3 , V (x) is a positive continuous potential, f (u) is of subcritical growth and ϑ : R→
[1,+∞) is a even C1− function satisfying some suitable hypotheses. By considering a minimiz-
ing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric
solutions via deformation lemma.

1. Introduction and main results

In this paper we are interested in the existence of a special class of antisymmetric
solutions in H1(RN) for the modified quasilinear Schrödinger equation

−div(ϑ(u)∇u)+ 1
2ϑ(u)|∇u|2 +V(x)u = f (u) in R

N , (1.1)

where N � 3, V : R
N → (0,∞) is a continuous potential function, f : R → R is a con-

tinuous and subcritical function, and ϑ : R→ [1,+∞) is a even C1− function satisfying
some suitable hypotheses.

Choosing ϑ(s) = 1 + 2s2(l(s2)′)2 , for some C2− function l the problem (1.1)
becomes

−Δu−Δ(l(u2))l′(u2)u+V(x)u = f (u) in R
N . (1.2)

For l(s) = s , the equation (1.2) becomes

−Δu−Δ(u2)u+V(x)u = f (u) in R
N . (1.3)

The existence of solutions for (1.3) is closely related to the study of the standing waves
ω(x,t) = u(x)e−(iEt)/h̄ for the superfluid film equation arising in the plasma physics
(see [18]),

ih̄∂tω = −Δω +W(x)ω − h̃(|ω |2)ω +
k
2

ωΔω2, (1.4)
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where W (x) is a given potential and h̃(u2)u = f (u) is a real function. So, ω(x,t)
will be a such solution of (1.4) if and only if u(x) solves equation (1.3) with V (x) =
W (x)−E .
If l(s) = (1+ s)1/2 , s � 0, the equatin (1.2) is read as

Δu+
1
2

Δ
[(

1+u2)1/2
] u

2(1+u2)1/2
+V (x)u = f (u) in Ω, (1.5)

and this equation arise in the self-channeling of a high-power ultrashort laser in matter
[4] and [5], in the theory of Heidelberg ferromagnetism and magnus [3], in dissipative
quantum mechanics [1], and in condensed matter theory [2].

The modified quasilinear Schrödinger equation has received a lot of attention. The
presence of the quasilinear term uΔu2 makes the problem more complicated. It is
quite difficult to study the associated energy functional directly in the Sobolev space
H1(RN) , once this funcional can take the value ∞ . Then, a direct variational approach
is not possible. Hence, the need to develop a new techinique to apply variational meth-
ods. The existence of a positive ground state solution of equation (1.1) has been proved
in [20] and [27] by introducing parameter λ in front of the nonlinear term. In [21],
by changing of variables, the authors studied the quasilinear problem which was trans-
formed to a semilinear one and the existence of a positive solution was proved by the
Mountain-Pass lemma in an Orlicz working space. Different from the changing variable
methods, in [24] the authors introduced new perturbation techniques and also proved
the existence of solutions for a new kind of critical problems for the modified quasilin-
ear Schrödinger equation in [25].

About the existence of sign-changing solution, i.e. solutions u with u+,u− �= 0,
where u+(x) = max{u(x),0}� 0, and u−(x) = min{u(x),0}� 0, x∈R

N , we mention
some related works. In [22] the authors proved the existence of sign-changing ground
state solution for (1.1) with f (s) = |s|p−2s , s ∈ R with 3 � p < 22∗ − 1, that is, f
having subcritical growth (22∗ plays the role of critical exponent here), and V is a
continuous function such that 0 < V0 = inf

RN V (x) � lim|x|→∞V (x) = V∞ with V (x) �
V∞ −A/(1+ |x|m) , for |x| � M , for some real constants A,M,m > 0. The perturbation
arguments in [25] was successfully applied to study the existence of multiple nodal
solutions for a general class of sub-critical quasilinear Schrödinger equation in [23].
The proof of existence of solutions with compact support in [11, 12] is interesting too.

Also, we would like to mention [13, 14, 22, 16, 19] and references therein for
some recent progress of the study of the quasilinear Schrödinger equation. However,
in [15, 17], the nonlinearity f is permitted to behave in a critical way, under the more
restrictive assumption that V is symmetric radially positive and differentiable contin-
uous function with V ′(r) � 0 for r � 0. Their approach was based on Mountain Pass
Theorem on Nehari manifolds.

In [7] and [8], the autors proved existence of τ -antisymmetric solutions for the
problem

−Δu+V(x)u = f (u) in R
N ,

by considering the limit problem

−Δu+V∞u = f (u) in R
N .
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where a τ−antisymmetric solution is a function u so that u(x) = −u(τx) with τ :
R

N → R
N being a nontrivial orthogonal involution. In [9], the authors showed the

existence of τ -antisymmetric solutions for the system{
−Δu+u = |u|2p−2u+ β (x)|v|p|u|p−2u, in R

N

−Δv+ ω2v = |v|2p−2v+ β (x)|u|p|v|p−2v, in R
N

by considering the limit problem{
−Δu+u = |u|2p−2u+ β∞|v|p|u|p−2u, in R

N

−Δv+ ω2v = |v|2p−2v+ β∞|u|p|v|p−2v, in R
N

and the other additicional conditions. Still on τ−antisymmetric solutions, we can men-
tion [10], where the authors proved the existence of minimal nodal solutions when
V (∞) = 0.

However, for the modified quasilinear Schrödinger equation, it seems that the
existence results of solutions of τ -antisymmetric solutions to equation (1.1) has not
been considered yet. Thus the aim of the present paper is to study the existence of
τ -antisymmetric solution for a quasilinear defocusing Schrödinger equation.

We suppose that the potential V : R
N → R continuous satisfies the following:

(V1) V (τx) = V (x) , where τ : R
N → R

N is a nontrivial orthogonal involution that is
a linear orthogonal transformation on R

N such that τ �= Id and τ2 = Id ;

(V2) V (x) � V0 > 0 for all x ∈ R
N ;

(V3) V is 1-periodic in xi , 1 � i � N ;

(V4) V is radially symmetric, i.e. V (x) = V (|x|) and V ∈ L∞(RN) ;

(V5) lim|x|→∞V (x) = +∞ .

The hypothesis for the function f are:

( f1) f ∈C(R,R) is such that f (0) = 0 and odd;

( f2) lim
|t|→0

f (t)
|t| = 0, and lim

|t|→∞

f (t)
|t|q−1 = 0 for some 4 < q < 22∗ ;

( f3) t �−→ f (t)
t3

is non-decreasing for t �= 0;

( f4) there is a constant 4 < θ < 22∗ such that

0 < θF(s) � s f (s) for all s �= 0,

where F(s) :=
∫ s
0 f (t)dt.

REMARK 1. From assumption ( f2) ,given ε > 0, there exists cε > 0 such that

0 � f (t)t � ε|t|2 + cε |t|q f or all t ∈ R.
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REMARK 2. From assumption ( f4) we have

F(t) � C1|t|θ f or all |t| � 1 and f or some C1 > 0.

REMARK 3. Taking f (t) = t p−1 for t > 0 and 4 < p < 22∗ as a odd function,
then f satisfies the conditions from ( f1 ) to ( f4 ) and the function h̃ in (1.4) can be
given as h̃(t) = t(p−2)/2 .

Our main goal is to establish the existence of a τ -antisymmetric solution, that is,
a solution such that

u(τx) = −u(x).

THEOREM 1. Suppose that the conditions ( f1 )-( f4 ) and (V1 ), (V2 ) hold. ϑ(s) is
non decreasing in (0,+∞) and

ϑ ′(s)s � 2ϑ(s) for all s � 0, (1.6)

then the equation (1.1) has at least one τ -antisymmtric solution u ∈ H1(RN) if one of
the following conditions is satisfied:

(i) (V3) (ii) (V4) (iii) (V5).

The antisymmetric solution found in Theorem 1 minimizes the energy functional
among all possible solutions for (1.1), and so we can call it the least action antisymmet-
ric solution.

This work contributes to the literature of modified quasilinear Schrödinger equa-
tion in the three senses: on the hand, we found an τ -antisymmetric solution instead of
a limit problem, we used several different conditions of the function V ; on the other
hand, we just need the function f to be continuous, so we can not use directly Ekeland’s
variational principle; Finally, our operator is more general.

The paper is organized as follows. In Sect.2, we introduce the variational frame-
work for the quasilinear defocusing Schrödinger equation. In Sect.3, establishing some
auxiliary lemmas and build a homeomor- phism between sphere and Nehari manifold.
Finally in Sect.4, we prove the existence of τ -antisymmetric solution for (1.1) with
subcritical growth.

2. Preliminary results

In this section we present the variational framework to deal with problem (1.1)
and also give some preliminaries which are going to be used later. We denote by |x| the
euclidian norm of x in R

N , BR(0) := {x ∈ R
N : |x| < R} the open ball with the radius

R centered at the origin and C is a positive constant.
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Notation

We will use the following notations frequently.

• C , C0 , C1 , C2 , . . . denote positive (possibly different) constants.

• C∞
0 (RN) denotes functions infinitely differentiable with compact support in R

N .

• For 1 � s � +∞ , Ls(RN) denotes the usual Lebesgue space with the norms

|u|s :=
(∫

RN
|u|s

)1/s
, 1 � s < +∞;

|u|∞ := inf
{
C > 0 : |u(x)| � C almost everywhere in R

N}
.

• H1(RN) denotes the Sobolev spaces with its usual norm

||u||1,2 := (|∇u|22 + |u|22)1/2.

• The weak convergence in H1(RN) or Ls(RN) is denoted by ⇀ , and the strong
convergence by → .

Formally, the Problem (1.1) is the Euler-Lagrange equation associated with the func-
tional energy

J(u) =
1
2

∫
RN

ϑ(u)|∇u|2dx+
1
2

∫
RN

V (x)u2dx−
∫

RN
F(u)dx. (2.1)

A weak solution for (1.1) will be obtained as a critical point of J in some closed
subspace of H1(RN) . However, the presence of the term V and of the term∫

RN
ϑ(u)|∇u|2dx (2.2)

in (2.1) prevents us working directly with the functional J , because it is not well defined
in general in H1(RN) .

First, we point out that, under (V2) and (V3 ) ou (V4 ), the subset

E =
{

u ∈ H1(RN) :
∫

RN
V (x)u2(x) < ∞

}
is a closed subspace of H1(RN) . Moreover,

‖u‖2
E =

∫
RN

|∇u|2 +
∫

RN
V (x)u2(x)

define an norm on E which is equivalent to usual norm on H1(RN) . We will work in
the Hilbert space E endowed with the inner product

〈u,v〉E :=
∫

RN
(∇u∇v+V(x)uv), for all u,v ∈ E
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and associated norm ‖·‖E . Hence, the embedding E ↪→ Lp(RN) is continuous for any
2 � p � 2∗.

The term (2.2) is usually not well defined in the space E . To overcome this diffi-
culty, we first define g ∈C2(R) as a solution of the ordinary differential equation

g′(s) =
1

ϑ(g(s))1/2
, for s > 0, and g(0) = 0 (2.3)

with g(s) = −g(−s) for s ∈ (−∞,0) .
Then, by taking u = g(v) the problem (1.1) transforms to the problem

−Δv+V(x)g(v)g′(v) = f (g(v))g′(v) in R
N (2.4)

After this, we are able to prove the next lemmas. The first one follows from the
definition and properties of f .

LEMMA 1. Under the above definition, the function g satisfies:

(0) g is uniquely defined and it is an increasing C2 -differeomorphismo with

g′′(s) = − ϑ ′(g(s))
2ϑ(g(s))2 , for all s > 0.

If (1.6) is satisfied, we have:

(1) 0 < g′(s) � 1 for all s ∈ R ;

(2) lims→0
g(s)
s = 1/ϑ(0)1/2 ;

(3) |g(s)| � |s| for all s ∈ R;

(4) g(s)g′(s) is non decreasing for s � 0 ;

(5) 1
2g(s) � g′(s)s � g(s) for s � 0 ;

(6) g(s)
s1/2 → A when s → +∞ , where A ∈ (0,+∞];

(7) the function g(s)g′(s)s−1 is decreasing for all s > 0 ;

(8) the function g3(s)g′(s)s−1 is non decreasing for all s > 0 .

Proof. The proof of (0)− (3) follows from definition of g . We will just prove the
(4)− (8) .
Proof of (4) . We have, from (1.6) that

[g(s)g′(s)]′ = [g′(s)]2 +g(s)g′′(s) =
1

ϑ(g(s))
− g(s)ϑ ′(g(s))

2ϑ(g(s))2

=
2ϑ(g(s))−g(s)ϑ ′(g(s))

2ϑ(g(s))2 � 0, ∀ s � 0.
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Proof of (5) . By defining G(s) = g(s)ϑ(g(s))
1
2 −2s , s � 0, we obtain G(0) = 0 and

G′(s) = g′(s)ϑ(g(s))
1
2 +

1
2
g(s)ϑ(g(s))−

1
2 ϑ ′(g(s))g′(s)−2

=
ϑ ′(g(s))g(s)

2ϑ(g(s))
−1 � 0, ∀ s � 0,

where the last inequality follows from (1.6). Thus g(s)ϑ(g(s))
1
2 −2s � 0 for all s � 0.

Defining G̃(s) = g(s)ϑ(g(s))
1
2 − s , s � 0, we obatin G̃(0) = 0 and

G̃′(s) = g′(s)ϑ(g(s))
1
2 +

1
2
g(s)ϑ(g(s))−

1
2 ϑ ′(g(s))g′(s)−1

=
ϑ ′(g(s))g(s)

2ϑ(g(s))
� 0, ∀ s � 0.

Thus g(s)ϑ(g(s))
1
2 − s � 0 for all s � 0. That is, the claim (5) is proved.

Proof of (6) . It follows from (5) , that(g(s)
s1/2

)′
=

g′(s)s1/2 − 1
2g(s)s−1/2

s
� 0 for all s > 0,

that is, g(s)/s1/2 , s � 0, is non decreasing.
Proof of (7) . By (0) and (5) , have

(g(s)g′(s)s−1)′ = [g′(s)]2s−1 +g(s)g′′(s)s−1 −g(s)g′(s)s−2

< [g′(s)]2s−1 −g(s)g′(s)s−2, ∀ s � 0
= g′(s)s−2(g′(s)s−g(s)) � 0 ∀ s � 0.

Proof of (8) . By (4) and (5) , have

(g3(s)g′(s)s−1)′ = 3g2(s)[g′(s)]2s−1 +g3(s)g′′(s)s−1 −g3(s)g′(s)s−2

= g2(s)g′(s)s−2[2g′(s)s−g(s)]+g2(s)s−1[g(s)g′(s)]′ � 0 ∀ s � 0.

This ends our proof of Lemma. �
So, after the change of variables, from J , we obtain the following functional

I(v) =
1
2

∫
RN

|∇v|2dx+
1
2

∫
RN

V (x)|g(v)|2dx−
∫

RN
F(g(v))dx, v ∈ E (2.5)

which is well defined in E and belongs to C1 under the hypotheses (V3) , (V4) ,
( f2) . And,

〈I′(v),w〉 =
∫

RN
∇v∇wdx+

∫
RN

V (x)g(v)g′(v)wdx−
∫

RN
f (g(v))g′(v)wdx,

for all w ∈ H1(RN) . Moreover, the critical points of I are the weak solutions of the
problem (2.4).

Below, we are going to use the definitions and properties of g to show that we can
provide solutions to Problem (1.1) by establishing solutions to the Problem (2.4). So,
we have
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LEMMA 2. Assume u = g(v) , where v ∈ E is a antisymmetric solution of the
Problem (2.4), then u ∈ H1(RN) is a antisymmetric solution of the Problem (1.1).

Proof. Since u = g(v) , we get

∇u = g′(v)∇v =
1

ϑ(g(v))1/2
∇v.

Thus, for each w ∈ H1(RN) given, we have

ϑ(u)∇u∇w = ϑ(g(v))1/2∇v∇w. (2.6)

On the other side, since v ∈ E is a solution of the Problem (2.4), we have∫
RN

ϑ(g(v))1/2∇v∇w =
∫

RN
∇v∇(ϑ(g(v))1/2w)− 1

2

∫
RN

ϑ ′(u)|∇u|2w
=

∫
RN

f (g(v))w−
∫

RN
V (x)g(v)w− 1

2

∫
RN

ϑ ′(u)|∇u|2w,

that is, by using (2.6), we have u ∈ H1(RN) is a solution of (1.1). This ends the
proof. �

We define the norm

||v|| =
(∫

RN
|∇v|2dx

)1/2

+ inf
ξ>0

1
ξ

[
1+

∫
RN

V (x)|g(ξ v)|2dx

]
.

Note that (E, ||· ||) is a Banach space and this norm is equivalent to ||· ||E . Related to
this norm, the next result was proved in [21].

PROPOSITION 1. (1) The map v �→ g(v) from (E, || · ||) to (Ls(RN), | · |s) is con-
tinuous for 2 � s � 22∗ .
(2) Under (V4 ) the above map is compact for 2 � s < 22∗ , under (V5 ) the above map
is compact for 2 � s � 22∗ .

3. Auxiliary results

Let us associate to the functional I the Nehari manifold

N = {w ∈ E\{0} / 〈I′(w),w〉 = 0}.
In [31], we have

LEMMA 3. Suppose that (V2) and (V3) or (V4) hold, ( f1) , ( f2) and ( f4) are
satisfied. Then:
(i) for all w ∈ N , we have

I(w) � θ −4
2θ

(∫
RN

|∇w|2dx+
∫

RN
V (x)g2(w)dx

)
;
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(ii) there is ρ > 0 such that∫
RN

|∇w|2dx+
∫

RN
V (x)g2(w)dx � ρ f or all w ∈ N .

COROLLARY 1. Assume the same hypotheses of Lemma 3, and (vn) being a se-
quence in N . Then

liminf
n→∞

∫
RN

|g(vn)|qdx > 0

for some q ∈ (2,2∗) .

In order to find τ -antisymmetric solutions, we look for critical points of the functional
I on

N τ = {w ∈ N / w(τx) = −w(x)} ⊂ N .

The involution τ on R
N induces an involution Tτ : E → E given by

Tτ(w(x)) := −w(τ(x)).

We denote by Eτ := {w ∈ E : Tτ(w(x)) = w(x)} the subspace of τ -invariant functions
of E, we have

N τ = N ∩Eτ .

We define the differentiable continuous function hw : [0,∞) → R by setting

hw(t) = I(tw),

that is,

hw(t) :=
1
2

∫
RN

|t∇w|2dx+
1
2

∫
RN

V (x)|g(tw)|2dx−
∫

RN
F(g(tw))dx,

for each w ∈ E with w �= 0.

LEMMA 4. Assume that ( f1) , ( f2) , ( f3) and ( f4) hold. If w ∈ Eτ with w �= 0 ,
then there exist α > 0 such that

〈I′(αw),w〉 = 0,

that is, αw ∈ N τ , and α ∈ (0,+∞) is a critical point of hw .

Proof. It follows from the definition of hw that

∂hw(t)
∂ t

= t
∫

RN
|∇w|2dx+

∫
RN

V (x)g(tw)g′(tw)wdx−
∫

RN
f (g(tw))g′(tw)wdx

= 〈I′(tw),w〉.
(3.1)
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So, it follows from Remark 1, that

〈I′(tw),tw〉 � t2
∫

RN
|∇w|2dx−

∫
RN

f (g(tw))g′(tw)twdx

� t2
∫

RN
|∇w|2dx−

∫
RN

[εt2|w|2 + cεt
q|w|q]dx

= t2|∇w|22 − εt2|w|22 − cεtq|w|qq,
which means there exists tm > 0 sufficiently small such that

〈I′(tmw),tmw〉 > 0,

since q > 2. Now, we let δ > 0 such that the set

A = {x ∈ R
N ; |w(x)| � δ} ⊂ R

N

is not empty. From Remark 2 and Lemma 1-(6) it follows that

F(g(tw)) � CC1|tw|θ/2 f or all x ∈ A

for t > 1/δ sufficiently large. So, it follows from ( f4) and Lemma 1-(5),

〈I′(tw), tw〉 =
∫

RN
|∇tw|2dx+

∫
RN

V (x)g′(tw)g(tw)twdx−
∫

RN
f (g(tw))g′(tw)twdx

� t2
∫

RN
|∇w|2dx+

∫
RN

V (x)g2(tw)dx−
∫

RN

1
2

f (g(tw))g(tw)dx

� t2
∫

RN
|∇w|2dx+ t

∫
RN

V (x)g2(w)dx−
∫

RN

1
2

f (g(tw))g(tw)dx

� t2
∫

RN
|∇w|2dx+ t

∫
RN

V (x)g2(w)dx−
∫

A

1
2

θF(g(tw))dx

� t2
∫

RN
|∇w|2dx+ t

∫
RN

V (x)g2(w)dx− 1
2

θCC1

∫
A
|tw|θ/2dx

= t2
∫

RN
|∇w|2dx+ t

∫
RN

V (x)g2(w)dx− C2

2
tθ/2

∫
A
|w|θ/2dx,

thus, we can obtain a tM > 0 sufficiently large, such that

〈I′(tMw),tMw〉 < 0,

since 4 < θ < 22∗ . Hence, the Lemma follows from Intermediate Value Theorem. �

LEMMA 5. If w ∈ N and ( f3) hold, then

∂hw

∂ t
(t) > 0 for 0 < t < 1,

∂hw

∂ t
(t) < 0 for t > 1.

In particular, hw(t) < hw(1) = I(w) for all t � 0 such that t �= 1 .



Differ. Equ. Appl. 12, No. 1 (2020), 29–45. 39

Proof. From (3.1) it follows that

∂hw(t)
∂ t

= t

{∫
RN

|∇w|2dx−
∫

RN

[
f (g(tw))g′(tw)

tw
dx− V (x)g(tw)g′(tw)

tw

]
w2dx

}
,

where by ( f3) and Lemma 1-(7)(8) we obtain that

f (g(tw))g′(tw)
tw

− V (x)g(tw)g′(tw)
tw

=
f (g(tw))
g3(tw)

g3(tw)g′(tw)
tw

− V (x)g(tw)g′(tw)
tw

<
f (g(w))
g3(w)

g3tw)g′(w)
w

− V (x)g(w)g′(w)
w

=
f (g(w))g′(w)

w
− V (x)g(w)g′(w)

w
,

holds for 0 < t < 1 and with in a similar argument, we have

f (g(tw))g′(tw)
tw

− V (x)g(tw)g′(tw)
tw

>
f (g(w))g′(w)

w
− V (x)g(w)g′(w)

w
,

for t > 1. Thus, for w ∈ N we have

∂hw

∂ t
(t) > 0 for 0 < t < 1, and

∂hw

∂ t
(t) < 0 for t > 1. (3.2)

That is, hw(t)< hw(1)= I(w) for all t ∈ [0,∞) with t �= 1. So, the Lemma is proved. �
It follows from above informations, that:

REMARK 4. If w ∈ N , then 1 is an unique critical point of hw .

REMARK 5. If w ∈ E with v �= 0, then the critical point α = αw ∈ (0,+∞) of
hw , given by Lemma 4, is unique.
In fact, by Lemma 4 there is α > 0 such that α is a critical point of hw . Finally, assume
that α1 and α2 are two critical points of hw , then

α2

α1
(α1w) = α2w.

Since α1w ∈ N , then by the Remark 4, we have α2/α1 = 1, and so α1 = α2 .

LEMMA 6. Let ( f3) , if V ⊂ Sτ is a compact subset of Eτ , then there exists R > 0
such that I � 0 on (R+V )\BR(0) , where Sτ := {u ∈ Eτ ; ||u||E = 1} .

Proof. Suppose there exists un ∈ V e wn = tnun such that I(wn) � 0 and tn →+∞
as n → +∞ .
From Lemma 1-(3) we have that

I(wn) =
1
2

∫
RN

|∇wn|2dx+
1
2

∫
RN

V (x)|g(wn)|2dx−
∫

RN
F(g(wn))dx

� 1
2

{∫
RN

|∇wn|2dx+
∫

RN
V (x)|wn|2dx

}
−

∫
RN

F(g(wn))dx

=
1
2
||wn||2E −

∫
RN

F(g(wn))dx =
1
2
t2n ||un||2E −

∫
RN

F(g(wn))dx

= t2n

[
1
2
−

∫
RN

F(g(wn))
t2n

dx

]
.
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From Lemma 1-(6) we have |g(w)| → +∞ when |w| → +∞ , Following the Remark 2,
we have

F(g(w))
g(w)4 → +∞ uniformly in x as |w| → +∞. (3.3)

Passing to a subsequence, we way assume that un → u ∈ S . Since |wn(x)| → +∞ if
u(x) �= 0, it follows from Lemma 1-(6), (3.3) and Fatou’s lemma that

∫
RN

F(g(wn))
t2n

dx =
∫

RN

F(g(wn))u2
n

w2
n

dx =
∫

RN

F(g(wn))
g(wn)4

g(wn)4

w2
n

u2
ndx → ∞,

Therefore

0 � I(wn) � t2n

[
1
2
−

∫
RN

F(g(wn))
t2n

dx

]
→−∞,

a contradiction. �
Let S the unit sphere in E and define the mapping m : S → N given by

m(w) := tww,

where tw is as α in Lemma 4. Note that ||m(w)||E = tw .
Consider the mapping mτ : Sτ → N τ given by

mτ := m |Sτ ,

where Sτ is the unit sphere in Eτ . We shall consider the functional

ψτ(w) := I(mτ (w)).

By Lemma 4, Lemma 5, Remark 4, Lemma 3 and Lemma 6, we have the similar
results as in [26].

LEMMA 7. The mapping mτ is a homeomorphism between Sτ and N τ , and the
inverse of mτ is given by (mτ )−1(u) = u

||u||E .

and

LEMMA 8. (1) ψτ ∈C1(Sτ ,R) and

〈(ψτ)′(w),z〉 = ||mτ(w)||E〈I′(mτ(w)),z〉 for all z ∈ Tw(S).

(2) If (wn) is a Palais-Smale sequence for ψτ , then (mτ(wn)) is a Palais-Smale se-
quence for I . If (un)⊂N τ is a boundedPalais-Smale sequence for I , then ((mτ)−1(un))
is a Palais- Smale sequence for ψτ .
(3) w is a critical point of ψτ if and only if mτ(w) is a nontrivial critical point of I .
Moreover, the corresponding values of ψτ and I coincide and infSτ ψτ = infN τ I .
(4) If I is even, then so is ψτ .



Differ. Equ. Appl. 12, No. 1 (2020), 29–45. 41

4. Proof of Theorem 1

It follows from Lemma 3 that there exists c0 > 0 such that

c0 = inf
w∈N τ

I(w). (4.1)

Moreover, if u0 ∈ N τ satisfies I(u0) = c0 then (mτ)−1(u0) ∈ Sτ is a minimizer of
ψτ and therefore a critical point de ψτ , so follows that u0 is a critical point de I by
Lemma 8. We show that there exists a minimizer u ∈ N τ of I |N τ . By Ekeland’s
variational principle [29], there exists a sequence (wn) ⊂ Sτ with ψτ(wn) → c0 and
(ψτ)′(wn) → 0 as n → ∞ . Put un = mτ(wn) ∈ N τ for n ∈ N . Then, by Lemma 8-(2)

I(un) → c0 and I′(un) → 0 as n → +∞, (4.2)

Now, we will show that
(i) (un) ⊂ Eτ is bounded. In particular, (un) is bounded em H1(RN) .
Indeed, we assume by contradiction that ||un|| → +∞ up to subsequence, that is,

||un|| =
(∫

RN
|∇un|2dx

)1/2

+ inf
ξ>0

1
ξ

[
1+

∫
RN

V (x)g2(ξun)
]
→ +∞.

So, at least one of the two terms goes to infinity. If(∫
RN

|∇un|2dx
)1/2 → +∞,

it would follow from Lemma 3 that

I(un) � θ −4
2θ

∫
RN

|∇un|2dx → +∞,

which is a contradiction, since (I(un)) ⊂ R is bounded. Now, if

inf
ξ>0

1
ξ

[
1+

∫
RN

V (x)g2(ξun)dx

]
→ +∞,

then it would follow from Lemma 3 again, we get

I(un) � θ −4
2θ

∫
RN

V (x)g2(un)dx =
θ −4
2θ

[
1+

∫
RN

V (x)g2(un)dx

]
− θ −4

2θ

� θ −4
2θ

inf
ξ>0

1
ξ

[
1+

∫
RN

V (x)g2(ξun)dx

]
− θ −4

2θ
→ +∞,

which is a contradiction again.
Hence, (un) ⊂ Eτ is bounded and of the Sobolev imbedding theorem we can as-

sume, passing to a subsequence, that there exist v ∈ H1(RN) such that un ⇀ v .
(ii) v �= 0 and I′(v) = 0 in Eτ .
In fact, if (V3) is satisfied. Let yn ∈ R

N satisfy∫
B1(yn)

u2
ndx = max

y∈RN

∫
B1(y)

u2
ndx.
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Using once more that I and N τ are invariant under translations of the form u �−→
u(·−k) with k ∈ Z

N , we may assume that (yn) is bounded in R
N . If∫

B1(yn)
u2

ndx → 0 as n → +∞, (4.3)

then un → 0 in Ls(RN) , 2 < s < 2∗ , by Lemma 1.21 in [29]. From Proposition 1 and
( f2) we infer that ∫

RN
f (g(un))g′(un)undx = o(||un||E)

as n → ∞, hence

o(||un||E) = I′(un)(un)

=
∫

RN
|∇un|2dx+

∫
RN

V (x)g′(un)g(un)undx−
∫

RN
f (g(un))g′(un)undx

=
∫

RN
|∇un|2dx+

∫
RN

V (x)g′(un)g(un)undx−o(||un||E)

and therefore ||un||E → 0, contrary to Lemma 3. Hence (4.3) cannot hold, so un ⇀ v �=
0 and I′(v) = 0 in Eτ .
If (V4) and (V5 ) are satisfied. It follow the Proposition 1, that

g(un) → g(v) in Ls(RN) for all s ∈ (2,2∗).

Then by Corollary 1, we conclude that v �= 0 and I′(v) = 0 in Eτ .
Now we will show that

(iii) I(v) = c0 .
It is enough to show that I(v) � c0 . Since (un) is bounded, by Lemma 1 we have that

I(un)− 1
2 〈I′(un),un〉 =

1
2

∫
RN

V (x)[g2(un)−g′(un)g(un)un]dx

+
∫

RN

[
1
2

f (g(un))g′(un)un−F(g(un))
]
dx.

(4.4)

Now, taking a subsequence if necessary, by property Lemma 1-(5) and the Fatou’s
Lemma, we obtain

c0 +o(1) = I(un)− 1
2 〈I′(un),un〉

=
1
2

∫
RN

V (x)[g2(un)−g′(un)g(un)un]dx

+
∫

RN

[
1
2

f (g(un))g′(un)un−F(g(un))dx

]
� 1

2

∫
RN

V (x)[g2(v)−g′(v)g(v)v]dx+
∫

RN

[
1
2

f (g(v))g′(v)v−F(g(v))
]
dx

= I(v)− 1
2
〈I′(v),v〉 = I(v),

(4.5)
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that is, I(v) � c0 .
Now, by using a quantitative deformation lemma and adapting the arguments in

[6, 14], we are going to show I′(v) = 0 in E .
Suppose, by contradiction, that I′(v) �= 0. Then there exist δ > 0 and ν > 0 such

that
||I′(w)|| � ν for every w ∈ E with ||w− v||� 2δ .

Since v �= 0, we can take L = ||v||E > 0 and, without loss of generality, we may assume
6δ < L .

Let J = [ 1
2 , 3

2 ] . Since, 〈I′(v),v〉 = 0 and by Lemma 5,

I(tv) < I(v) = c0,

holds for t ∈ J with t �= 1, we obtain that

c̃ = max
∂ I

I(tv) < c0.

Applying Theorem A.4 in [30] with ε = min{(c0− c̃)/2,νδ/8} and S = B(v,δ ) , there
exists η ∈C([0,1]×E,E) such that:

(i) η(θ ,u) = u if θ = 0 or if u /∈ I−1[c0−2ε,c0 +2ε]∩B(v,2δ ) ;

(ii) η(1, Ic0+ε)∩B(v,δ ) ⊂ Ic0−ε ;

(iii) I(η(1,w)) � I(w) for every w ∈ E , where Ia = {w ∈ E; I(w) � a} ;

(iv) η(t,u) is odd in u .

Consequently, we have
max
t∈J

I(η(1,tv)) < c0. (4.6)

On the other hand, we claim that there exists t0 ∈ J such that

η(1,t0v) ∈ N τ .

In fact, By (iv) for η , we know η(1,tv) ∈ Eτ for each t . Now we will prove that there
exists t0 ∈ I such that t0v ∈ N . Define ϕ(t) = η(1,tv) and

Ψ(t) = 〈I′(ϕ(t)),ϕ(t)〉

for t > 0. Since,

||v− tv||E = |1− t|||v||E = |1− t|L � 6δ |1− t|> 2δ (4.7)

if only if t < 2
3 or t > 4

3 . It follows from property (i) for η and inequality (4.7) that
ϕ(t) = η(1, tv) = tv ∈ Eτ if t ∈ [ 1

2 , 2
3)∪ ( 4

3 , 3
2 ] .

Thus,

Ψ(
1
2
) = 〈I′(ϕ(

1
2
)),ϕ(

1
2
)〉 = 〈I′(1

2
v),

1
2
v〉,
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and it follows from (3.2) that

〈I′(1
2
v),

1
2
v〉 =

1
2

∂hv

∂ t
(
1
2
) > 0. (4.8)

On the other hand,

Ψ
(

3
2

)
=

〈
I′

(
ϕ

(
3
2

))
,ϕ

(
3
2

)〉
=

〈
I′

(
3
2
v

)
,
3
2
v

〉
,

and it follows from (3.2) that〈
I′

(
3
2
v

)
,
3
2
v

〉
=

3
2

∂hv

∂ t

(
3
2

)
< 0. (4.9)

Noting that the function Ψ is continuous on I and taking (4.8) and (4.9) into account,
we can apply intermediate value theorem again to conclude that there exists t0 ∈ I such
that Ψ(t0) = 0. This and (4.6) lead to a contradiction. Hence, We conclude that v is a
critical point of I in E . �
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