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Abstract. In this paper, we present three results about the existence of solutions to discontinuous
dynamic equations on time scales. The existence of Carathéodory type solution is produced
using convergence and Arzela–Ascoli theorem. The Banach’s fixed point theorem is used to
investigate the existence and uniqueness of solutions and using Schaefer’s fixed point theorem
we establish the existence of at least one solution. Our results generalizes and extends some
existing theorems in this field.

1. Introduction

The study of dynamic equations on time scales unify and generalize the theory of
differential equations and difference equations, it helps to avoid studying results twice.
The concept of time scale and dynamic equations on time scales was first introduced
by Hilger [12] in his Ph.D. thesis. In the following years, it was realized that dynamic
equations on time scales can be applied to hybrid dynamical systems, i.e., in mathe-
matical modelling of any phenomena that involves both continuous and discrete data
simultaneously. There have been significant developments and a good deal of research
activity devoted to this field. Hence, it become a quite interesting and active research
area for researcher across the world. An exhaustive study of dynamic equations on time
scales has been done by many authors [1], [4], [6], [7], [14], [15], [16], [25], [26]. In
recent years, discontinuous dynamic equations on time scales under various conditions
have been studied independently by Gilbert [8], Slavı́k [23], Satco [20], [21], Santos
[18], and Tikare [24].

This paper is concerned with some existence results for discontinuous dynamic
equations on an arbitrary finite time scale interval T such that minT = a and maxT =
b . We consider the following dynamic problem,

⎧⎨
⎩

xΔ(t) = f
(
t,x(t)

)
, Δ-a.e. t ∈ [a,b)T;

x(a) = x0;
(1.1)
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where f : [a,b]T×R
n → R

n , x : [a,b)T → R
n , and xΔ is the delta derivative of x . Here

the right hand side function f is integrable and possibly discontinuous. We do not
assume any sort of continuity about the function f .

In this paper, we shall present three existence results for solutions to dynamic
problem (1.1). The first one involves Δ-Carathéodory function introduced by Gilbert
in [8] and uses the Arzela–Ascoli theorem, while in the second one, we shall seek
bounded Δ-measurable solutions, the proof rely on the idea due to Tisdell and Zaidi
[26]. In the third one we obtain existence of at least one continuous solution using
Schaefer’s fixed point theorem.

2. Preliminaries

In this section we provide some basic concepts and results which reader shall find
useful in the sequel. An excellent introduction to the topics of time scales calculus and
its applications can be found in [2], [3].
A time scale T is an arbitrary nonempty closed subset of R , with the subspace topology
inherited from the standard topology of R . For an interval [a,b]⊂R , [a,b]T = [a,b]∩T

denotes time scale interval with minT = a and maxT = b . i.e., [a,b]T =
{
t ∈ T : a �

t � b
}

. For t ∈ T , we define two operators, σ : T → T as σ(t) = inf{s ∈ T : s > t} ,
called the forward jump operator and ρ : T → T as ρ(t) = sup{s ∈ T : s < t} called
the backward jump operator. We classify the points in a time scale T in the following
way: A point t ∈ T is right-scattered if σ(t) > t ; while it is left-scattered if ρ(t) < t .
A point t ∈ T is right-dense if σ(t) = t ; while it is left-dense if ρ(t) = t . A point
t ∈T is dense if ρ(t) = t = σ(t) ; while it is isolated if ρ(t) < t < σ(t) . The graininess
function μ : T → [0,∞) is defined by μ(t) = σ(t)− t .

If b is left-dense, then our time scale interval is [a,b]T and if b is left-scattered,
then it is [a,b)T . So without any restriction throughout this paper we take [a,b)T .
L1

(
[a,b]T;R+

)
denotes the set of Lebesgue Δ-integrable functions from [a,b]T to R+ .

C
(
[a,b]T;Rn

)
denotes the set of continuous functions from [a,b]T to R

n. AC([a,b]T;Rn)
denotes the set of absolutely continuous functions from [a,b]T to R

n . M([a,b]T;Rn)
denotes the set of Δ-measurable functions from [a,b]T to R

n . BM([a,b]T;Rn) denotes
the set of bounded Δ-measurable functions from [a,b]T to R

n .
We observe that AC

(
[a,b]T;Rn

) ⊂C
(
[a,b]T;Rn

) ⊂ BM
(
[a,b]T;Rn

) ⊂ M
(
[a,b]T;Rn

)
.

For x ∈ R
n , ‖x‖ denotes the Euclidean norm of x and we define sup-norm on the set

BM([a,b]T;Rn) as ‖x‖0 = sup
t∈[a,b]T

∥∥x(t)
∥∥ . On the lines of Tisdell and Zaidi [26] we

define the generalized Bielecki’s norm, called TZ-norm on the space BM
(
[a,b]T;Rn

)
as

∥∥x(t)
∥∥

β = sup
t∈[a,b]T

∥∥x(t)
∥∥

eβ (t,a)
. We note that the sup-norm ‖ · ‖0 and the TZ norm

‖ · ‖β are equivalent. Since
(
BM

(
[a,b]T;Rn

)
,‖ · ‖0

)
is a Banach space, it follows that(

BM
(
[a,b]T;Rn

)
,‖ · ‖β

)
is also a Banach space.

DEFINITION 1. [18] A function f : [a,b]T → R
n is said to be absolutely contin-
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uous if given ε > 0 there exists δ > 0 such that
N

∑
i=1

∥∥ f (bi)− f (ai)
∥∥ < ε whenever

ai � bi and
{
[ai,bi)T

}N
i=1 are disjoint intervals obeying

N

∑
i=1

(bi−ai) < δ .

A function f : [a,b]T → R
n is called an arc if it is absolutely continuous.

The following Fundamental Theorem of Calculus for vector valued functions is estab-
lished in [18].

THEOREM 1. A function f : [a,b]T → R
n is an arc if and only if the following

assertions are valid:

(i) for Δ-a.e. t ∈ [a,b)T the function f is Δ-differentiable and f Δ ∈L1
(
[a,b)T;Rn

)
;

(ii) for each t ∈ [a,b]T we have

f (t) = f (a)+
∫
[a,t)T

f Δ(s)Δs.

DEFINITION 2. An arc x : [a,b)T → R
n is said to be a solution of (1.1) if it satis-

fies (1.1). A solution of (1.1) is Δ-Carathéodory solution if the function f in (1.1) is
Δ-Carathéodory function.

DEFINITION 3. [8] A function f : [a,b]T → R
n is said to be Δ-Carathéodory

function if it satisfies the following conditions:

(C-i) The map t �→ f (t,x) is Δ-measurable for every x ∈ R
n ;

(C-ii) The map x �→ f (t,x) is continuous Δ-a.e. t ∈ [a,b]T ;

(C-iii) For given r > 0 there exists a function hr ∈ L1
(
[a,b]T;R+

)
such that

∥∥ f (t,x)
∥∥ �

hr(t) Δ-a.e. t ∈ [a,b]T and ‖x‖ < r+‖x0‖ .

DEFINITION 4. [2] A function x : [a,b)T → R
n is said to be rd-continuous if it

is continuous at every right-dense points in [a,b)T and its left sided limits exist at left
dense points in [a,b)T .
The set of all rd-continuous functions x:[a,b)T →R

n will be denoted by Crd
(
[a,b)T;Rn

)
.

DEFINITION 5. [2] A function β : [a,b]T → R is said to be positively regressive
if 1+ μ(t)β (t) > 0 for all t ∈ [a,b]T .
The set of all positively regressive functions β : [a,b]T → R will be denoted by R+ .

DEFINITION 6. [2] The exponential function eβ (·,a) is defined as

eβ (t,a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(∫ t

a
β (s)ds

)
, if t ∈ [a,b]T, μ(t) = 0;

exp

(∫ t

a

Log
(
1+ μ(s)β (s)

)
μ(s)

Δs

)
, if t ∈ [a,b]T, μ(t) > 0;
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where Log is the principal logarithm function.
For β ∈ R+ , eβ (t,a) > 0 for all t ∈ [a,b]T and eβ (a,a) = 1.

PROPOSITION 1. (Measure continuity) [17] Let f :[a,b]T → [0,+∞) be a Lebesgue
Δ-integrable function. Given ε > 0 there exists δ > 0 such that, if A is a Δ-measurable

subset of [a,b]T with μΔ(A) < δ , then
∫

A
f (s)Δs < ε .

THEOREM 2. (Arzela–Ascoli theorem) [9] A sequence of functions (xi) that is
uniformly bounded and equicontinuous in [a,b]T contains a subsequence (y j) which
converges uniformly in [a,b]T .

THEOREM 3. (Banach’s fixed point theorem) [22] Let (X ;d) be a Banach space
and F : X → X be such that d

(
F(x),F(y)

)
� α d(x,y) for 0 � α < 1 and for all

x,y ∈ X . Then F has a unique fixed point in X .

DEFINITION 7. [9] Let X and Y be two metric spaces. A mapping F : X → Y
is said to be completely continuous if it is continuous and the image of each bounded
subset of X is contained in a compact subset of Y .

THEOREM 4. (Schaefer’s fixed point theorem) [22] Let X be a Banach space,
F : X → X be a continuous and compact mapping. Assume further that the set

Γ =
{
x ∈ X : x = λF(x) for some λ ∈ [0,1]

}

is bounded. Then, F has a fixed point.

3. Main results

We introduce the following hypotheses, which are assumed in this paper hereafter:

(H1) The function f (t,x) is continuous for Δ- a.e. t ∈ [a,b]T .

(H2) The function f (t,x) is Δ-measurable for each Δ-measurable function x : [a,b)T →
R

n .

(H3) For given r > 0 there exists a function hr ∈ L1
(
[a,b]T;R+

)
such that

∥∥ f (t,x)
∥∥ � hr(t)

for Δ-a.e. t ∈ [a,b]T and ‖x‖ < r+‖x0‖ .

(H4) There exists a positively regressive and rd-continuous function β : [a,b]T → R

such that ∥∥ f (t,x)− f (t,y)
∥∥ � β (t)‖x− y‖

for Δ-a.e. t ∈ [a,b]T and for all x,y ∈ R
n .
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(H5) There exist a constant L > 0 and a function c ∈ L1([a,b]T;R+) satisfying

∥∥ f (t,x)
∥∥ � L‖x‖+ c(t)

for Δ-a.e. t ∈ [a,b)T and for all x ∈ R
n .

The following lemma establishes equivalence of dynamic problem (1.1) as delta integral
equations. The result is equivalent to ideas in [19, Lemma 3]. The proof is, therefore,
omitted.

LEMMA 1. Let f : [a,b]T ×R
n → R

n be an integrable function.

1. If an arc x : [a,b]T → R
n is a solution of (1.1), then it follows that

x(t) = x0 +
∫
[a,t)T

f
(
s,x(s)

)
Δs ∀ t ∈ [a,b]T . (3.1)

2. Every arc x : [a,b]T → R
n obeying (3.1) is a solution of (1.1).

It should be noted that the integral means Δ-Lebesgue integral. For detail see [5],
[11]. Using [18, Theorem 5], in Theorem 5 given below, we obtain a Theorem like [10,
Theorem 1] to discontinuous dynamic equations on time scales.

THEOREM 5. Suppose that f : [a,b]T ×R
n → R

n satisfies hypotheses (H2) and
(H3). In addition assume there is a sequence ( fk) of Δ-Carathéodory functions such

that
∫

[a,t)T

fk
(
s,zk(s)

)
Δs→

∫
[a,t)T

f
(
s,x(s)

)
Δs, where (zk) is the sequence of arcs con-

verges uniformly to x on [a,b)T . Then there exists b1 ∈ [a,b)T \ {a} such that the
dynamic problem (1.1) has a Δ-Carathéodory solution x on [a,b1)T .

Proof. If a is right scattered point in [a,b]T , then take b1 = σ(a) and whence
[a,b1)T = {a} . Define the arc x : [a,b1]T →R

n by x(a)= x0 and x(b1)= f
(
a,x(a)

)
μ(a)

+ x(a) . Then
x(b1)− x(a) = f

(
a,x(a)

)
μ(a);

x(b1)− x(a)
μ(a)

= f
(
a,x(a)

)
.

That is, xΔ(t) = f
(
t,x(t)

)
for t ∈ [a,b1)T = {a} . Thus x is a Δ-Carathéodory solution

to (1.1).
For σ(a) = a , let r > 0 be an arbitrarily fixed. By Proposition 1, there exists b1 ∈
[a,b)T \ {a} such that ∫

[a,b1)T

hr(s)Δs < r. (3.2)

Since
(
fi
)

is a sequence of Δ-Carathéodory functions, by [18, Theorem 5], there is a
sequence of arcs xi : [a,b1)T → R

n , b1 ∈ [a,b)T \ {a} obeying (1.1). Thus, each xi is
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a Δ-Carathéodory solution of (1.1) on [a,b1)T .
Therefore, by Lemma 1 for t ∈ [a,b1]T and for each i ∈ N ,

xi(t) = x0 +
∫

[a,t)T

fi
(
s,xi(s)

)
Δs.

∥∥xi(t)
∥∥ � ‖x0‖+

∥∥∥∥
∫

[a,t)T

fi
(
s,xi(s)

)
Δs

∥∥∥∥ � ‖x0‖+
∫
[a,t)T

∥∥ fi
(
s,xi(s)

)∥∥Δs

� ‖x0‖+
∫
[a,b1)T

hr(s)Δs,

which, by equation (3.2) yields
∥∥xi(t)

∥∥ � ‖x0‖+ r , r > 0.
Hence (xi) is uniformly bounded on [a,b1]T .
For t1, t2 ∈ [a,b1]T we have

xi(t1)− xi(t2) =
∫

[a,t1)T

fi
(
s,xi(s)

)
Δs−

∫
[a,t2)T

fi
(
s,xi(s)

)
Δs.

∥∥xi(t1)− xi(t2)
∥∥ =

∥∥∥∥
∫

[t1,t2)T

fi
(
s,xi(s)

)
Δs

∥∥∥∥ �
∫

[t1,t2)T

∥∥ fi
(
s,xi(s)

)∥∥Δs �
∫

[t1,t2)T

hr(s)Δs.

Hence, for any given ε > 0, from Proposition 1, there exists δ > 0 such that t1,t2 ∈
[a,b1]T and |t1− t2| � δ imply

∫
[t1,t2)T

hr(s)Δs < ε .

Consequently,
∥∥xi(t1)− xi(t2)

∥∥ < ε . Therefore (xi) is equicontinuous on [a,b1)T .
By the Arzela–Ascoli theorem, there is a subsequence (y j) of (xi) which converges
uniformly on [a,b1]T to an arc x : [a,b1]T →R

n . We show that this x satisfies dynamic
equation (1.1).
Since xi(a) = x0 , x(a) = lim

j→∞
y j(a) = x0 . Let t ∈ [a,b1]T be fixed. Then by hypothesis,

lim
k→∞

∫
[a,t)T

fk
(
s,zk(s)

)
Δs =

∫
[a,t)T

f
(
s,x(s)

)
Δs,

where (zk) is a subsequence of (y j) .

Since zk(t) = x0 +
∫
[a,t)T

fk
(
s,zk(s)

)
Δs and lim

k→∞
zk(t) = x(t) , it follows that

lim
k→∞

(
x0 +

∫
[a,t)T

fk
(
s,zk(s)

)
Δs

)
= x(t),

and we obtain

x0 +
∫

[a,t)T

f
(
s,x(s)

)
Δs = x(t),

which by Lemma 1 proves that x is a solution of (1.1). This completes the proof. �

Theorem 6 given below establishes a result corresponding to [26, Theorem 3.4] to dis-
continuous dynamic equations on time scales.
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THEOREM 6. Let the hypotheses (H2), (H3), and (H4) hold. Then the dynamic
equation (1.1) has a unique solution. Moreover that solution x satisfy ‖x‖β � ‖x0‖+
M ‖hr‖β , for some positive constant M .

Proof. Define the TZ-norm ‖ · ‖β on the space BM
(
[a,b]T;Rn

)
as

‖x‖β = sup
t∈[a,b]T

∥∥x(t)
∥∥

eβ (t,a)
,

where β : [a,b]T →R is regressive, rd-continuous function. Then
∥∥x(t)

∥∥ � ‖x‖β eβ (t,a) ,
∀ t ∈ [a,b]T .
Let F : BM

(
[a,b]T;Rn

) → BM
(
[a,b]T;Rn

)
be defined by

(Fx)(t) = x0 +
∫

[a,t)T

f
(
s,x(s)

)
Δs, t ∈ [a,b]T.

Let x1,x2 ∈ BM
(
[a,b]T;Rn

)
. Then

(Fx1)(t) = x0 +
∫

[a,t)T

f
(
s,x1(s)

)
Δs, t ∈ [a,b]T;

(Fx2)(t) = x0 +
∫

[a,t)T

f
(
s,x2(s)

)
Δs, t ∈ [a,b]T.

Therefore

(Fx1)(t)− (Fx2)(t) =
∫

[a,t)T

[
f
(
s,x1(s)

)− f
(
s,x2(s)

)]
Δs,

which, by (H4), gives

∥∥(Fx1)(t)− (Fx2)(t)
∥∥ �

∫
[a,t)T

β (s)
∥∥x1(s)− x2(s)

∥∥Δs.

Then∥∥(Fx1)(t)− (Fx2)(t)
∥∥

eβ (t,a)
� 1

eβ (t,a)

∫
[a,t)T

β (s)
∥∥x1(s)− x2(s)

∥∥Δs

� 1
eβ (t,a)

∫
[a,t)T

β (s) eβ (s,a) ‖x1− x2‖β Δs

=
1

eβ (t,a)

∫
[a,t)T

eΔ
β (s,a) ‖x1− x2‖β Δs by equation (21) [13]

=
[
1− 1

eβ (t,a)

]
‖x1− x2‖β .

Thus ∥∥(Fx1)(t)− (Fx2)(t)
∥∥

eβ (t,a)
�

[
1− 1

eβ (t,a)

]
‖x1− x2‖β
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and then

sup
t∈[a,b]T

∥∥(Fx1)(t)− (Fx2)(t)
∥∥

eβ (t,a)
� sup

t∈[a,b]T

[
1− 1

eβ (t,a)

]
‖x1− x2‖β

=
[
1− 1

eβ (b,a)

]
‖x1− x2‖β

= α ‖x1− x2‖β , where α = 1− 1
eβ (b,a)

< 1.

Hence ∥∥Fx1 −Fx2
∥∥

β � α ‖x1− x2‖β and 0 < α < 1 (b 
= a).

The Banach’s fixed point theorem assures that the function F has a unique fixed point
in BM

(
[a,b]T;Rn

)
. This yields that (1.1) has a unique solution.

Now for t < b from (3.1) dividing throughout by eβ (t,a) , we get

∥∥x(t)
∥∥

eβ (t,a)
� ‖x0‖

eβ (t,a)
+

1
eβ (t,a)

∫
[a,t)T

∥∥ f
(
s,x(s)

)∥∥Δs.

Hypotheses (H3) yields
∥∥x(t)

∥∥
eβ (t,a)

� ‖x0‖
eβ (t,a)

+
1

eβ (t,a)

∫
[a,t)T

hr(s)Δs � ‖x0‖
eβ (t,a)

+
1

eβ (t,a)
‖hr‖β

∫
[a,t)T

eβ (s,a)Δs

� ‖x0‖
eβ (t,a)

+
1

eβ (a,a)
‖hr‖β

∫
[a,b)T

eβ (s,a)Δs

� ‖x0‖
eβ (t,a)

+‖hr‖β

∫
[a,b)T

eβ (s,a)Δs � ‖x0‖
eβ (t,a)

+‖hr‖β (b−a)eβ (b,a).

Thus ∥∥x(t)
∥∥

eβ (t,a)
� ‖x0‖

eβ (t,a)
+‖hr‖β (b−a)eβ (b,a) � ‖x0‖+M‖hr‖β ,

where M = (b−a)eβ(b,a) . Therefore

‖x‖β � ‖x0‖+M ‖hr‖β ,

which shows that the solution x is bounded with respect to ‖ · ‖β . This completes the
proof. �

In the next theorem we use Schaefer’s fixed point theorem to establish the existence
of at least one solution to (1.1). Theorem 7 joins Theorem [18, Theorem 5] on the
existence results of at least one solution to (1.1).

THEOREM 7. Suppose that hypotheses (H1), (H2) and (H5). Then the dynamic
problem (1.1) has at least one continuous solution.
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Proof. The proof is based on the idea to transform the dynamic problem (1.1) into
a fixed point problem. Define the operator F : C

(
[a,b]T;Rn

) →C
(
[a,b]T;Rn

)
by

(Fx)(t) = x0 +
∫

[a,t)T

f
(
s,x(s)

)
Δs, (3.3)

t ∈ [a,b]T .
We use Schaefer’s fixed point theorem. In view of Lemma (1), the fixed points of F
will be solutions to the dynamic problem (1.1).
Step 1. F is continuous.
Let (uk) be a sequence in C

(
[a,b]T;Rn

)
such that ‖uk−u‖β → 0. Thence ‖uk−u‖0 →

0 and for t ∈ [a,b]T we have

∥∥(Fuk)(t)− (Fu)(t)
∥∥ =

∥∥∥∥
∫

[a,t)T

f
(
s,uk(s)

)
Δs−

∫
[a,t)T

f
(
s,u(s)

)
Δs

∥∥∥∥
�

∫
[a,t)T

∥∥ f
(
s,uk(s)

)− f
(
s,u(s)

)∥∥Δs

�
∫

[a,b)T

∥∥ f (s,uk(s))− f (s,u(s))
∥∥Δs

and then ∥∥Fuk −Fu
∥∥

0 �
∫

[a,b)T

∥∥ f (s,uk(s))− f (s,u(s))
∥∥Δs.

As per (H1), ∥∥ f (t,uk(t))− f (t,u(t))
∥∥ → 0 Δ− a.e. t ∈ [a,b]T

we may conclude that ‖Fuk −Fu‖0 → 0, and then ‖Fuk −Fu‖β → 0.
Thus F is a continuous map from C

(
[a,b]T;Rn

)
to itself.

Step 2. F maps bounded sets into bounded sets in C
(
[a,b]T;Rn

)
.

Let Ω be a bounded subset of C([a,b]T;Rn) . Hence there exist a constant k > 0 obey-
ing ‖u‖0 � k , for all u ∈ Ω . If u ∈ Ω ,

∥∥(Fu)(t)
∥∥ =

∥∥∥∥x0 +
∫

[a,t)T

f (s,u(s))Δs

∥∥∥∥ � ‖x0‖+
∥∥∥∥

∫
[a,t)T

f (s,u(s))Δs

∥∥∥∥
� ‖x0‖+

∫
[a,b)T

∥∥ f (s,u(s))
∥∥Δs � ‖x0‖+

∫
[a,b)T

(
L‖u(s)‖+ c(s)

)
Δs

� ‖x0‖+
∫

[a,b)T

L‖u‖0Δs+
∫

[a,b)T

c(s)Δs � ‖x0‖+L k(b−a)+
∫
[a,b)T

c(s)Δs

and then

‖Fu‖0 � ‖x0‖+L k(b−a)+
∫
[a,b)T

c(s)Δs.

Therefore F(Ω) is uniformly bounded.

Step 3. F maps bounded sets into equicontinuous sets in C
(
[a,b]T;Rn

)
.
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Let Ω be a bounded subset of C([a,b]T;Rn) as in step 2. Let t,t1 ∈ [a,b]T , t < t1 .
Then

∥∥(Fu)(t)− (Fu)(t1)
∥∥ =

∥∥∥∥
∫

[t,t1)T

f (s,u(s))Δs

∥∥∥∥ �
∫

[t,t1)T

∥∥ f (s,u(s))
∥∥Δs

�
∫

[t,t1)T

(
L‖u(s)‖+ c(s)

)
Δs �

∫
[t,t1)T

L‖u‖0 Δs+
∫
[t,t1)T

c(s) Δs

� L k(t1 − t)+
∫
[t,t1)T

c(s) Δs.

Let ε > 0 be given. Then by Proposition 1, there exists a δ > 0 such that t, t1 ∈ [a,b]T
and |t− t1| < δ imply

∥∥(Fu)(t)− (Fu)(t1)
∥∥ < ε ∀u ∈ Ω.

Thus the equicontinuity of F(Ω) on [a,b]T follows.
Then the Arzela–Ascoli theorem assures that the set F(Ω) is relatively compact, and
therefore the map F : C

(
[a,b]T;Rn

) →C
(
[a,b]T;Rn

)
is completely continuous.

Now consider the set Γ ⊂C
(
[a,b]T;Rn

)
given by

Γ =
{
x ∈C

(
[a,b]T;Rn) : x = λFx for some λ ∈ [0,1]

}
.

We note that
∫

[a,t)T

L eL(s,a) Δs = eL(t,a)−1 and ‖x0‖L = sup
t∈[a,b]T

‖x0‖
eL(t,a)

= ‖x0‖.

If x ∈ Γ , it follows that

x(t) = λx0 + λ
∫

[a,t)T

f
(
s,x(s)

)
Δs

and then

‖x‖L = λ‖Fx‖L � ‖Fx‖L = sup
t∈[a,b]T

∥∥∥∥x0 +
∫
[a,t)T

f
(
s,x(s)

)
Δs

∥∥∥∥
eL(t,a)

� ‖x0‖L + sup
t∈[a,b]T

∫
[a,t)T

∥∥ f
(
s,x(s)

)∥∥Δs

eL(t,a)

� ‖x0‖L + sup
t∈[a,b]T

∫
[a,t)T

{
L
∥∥x(s)

∥∥+ c(s)
}

Δs

eL(t,a)

= ‖x0‖+ sup
t∈[a,b]T

∫
[a,t)T

L eL(s,a)

∥∥x(s)
∥∥

eL(s,a)
Δs+

∫
[a,t)T

c(s)Δs

eL(t,a)
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� ‖x0‖+ sup
t∈[a,b]T

∫
[a,t)T

L eL(s,a)‖x‖L Δs+
∫
[a,t)T

c(s)Δs

eL(t,a)

= ‖x0‖+ sup
t∈[a,b]T

‖x‖L
(
eL(t,a)−1

)
+

∫
[a,t)T

c(s)Δs

eL(t,a)

= ‖x0‖+ sup
t∈[a,b]T

{
‖x‖L

(
1− 1

eL(t,a)

)
+

∫
[a,t)T

c(s)Δs

eL(t,a)

}

� ‖x0‖+‖x‖L

(
1− 1

eL(b,a)

)
+

∫
[a,b)T

c(s)Δs

eL(a,a)

= ‖x0‖+‖x‖L− ‖x‖L

eL(b,a)
+

∫
[a,b)T

c(s)Δs.

Hence

‖x‖L � ‖x0‖ eL(b,a)+ eL(b,a)
∫

[a,b)T

c(s)Δs

and therefore Γ is bounded. As a consequence of Theorem 4 we deduce that F has a
fixed point u in C

(
[a,b]T;Rn

)
, equivalently (1.1) has a solution in C

(
[a,b]T;Rn

)
.

This completes the proof. �
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