
D ifferential
Equations

& Applications

Volume 12, Number 1 (2020), 101–103 doi:10.7153/dea-2020-12-07

CORRIGENDUM TO: POSITIVE SOLUTIONS FOR A FOURTH

ORDER DIFFERENTIAL INCLUSION WITH BOUNDARY

VALUES, PUBLISHED IN DIFFERENTIAL EQUATIONS AND

APPLICATIONS VOL. 8 NO. 1 (2016), 21––31, BY JOHN S. SPRAKER

JOHN S. SPRAKER

(Communicated by S. K. Ntouyas)

Abstract. In Theorem 3 of [2] I included an extension to the Ascoli theorem. While the statement
of the theorem and its later use were correct, the proof has a slight error which I noticed while
in the process of writing a sequel. Also a few comments about the complete continuity of an
operator are provided as well as well as an additional reference.

1. Introduction

In [2] a small part of the proof of Theorem 3 was in error, though the statement of
the theorem is correct. We will correct the error below. In addition to this there was also
an argument in [2] that a certain operator, A, was completely continuous. We include
an additional reference to justify this complete continuity argument.

2. Main results

THEOREM 3 [2]. Suppose T ⊂ C1
0 [0,1] is closed and has the following proper-

ties:

1) sup
f∈T

‖ f ′ ‖C[0,1]< ∞;

2) for all ε > 0, and for all t ∈ [0,1], there exists δ = δ (t,ε)such that for any
y∈ [0,1] with |t−y|< δ we have | f ′(t)− f ′(y)|< ε (i.e. { f ′| f ∈ T} is equicon-
tinuous).
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Then T is compact in C1
0 [0,1].

Proof. We correct the error in the proof in [2]. Let Y = sup f∈T ‖ f ′ ‖C[0,1] . Let
ε > 0 and t,y ∈ [0,1] .

| f (y)− f (t)| =
∣∣∣∣
∫ y

0
f

′
(x)dx−

∫ t

0
f

′
(x)dx

∣∣∣∣ =
∣∣∣∣
∫ y

t
f

′
(x)dx

∣∣∣∣ �
∣∣∣∣
∫ y

t

∣∣∣ f ′
(x)

∣∣∣dx

∣∣∣∣
� Y

∣∣∣∣
∫ y

t
dx

∣∣∣∣ � (Y +1) |t− y| .

Now we can choose δ = ε
Y+1 since Y +1 > 0. Clearly whenever |t − y| < δ we

will have | f (y)− f (t)| < (Y +1) ε
Y+1 = ε . Thus T is equicontinuous. (The error in [2]

involved choosing a δ which depended on the choice of f ∈ T . Such a δ cannot, of
course, be used to prove equicontinuity.) The rest of the proof in [2] is correct. �

In addition to this there was an argument in [2] that a certain operator, A, was
completely continuous. The actual result comes from the following theorem which is
a special case of Proposition 1.7 in [1].

THEOREM [1]. Let Φ : [0,1]×R2 → R be L1−Caratheodory. Let E1 and E2

be Banach Spaces. Let ϕ : C([0,1],R2) → L1([0,1],R) be the mapping ϕ(x) = {η ∈
L1([0,1],R) : η(t) ∈ Φ(t,x(t)) a.e on [0,1]} and let T1 : E1 → C([0,1],R2) and T2 :
L1([0,1],R)→E2 be continuous linear mappings. Assume further that for each bounded
set B ⊆C([0,1],R2) the set T2 ◦ϕ(B) is compact. Then the multivalued mapping P ≡
T2 ◦ϕ ◦T1 : E1 → E2 is completely continuous.

In order to apply this theorem in our case we let E1 = C1[0,1]×C1[0,1] , E2 =
C1[0,1], and Φ = G where G is as specified in [2]. T1 :C1[0,1]×C1[0,1]→C([0,1],R2)
and T2 : L1([0,1],R) →C1[0,1] will be defined by

T1( f ,g) = ( f (t)−g(t), f ′(t)−g′(t))

and

T2h(t) ≡ λ
∫ t

0

(∫ τ

0

[∫ 1

r

{∫ 1

s
h(ν)dν

}
ds

]
dr

)
dτ,

respectively. In [2] the operator A : C1[0,1] → C1[0,1] was defined by Av = {w ∈
AC3[0,1]|w(t) = T2h(t) where h(t) ∈ G(t,v(t)− z(t),v′(t)− z′(t)) a.e on [0,1]} . z(t)
was a particular function. Observe that A is just the restriction of P to the set C1[0,1]×
{z} . Clearly A will be completely continuous if P is. In [2] it was shown that A(B)
was compact for a set B which was bounded in C1

0 [0,1]. Actually, in order to ap-
ply the above theorem we need to work with T2 ◦ϕ(B) and sets that are bounded in
C([0,1],R2) . That does not really alter the proof found in [2], because the compactness
result still follows from the integral boundedness condition and Theorem 3.
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