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ASYMPTOTICS FOR THE SOBOLEV TYPE EQUATIONS WITH PUMPING
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(Communicated by P. I. Naumkin)

Abstract. We consider the large time asymptotic behavior of solutions to the initial-boundary
value problem ⎧⎨⎩

∂t(u−uxx)+(1+ t)nu ux −uxx = 0, x ∈ R, t > 0,
u(0,x) = u0(x), x ∈ R,
u(t,x) → a±, x →±∞, t > 0,

where n ∈ N. We find large time asymptotic formulas of solutions for three different cases
1) a± = ±1, 2) a± = ∓1, 3) a± = 0.

1. Introduction

We study the large time asymptotic behavior of solutions u(t,x) to the Cauchy
problem for the following Sobolev type equation⎧⎨⎩

∂t(u−uxx)+ (1+ t)nuux−uxx = 0, x ∈ R, t > 0,
u(0,x) = u0(x), x ∈ R,
u(t,x) → a±, x →±∞, t > 0,

(1.1)

where n ∈ N. In this paper we construct an asymptotic approximation which is close
in the uniform norm to the solution. We represent the solution in the form u(t,x) =
ϕ(t,x)r(t,x), where ϕ(t,x) is rarefaction wave and r(t,x) is a shock wave.

Sobolev-type equations describe various physical processes and are the subject of
many papers, so the mathematical theory of these equations takes an important place in
modern mathematical physics (see [12], [17], [6]).

In [18] semigroups theory was applied to the general theory of singular equations
of Sobolev type. Degenerate equations of Sobolev type were studied in [5] from an
abstract point of view. Equations of Sobolev type with two non-linearities were consid-
ered in [16]. In several cases equations of Sobolev type are also called pseudoparabolic
equations. Pseudoparabolic equations with monotonic non-linearity were studied in
[15]. The large-time asymptotic behavior of the solution of the Cauchy problem for an
equation of Sobolev type with non-linearity of convective type was studied in [1], [2],
[11], [13].
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The paper [4] is devoted to the proof of the maximum principle for equations of
pseudoparabolic type. Pseudoparabolic equations with a monotonic non-linearity were
considered in [15], where the classical monotonicity method was extensively applied
to various classes of equations of mathematical physics and, in particular, to non-linear
Sobolev-type equations with a monotonic non-linearity.

The monograph [19] contains a comprehensive discussion of the theory of linear
and non-linear equations of Sobolev-type. The authors of [19] deduce model linear
Sobolev-type equations of high order which can be used in plasma theory and for de-
scribing quasi-stationary processes in continuous electromagnetic media. Sufficient and
close to necessary conditions for blowup occurring in finite time and for global solu-
bility are obtained. Methods for the numerical solution of Sobolev-type equations are
discussed.

Sobolev-type equations can rarely be explicitly solved, so various analytic meth-
ods for studying them are important. Some of the most effective approaches to the
qualitative analysis of non-linear partial differential equations are asymptotic methods
for the explicit representation of solutions. Asymptotic formula allow one to describe
such properties of solutions as the rate of decrease (or growth) in various domains, the
monotonic or oscillatory pattern of their behavior, the dependence with time on the ini-
tial perturbations, and so on. It is also interesting to analyze how the non-linear terms
in Sobolev-type equations influence the asymptotic behavior of solutions. For instance,
by contrast with the corresponding linear equations, solutions of non-linear problems
may be rapidly oscillating, they may grow or decay more rapidly than solutions of the
corresponding linear equations, they may approach a self-similar solution, and so on.
We note that this information is difficult to obtain by numerical experiment, so asymp-
totic methods are not only important from the theoretical standpoint, but are also widely
used in practice as a supplement to numerical methods.

Asymptotic methods of investigation of non-linear evolution equations are a fairly
young area of mathematics, and their general theory is far from being complete. De-
scribing large-time asymptotic behavior of solutions of non-linear evolution equations
requires fundamentally new methods. For example, the assumptions that a solution is
infinitely smooth and has compact support, which are routinely admissible in the case
of linear equations, are too restrictive for non-linear theory. Asymptotic methods are
complicated even in the case of linear evolution equations, because they require that so-
lutions global in time not only exist, but also satisfy several additional a priori bounds
(often in weighted norms) in order to make it possible to estimate the difference be-
tween a solution and its asymptotic approximation. Usually, we cannot use generalized
solutions in asymptotic theory, so we consider classical or semi classical solutions in
Lebesgue or Sobolev spaces. Each kind of non-linearity must be discussed separately,
particularly when the initial data under consideration are not small.

We organize the rest of our paper as follows. In Sect. 2 we will show that if the
initial data are monotonically increasing and have small higher order derivatives, then
solutions tend to the rarefaction wave as t → ∞. In Sect. 3 we consider the case of the
shock wave a+ < a− and we will show that solutions tend as t → ∞ to the self-similar
solution − tan(x(1+ t)n). The most difficult and intriguing case of the zero boundary
conditions u(t,x) → a± = 0 as x → ±∞ is treated in Section 4, where we prove that
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solutions of the Cauchy problem (1.1) can be represented as the product of a rarefaction
and a shock wave.

Denote the usual Lebesgue space LLLLLp(R) =
{

φ ∈ SSSSS′; ‖φ‖p < ∞
}

, where the norm

‖φ‖p = (
∫
R
|φ(x)|p dx)1/p if 1 � p < ∞ y ‖φ‖∞ = ess.supx∈R |φ(x)| if p = ∞. Sobolev

spaces HHHHHk(R) =
{

φ ∈ SSSSS′;
∥∥∥〈i∂x〉k φ

∥∥∥
2
< ∞

}
, k � 0, 〈x〉=

√
1+ x2. Different positive

constants we denote by the same letter C.

2. Rarefaction wave

First we investigate the case of the rarefaction wave. Consider the initial value
problem for the equation{

ϕt +(1+ t)nϕϕx = 0, x ∈ R, t > 0,
ϕ(0,x) = ϕ0(x), x ∈ R,

(2.1)

where n∈ N and initial data ϕ0(x) ∈CCCCC2(R) are monotonically increasing 0 < ϕ ′
0(x) <

C for all x ∈ R, ϕ0(x) →±1 as x →±∞ and ϕ0(0) = 0 The solution to problem (2.1)
is given by ϕ(t,χ(t,ξ )) = ϕ0(ξ ), where the characteristics χ(t,ξ ) = ξ + Φ(t)ϕ0(ξ ),
for ξ ∈ R, t > 0, where Φ(t) = 1

n+1

(
(1+ t)n+1−1

)
. Note that

ϕx(t,χ(t,ξ )) =
ϕ ′

0(ξ )
1+ Φ(t)ϕ ′

0(ξ )
> 0

and

ϕ ′
0(ξ )

(1+ Φ(t)ϕ ′
0(ξ ))2 =

1
Φ(t)

Φ(t)ϕ ′
0(ξ )

(1+ Φ(t)ϕ ′
0(ξ ))2 � 1

Φ(t)
� C(n+1)(1+ t)−(n+1)

for all t � 1. As 0 < ϕ ′
0(ξ ) < C for all ξ ∈ R, then

‖ϕx(t)‖2
2 =

∫
R

(ϕ ′
0(ξ ))2

(1+ Φ(t)ϕ ′
0(ξ ))2 dξ � 1

Φ(t)

∫
R

ϕ ′
0(ξ ) dξ � C(1+ t)−(n+1)

for all t � 1. Thus

‖ϕx(t)‖2 � C(1+ t)−
1
2 (n+1),

∫ ∞

t
‖ϕx(τ)‖∞ dτ → 0 (2.2)

as t → ∞. We assume that the initial data ϕ0(ξ ) ∈CCCCC3(R) has the asymptotics

ϕ0(ξ ) = ϑ(ξ )+O
(
|ξ |−β

)
, ϕ ′

0(ξ ) = O
(
|ξ |−β

)
,

ϕ ′′
0 (ξ ) = O

(
|ξ |−(1+3β )

)
, ϕ ′′′

0 (ξ ) = O
(
|ξ |−(1+4β )

)
(2.3)

as ξ → ±∞, where β > 0 and ϑ(ξ ) = 1 for ξ � 0, ϑ(ξ ) = 0 for ξ < 0, we have
similar estimates for ϕxx(t), ϕxt (t), ϕxxx(t) .

First we give a sufficiently general result about convergence as t → ∞ of solutions
u(t,x) of problem ( 1.1) to the rarefaction wave ϕ(t,x) .
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THEOREM 1. Let u0 −ϕ0 ∈ LLLLL2(R). We assume that ϕ0(x) ∈ CCCCC3(R) is such that
condition (2.3) is true. Then

u(t,x) = ϕ(t,x)+o(1)

Proof. For the difference w = u−ϕ we get the Cauchy problem{
∂t(w−wxx −ϕxx)+ (1+ t)n((w+ ϕ)(w+ ϕ)x−ϕϕx)−wxx −ϕxx = 0,
w(0,x) = w0(x),

(2.4)

where w0 = u0 −ϕ0 ∈ LLLLL2(R) . By the method of book [12] we can easily prove the
existence of a unique solution w(t,x) ∈ CCCCC∞ ((0,∞);HHHHH∞(R)) ∩CCCCC([0,∞);LLLLL2(R)) to the
Cauchy problem (2.4). Multiplying equation (2.4) by w and integrating with respect to
x over R, we get energy type a priori estimate

d
dt

(
‖w‖2

2 +‖wx‖2
2

)
+(1+ t)n

∫
R

w2ϕxdx+2‖wx‖2
2 +2

∫
R

wx(ϕx + ϕxt)dx = 0.

Note that (1+ t)n ∫
R

w2ϕxdx � 0 for all t > 0, whence by Cauchy inequality and esti-
mates (2.2) (2.3) we have

d
dt

(
‖w‖2

2 +‖wx‖2
2

)
+2‖wx‖2

2 � 2‖wx‖2 (‖ϕx‖2 +‖ϕxt‖2)

� C‖wx‖2 (1+ t)−
1
2 (n+1).

Let v = ‖w‖2
2 + ‖wx‖2

2 , then ‖wx‖2 � √
v, with it we have d

dt v � 2
√

v(1+ t)−
1
2 (n+1) ,

integration with respect to time t > 0, yields v = ‖w‖2
2 +‖wx‖2

2 �C, with that ‖w‖2 �
C and ‖wx‖2 � C, therefore

d
dt

(
‖w‖2

2 +‖wx‖2
2

)
+2‖wx‖2

2 � C(1+ t)−
1
2 (n+1).

Integration with respect to time t > 0, yields

‖w‖2
2 +‖wx‖2

2 +2
∫ t

0
‖wx(τ)‖2

2 dτ � C

then
∫ t
0 ‖wx(τ)‖2

2 dτ � C and via inequalities ‖w‖4
∞ � 4‖w‖2

2 ‖wx‖2
2 � C‖wx‖2

2 , we
obtain

∫ ∞
0 ‖w(t)‖4

∞ dt < C. Therefore ‖w(tk)‖∞ → 0 and ‖wx(tk)‖2 → 0 for some se-
quence tk→∞. In order to prove that ‖w(t)‖∞→0 as t→∞, let us estimate supx∈Rw(t,x)
and infx∈R w(t,x). Since w∈CCCCC((0,∞);HHHHH1(R)) we see that lim|x|→∞ w(t,x) = 0, hence
we have supx∈R w(t,x) � 0 and infx∈R w(t,x) � 0 for all t ∈ (0,∞) . By the method of
paper [3] we have the following result.

LEMMA 1. Let w ∈ CCCCC1((T1,T2);LLLLL∞(R)) and w̃(t) = supx∈R w(t,x) > 0 for all
t ∈ (T1,T2) . Then there exists a point ζ (t) ∈ R such that w̃(t) = w(t,ζ (t)), moreover
w̃′(t) = wt (t,ζ (t)) almost everywhere on (T1,T2).
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We now prove that w̃(t)→ 0 as t → ∞. Since ‖w(tk)‖∞ → 0 for some sequence tk → ∞
we consider the time interval T2 > T1 � tk such that w̃(t) > 0 for all t ∈ (T1,T2). By
virtue of Lemma 1 we get form equation (2.4)

w̃′ − ∂t(wxx + ϕxx)+ (1+ t)nw̃ϕx −wxx(t,ζ (t))−ϕxx(t,ζ (t)) = 0,

almost for all t ∈ (T1,T2), where we have used the fact that wx(t,ζ (t))=0 via wxx(t,ζ (t))
< 0 and applying again Lemma 1 to w̃xx(t) = infx∈R wxx(t,x) < 0 we have to w̃xx(t) =
wxx(t,ζ (t)) and w̃xxt (t) = wxxt (t,ζ (t)) almost for all t ∈ (T1,T2). Then we have

w̃t − w̃xxt −ϕxxt +(1+ t)nw̃ϕx − w̃xx −ϕxx = 0.

Let y(t) = w̃(t)− w̃xx(t) > 0, via (1+ t)nw̃ϕx > 0 for all x ∈ R, t > 0, we have yt −
w̃xx � ϕxx + ϕxxt , integration with respect to time t ∈ (T1,T2), yields

0 <
∫ t

tk
yτ(τ)dτ −

∫ t

tk
w̃xx(τ)dτ �

∫ t

tk
(ϕxx(τ,ζ (τ))+ ϕxxt (τ,ζ (τ)))dτ

as
∫ T2
T1

w̃xx(τ)dτ < 0 and
∫ T2
T1

(ϕxx(τ,ζ (τ))+ ϕxxt (τ,ζ (τ)))dτ < ∞, then |∫ ∞
0 w̃xx(τ)dτ|

< ∞,we have w̃xx(tk) → 0 as tk → ∞, and

0 <
∫ t

tk
yτ(τ)dτ �

∫ t

tk
(ϕxx(τ,ζ (τ))+ ϕxxt (τ,ζ (τ))) dτ.

By (2.3), we have
∫ t
tk

yτ(τ)dτ → 0 as tk → ∞, then y(t) � y(tk) + o(1) as tk → ∞,

this is, y(t) � w̃(tk)− w̃xx(tk)+o(1) as tk → ∞. Since w̃(tk) → 0 and w̃xx(tk) → 0 as
tk → ∞, then we have y(t)→ 0 as t → ∞. Therefore w̃(t) → 0 as t → ∞. Similarly we
prove that infx∈R w(t,x) → 0 as t → ∞. Hence ‖w(t)‖∞ → 0 as t → ∞. Theorem 1 is
proved. �

We now suppose some more conditions to be fulfilled for the initial data u0(x)
and compute more precisely the large time asymptotic behavior of solution u(t,x) to
the problem (1.1). We assume that initial data u0(x) monotonically increase and are
slowly varying, so that the higher order derivatives are less comparing with the firs
one. More precisely we suppose that the initial data u0(x) ∈CCCCC3(R) have the following
estimates.

0 < u′0(x) � ε, |u′′0(x)| � Cε
(
u′0(x)

)3/2
, |u′′′0 (x)| � Cε2 (u′0(x))2

(2.5)

for all x ∈ R, where ε > 0 is sufficienty small. For example, we can take the initial
data of the form u0(x) = 1

π
∫ x
−∞ ε2

(
1+ ε4ξ 2

)−1
dξ . Note that u0(+∞) = 1, also we

have u′0 (x) = 1
π ε2

(
1+ ε4x2

)−1
, u′′0 (x) = − 2

π ε6x
(
1+ ε4x2

)−2
, u′′′0 (x) =

2
π ε6

(
4ε4x2−1

)(
1+ ε4x2

)−3
.

By Theorem 1 we know that solutions of (1.1) are similar to those of the Hopf equation
(2.1). Therefore the non linearity in equation (1.1) grows with time more rapidly that
the term with second derivative, hence the large time behavior of solutions should be
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determined by the first two terms in equation (1.1). That is why we try to solve equation
(1.1) by the method of characteristics. Changing y = u−uxx in (1.1), we get{

∂t y+(1+ t)n yyx +(1+ t)n (uxxyx +uuxxx)−uxx = 0, x ∈ R, t > 0,
y(0,x) = y0 (x) , x ∈ R,

where y0 (x) = u0(x)−u′′0(x). Hence we can write{
∂t y+ yx

(
(1+ t)n y+

(
(1+ t)n uxx + (1+t)nuuxxx−uxx

yx

))
= 0, x ∈ R, t > 0,

y(0,x) = y0 (x) , x ∈ R.

We define characteristics χ(t,ξ ) as the solutions to the Cauchy problem{
χt = (1+ t)n y(t,χ)+

(
(1+ t)n uxx + (1+t)nuuxxx−uxx

yx

)
, t > 0, ξ ∈ R,

χ(0,ξ ) = ξ , ξ ∈ R.

Then we get d
dt y(t,χ(t,ξ ))= 0. Hence integrating y(t,χ(t,ξ ))= y0 (ξ ) ,ξ ∈R . There-

fore we obtain

χt = (1+ t)n y0(ξ )+
(

(1+ t)n uxx +
χξ (t,ξ )
y′0(ξ )

((1+ t)n uuxxx −uxx)
)

.

We now change the independent variable η = y0(ξ ), then the real axis ξ ∈ R is trans-
formed biuniquelly to a segment (−1,1) (in view of our assumptions (2.5) we have
y′0(ξ ) = u′0(ξ )−u′′′0 (ξ ) > 0).

Denote m(η) = ∂η
∂ξ = y′0(ξ ) , and Z(t,η) = m(η)

χξ (t,ξ ) = yχ(t,χ). Then we have

∂t χξ = (1+ t)n m(η)+ ∂ξ

(
(1+ t)n uxx +

χξ (t,ξ )
y′0(ξ )

((1+ t)n uuxxx −uxx)
)

= m(η)
(

(1+ t)n + ∂η

(
(1+ t)n uxx +

1
Z

((1+ t)n uuxxx −uxx)
))

.

Whence for Z(t,η) we get

∂tZ = −Z2 1
m(η)

∂t χξ (t,ξ ) = −Z2((1+ t)n +A),

where

A(t,η) = ∂η

(
(1+ t)n uxx +

1
Z

((1+ t)n uuxxx −uxx)
)

=
1
Z2 [(1+ t)n (Zuxxx −Zηuuxxx +uxuxxx +uuxxxx)+Zηuxx −uxxx]

=
1
Z2

[
(1+ t)n

(
Zuxxx − u

Z
yxxuxxx +uxuxxx +uuxxxx

)
+

1
Z

yxxuxx −uxxx

]
.
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Thus for Z(t,η) we get the following initial-boundary value problem⎧⎪⎨⎪⎩
Zt = −Z2((1+ t)n +A), t > 0, η ∈ (−1,1),
Z(0,η) = m(η), η ∈ (−1,1),
∂ k

ηZ
∣∣
η=±1

= 0, t > 0, k = 1,2.

(2.6)

From the existence of a unique solution u(t,x) to problem (1.1) it follows that there
exists a unique global solution Z(t,η) ∈ CCCCC([0,∞);CCCCC2(−1,1)∩CCCCC1((0,∞);CCCCC(−1,1)) to
the initial-boundary value problem (2.6). Integrating equation (2.6) with respect to time
t > 0 we get the following representation

Z(t,η) = m(η)
(

1+m(η)
(

Φ(t)+
∫ t

0
A(τ,η) dτ

))−1

,

where Φ(t) = 1
n+1

(
(1+ t)n+1−1

)
.

We prove the following result.

THEOREM 2. Let conditions (2.5) for the initial data u0(x) be fulfilled with suffi-
ciently small ε > 0. Then the estimate

sup
η∈(−1,1)

|A(t,η)| < Cε

is true for all t > 0 .

Proof. By contradiction and by virtue of continuity with respect to time we can
find the time T > 1 such that

sup
η∈(−1,1)

|A(t,η)| � Cε

for t ∈ [0,T ] . Then we have the estimate

Z(t,η) = m(η)
(

1+m(η)
(

Φ(t)+
∫ t

0
A(τ,η) dτ

))−1

�
{

C (n+1)(1+ t)−n−1 , t ∈ [1,T ]
Cm(η), 0 < t < 1.

Since the estimates for 0 < t < 1 are more easy, so below we consider the estimates for
large t � 1. Deriving the equation twice ∂t(u−uxx) = −(1+ t)n uux +uxx we have

∂t(uxx −uxxxx) = −3(1+ t)n uxuxx − (1+ t)n uuxxx +uxxxx

= −3(1+ t)n ux(uxx −uxxxx)− (1+ t)n uuxxx +(1−3(1+ t)n ux)uxxxx.

We denote w1 = uxx −uxxxx then we get

∂tw1 = −3(1+ t)n uxw1 − (1+ t)n uuxxx +(1−3(1+ t)n ux)uxxxx.
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Let X1 the point such that uxx (t,X1) = maxx∈R uxx (t,x) .
We denote w̃1 = uxx (t,X1)−uxxxx (t,X1) , then we get

d
dt

w̃1 = −3(1+ t)n uxw̃1 +(1−3(1+ t)n ux)uxxxx (t,X1) � −3(n+1)
1+ t

w̃1

for t � 1. Integrating we obtain w̃1 (t) � w̃1 (1)
( 1+t

2

)−3(n+1)
. Hence

max
x∈R

uxx (t,x) � uxx (t,X1)−uxxxx (t,X1) = w̃1 � C (1+ t)−3(n+1) � CZ3.

Similarly deriving the equation three times ∂t(u−uxx) = −(1+ t)n uux +uxx , we have

∂t(uxxx −uxxxxx) = −4(1+ t)n uxuxxx −3(1+ t)n u2
xx − (1+ t)n uuxxxx +uxxxxx

= −4(1+ t)n ux(uxxx −uxxxxx)−3(1+ t)n u2
xx

−(1+ t)n uuxxxx +(1−4(1+ t)n ux)uxxxxx.

We denote w2 = uxxx −uxxxxx

∂tw2 = −4(1+ t)n uxw2 −3(1+ t)n u2
xx − (1+ t)n uuxxxx +(1−4(1+ t)n ux)uxxxxx.

Let X2 the point such that uxxx (t,X2)= maxx∈R uxxx (t,x) . We denote w̃2 = uxxx (t,X2)−
uxxxxx (t,X2) , then we get

d
dt

w̃2 � −4(1+ t)n uxw̃2 +(1−4(1+ t)n ux)uxxxxx (t,X2) � −4(n+1)
1+ t

w̃2.

Now integrating we obtain

|uxxx| � uxxx (t,X2)−uxxxxx (t,X2) = w̃2 � C (1+ t)−4(n+1) � CZ4.

Similarly deriving the equation four times ∂t(u−uxx) = −(1+ t)n uux +uxx , we have

∂t(uxxxx −uxxxxxx) = −5(1+ t)n uxuxxxx −6(1+ t)n uxxuxxx − (1+ t)n uuxxxxx +uxxxxxx

= −5(1+ t)n ux(uxxxx −uxxxxxx)−6(1+ t)n uxxuxxx

−(1+ t)n uuxxxxx +(1−5(1+ t)n ux)uxxxxxx.

We denote w3 = uxxxx −uxxxxxx

∂tw3 = −5(1+ t)n uxw3 −6(1+ t)n uxxuxxx − (1+ t)n uuxxxxx

+(1−5(1+ t)n ux)uxxxxxx.

Let X3 the point such that uxxxx (t,X3) = maxx uxxxx (t,x) .
We denote w̃3 = uxxxx (t,X3)−uxxxxxx (t,X3) , then we get

∂t w̃3 = −5(1+ t)n uxw̃3 +(1−5(1+ t)n ux)uxxxxxx (t,X3) � −5(n+1)
1+ t

w̃2
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As above integrating we obtain

uxxxx � uxxxx

(
t, X̃3

)
−uxxxxxx

(
t, X̃3

)
= w̃3 � C (1+ t)−5(n+1) � CZ5.

Then we have the estimates

|uxx| � C (1+ t)−3(n+1) , |uxxx| � C (1+ t)−4(n+1) , |uxxxx| � C (1+ t)−5(n+1) .

Now we estimate A ,

|A| =
∣∣∣∣ 1
Z2

[
(1+ t)n

(
Zuxxx − u

Z
yxxuxxx +uxuxxx +uuxxxx

)
+

1
Z

yxxuxx −uxxx

]∣∣∣∣
=
∣∣∣∣ 1
Z2

[
(1+ t)n

(
Zuxxx − u

Z
(uxx −uxxxx)uxxx +uxuxxx +uuxxxx

)
+

1
Z

(uxx −uxxxx)uxx −uxxx

]∣∣∣∣
� CZ−2

(
(1+ t)n Z5 +Z4

)
� CZ2 <Cε.

Theorem 2 is proved. �

3. Shock wave

Here we consider another type of the boundary conditions a± = ∓1, correspond-
ing to the shock wave solutions. We study the Cauchy problem.{

∂t(u−uxx)+ (1+ t)nuux−uxx = 0, x ∈ R, t > 0,
u(0,x) = u0(x), x ∈ R,

(3.1)

where n ∈ N and with initial data satisfying shock-wave type boundary conditions
u0(x) →∓1 as x →±∞. Changing u(t,x) = w(t,y), y = x(1+ t)n, we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wt +n
y

1+ t
wy − (1+ t)2n

[
−wwy +

(
2n

1
1+ t

+1

)
wyy

+wtyy +n
y

1+ t
wyyy

]
= 0 , y ∈ R, t > 0,

w(0,y) = u0(y), y ∈ R.

(3.2)

We introduce the approximate solution (better approximation it is for bigger t ) W (t,y)=
m
∑

k=0
(1+ t)−kWk(y), where m � 2n, the functions Wk(y) for 0 � k � m we define recur-

rently below. We substitute W into (3.2) to get

m+1
∑

k=1

(
(k−1)(1+ t)−kWk−1(y)−ny(1+ t)−kW ′

k−1(y)
)

= (1+ t)2n

[
m
∑
l=0

m
∑

s=0
(1+ t)−(l+s)WlW ′

s −
(
2n 1

1+t +1
) m

∑
k=0

(1+ t)−kW ′′
k

+
m
∑

k=1
k(1+ t)−k−1W ′′

k (y)−ny
m
∑

k=0
(1+ t)−k−1W ′′′

k

]
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We now collect the terms with the same power of (1+ t)2n−k. Then for W0 we obtain
W0W ′

0 −W ′′
0 = 0 with boundary conditions W0(y) → 1 cuando y → −∞, W0(y) → 0

cuando y → +∞ whence W0(y) = − tanh
(

1
2y
)
,

k

∑
l=0

Wk−lW
′
l −2nW ′′

k−1−W ′′
k +(k−1)W ′′

k−1−nyW ′′′
k−1 = 0, k = 1, ...,2n (3.3)

and

( j−1)Wj−1−nyW ′
j−1

=
k
∑
l=0

Wk−lW ′
l −2nW ′′

k−1−W ′′
k +(k−1)W ′′

k−1−nyW ′′′
k−1, k = j +2n, j � 1,

(3.4)

with boundary conditions Wk(y) → 0, for y → ±∞, k � 1, whence integrating the
identity with respect to y over (−∞,y) we obtain

W ′
k = WkW0 +

1
2

k−1

∑
l=1

Wk−lWl +(k−2n−1)W ′
k−1−n

∫ y

−∞
τW ′′′

k−1(τ)dτ, k = 1, ...,2n,

W ′
k = WkW0 +

1
2

k−1

∑
l=1

Wk−lWl +(k−2n−1)W ′
k−1−n

∫ y

−∞
τW ′′′

k−1(τ)dτ

−( j−1)
∫ y

−∞
Wj−1(τ)dτ +n

∫ y

−∞
τW ′

j−1(τ)dτ, k = j +2n, j � 1.

Multiplying both sides of the above by cosh2 y
2 and integrating the resulting equation

with respect to y over (−∞,y) again we have

Wk(y) =
y∫

−∞

cosh2 ( 1
2 z
)

cosh2
(

1
2y
) (1

2

k−1

∑
l=1

Wk−lWl +(k−2n−1)W′
k−1

− n

z∫
−∞

τW ′′′
k−1(τ)dτ

⎞⎠dz, k = 1, ...,2n,

Wk(y) =
y∫

−∞

cosh2
(

1
2 z
)

cosh2 ( 1
2y
)
⎛⎝1

2

k−1

∑
l=1

Wk−lWl +(k−2n−1)W′
k−1− n

z∫
−∞

τW ′′′
k−1(τ)dτ

−( j−1)
∫ z

−∞
Wj−1(τ)dτ +n

∫ z

−∞
τW ′

j−1(τ)dτ
)

dz, k = j +2n, j � 1.

We find that Wk(y) is an odd function for any k � 0. Indeed W0(y) = − tanh
( 1

2y
)

is
an odd function and if we assume that Wi is an odd function for all i � k− 1 also
W ′′

i in an odd function, then
∫ η
−η τW ′

i (τ)dτ = −∫ η
−η Wi(τ)dτ = 0,

∫ η
−η τW ′′′

j−1(τ)dτ =
−∫ η

−η W ′′
j−1(τ)dτ = 0 and Wi(η)Wl(η) = Wi(−η)Wl(−η) which imply Wk(y) is an

odd function. The function W (t,y) is close to the shock wave W0(y) = − tanh
(

1
2y
)

for large time t → ∞. This is the reason why we introduce the higher-order corrections
Wk(y)(1+ t)−k, k � 1 considering convergence with derivatives of the solution u(t,x)
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as t → ∞. It is easy to verify that W ( j)
k (y) � Cy2ke−|y|, k � 1. By virtue of (3.2), (3.3)

y (3.4) we find for the difference v(t,x) = u(t,x)−W(t,y)

vt − vtxx +(1+ t)nvvx +(1+ t)n∂x(vW )− vxx +R = 0 (3.5)

where

R(t,y) = Wt −Wtxx +(1+ t)nWWx −Wxx

= −
m

∑
k=m−2n

k(1+ t)−k−1Wk +ny
m

∑
k=m−2n

(1+ t)−k−1W ′
k

−(1+ t)2n(2n−m)(1+ t)−m−1W ′′
m − (1+ t)2nny(1+ t)−m−1W ′′′

m

+(1+ t)2n
2m

∑
k=m+1

(
k

∑
l=0

Wk−lW
′
l

)
(1+ t)−k,

whence integrating with respect to x on (−∞,x) we get

Vt −Vtxx− 1
2
tn(Vx)2 + tnWVx−Vxx +R1 = 0 (3.6)

where V (t,x) =
∫ x
−∞ v(t,x′) dx′ and

R1(t,y) = (1+t)−n−1

⎡⎣−ny
m

∑
k=m−2n

(1+t)−kWk(y)−
m

∑
k=m−2n

(n+k)(1+t)−k

y∫
−∞

Wk(τ)dτ

⎤⎦
−(1+ t)n−m−1(n−m)W ′

m(y)− (1+ t)n−m−1nyW ′′
m(y)

+ 1
2(1+ t)n

2m

∑
k=m+1

(
k

∑
l=0

Wk−l(y)Wl(y)

)
(1+ t)−k

by virtue the estimates for Wk, k � 0 and its derivatives we have R1(t,y) =
O
(
(1+ t)n−m−1y4me|−y|) as y → +∞ . We suppose that the initial data u0(x) for the

problem (1.1) are near the approximate solution W (t,y) so that V (t0,x)coshαx ∈ LLLLL∞

for some α > 0 sufficiently small and t = t0, where the initial time t0 > 0 we choose to
be sufficiently large. In other words, from the beginning the nonlinear effects dominate
the linear ones (we could replace this requirement by considering a large coefficient at
the nonlinear term in equation (1.1)).

We now prove following result.

THEOREM 3. Let the initial time t0 > 0 be sufficiently large and the initial data
u(t0,x) ∈ LLLLL∞ be close to the shock wave W(t0,x(1+ t0)n), that is

cosh(αx)
∫ x

−∞

(
u(t0,x′)−W(t0,x′(1+ t0)n)

)
dx′ ∈ LLLLL∞.
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where α > 0 is sufficiently small. Then there exists a unique u(t,x) to the Cauchy
problem (1.1) such that

cosh(αx)
∫ x

−∞

(
u(t,x′)−W(t,x′(1+ t0)n)

)
dx′ ∈ C([t0,∞);LLLLL∞)

and the estimate∥∥∥∥cosh(αx)
∫ x

−∞

(
u(t,x′)−W(t,x′(1+ t0)n)

)
dx′
∥∥∥∥

∞
� C (1+ t)−(n+1)

is true for all t � t0.

Thus we see that the solution u(t,x) of the Cauchy problem (1.1) tends to the shock
wave W (t,y) as t → ∞ uniformly with respect to x ∈ R.

Proof. By virtue of equation (3.6) we have for the function g(t,x)=V(t,x)coshαx,
where α > 0 is sufficiently small

∂t
(
(1+ α2−2α2 tanh2 αx)g−gxx +2α tanhαx gx

)
=

(1+ t)n

2coshαx
(gx −αg tanhαx)2− χg−ψgx+gxx−R1 coshαx

(3.7)

where

χ = α2 −2α2 tanh2 αx−α(1+ t)nW (t,y) tanhαx, ψ = 2α tanhαx+(1+ t)nW (t,y).

Since 1+ α2 − 2α2 tanh2 αx > 0, we apply the maximum principle to equation (3.7)
by virtue of Lemma 1, let ζ (t) such that g̃(t) = g(t,ζ (t)) = supx∈R

g(t,x), then

(1+ α2−2α2 tanh2 αx)g̃t −gxxt

=
(1+ t)n

2coshαx
(α g̃ tanhαx)2− χ g̃+gxx(t,ζ (t))−R1 coshαx

As gxx(t,ζ (t))< 0, we apply Lemma 1 to g̃xx(t)= infx∈R gxx(t,x)< 0, we have g̃xx(t)=
gxx(t,ζ (t)) and g̃xxt (t) = gxxt(t,ζ (t)) in almost all t, therefore

(1+ α2−2α2 tanh2 αx)g̃t − g̃xxt � 1
2

α2(1+ t)ng̃2− χ g̃+ g̃xx−R1 coshαx.

Applying the estimate,

χ = α2 −2α2 tanh2 αx+ α(1+ t)n tanhαx tanh(y/2)

−α(1+ t)n tanhα
m

∑
k=1

(1+ t)−kWk(y)

= α2 −2α2 tanh2 αx+ α(1+ t)n tanhαx tanh(y/2)+O(1) � c

for all t � t0, if t0 > 0 is sufficiently large and α > 0 sufficiently small, we have

(1+ α2−2α2 tanh2 αx)g̃t − g̃xxt � 1
2

α2(1+ t)ng̃2− cg̃+ g̃xx −R1 coshαx.
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Therefore we have for I(t) = (1+ α2−2α2 tanh2 αx)g̃(t)− g̃xx(t) > 0,

d
dt

I � 1
2

(
α
m1

)2

(1+ t)nI2− c
M1

I +
(

1− c
M1

)
g̃xx −R1 coshαx

where M1 = max
(
1+ α2−2α2 tanh2 αx

)
> 0 and

m1 = min
(
1+ α2−2α2 tanh2 αx

)
> 0. We can suppose that c > 0 sufficiently small

such that
(
1− c

M1

)
> 0, then

d
dt

I � 1
2

(
α
m1

)2

(1+ t)nI2− c
M1

I−R1 coshαx.

We have |R1(t,y)coshαx| � C(1+ t)2n−m, then

d
dt

I � C(1+ t)nI2− rI +C(1+ t)2n−m.

Let I(t) = z(t)e−rt , then

zt � C(1+ t)nz2e−rt +C(1+ t)2n−mert (3.8)

Let us prove that
z(t) < Cert (1+ t)2n−m (3.9)

for all t � t0. By contradiction we suppose that there exists T > t0 is such that z(t) �
Cert (1+ t)2n−m for all t ∈ [t0,T ] . Thus from (3.8) we get zt � C(1+ t)2n−mert , hence
integration with respect to time yields

z(t) � C+
∫ t

t0
(1+ τ)2n−merτdτ <Cert (1+ t)2n−m

for all t ∈ [t0,T ] . The contradiction obtained proves estimate( 3.9) for all t � t0. Hence
I(t) < C (1+ t)2n−m and mg̃(t) < I(t) then g̃(t) < C (1+ t)2n−m for all t � t0. For the
value ĝ(t) = infx∈R g(t,x) similarly we obtain ĝ(t) > −C (1+ t)2n−m for all t � t0,
hence the result of the theorem is true. Theorem 3 is proved. �

4. Zero boundary conditions

We now consider the most difficult and intriguing case when the initial dado decay
at infinity. To facilitate the calculations we will analyze (1.1) when n = 1. So we
consider the Cauchy problem{

∂t(u−uxx)+ (1+ t)uux−uxx = 0, x ∈ R, t > 0,
u(0,x) = u0(x), x ∈ R,

with the initial data u0(x) → 0 as x →±∞. We know (see book [12]) that there exists
a unique solution u(t,x) ∈CCCCC([0,∞);LLLLL2)∩CCCCC∞((0,∞);LLLLL∞) if the u0 ∈ LLLLL2. If the datum
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u0(x) is an odd function, then the solution u(t,x) remains to be an odd function for all
t > 0 and it can be obtain as an odd prolongation of the following Dirichlet boundary-
value problem⎧⎪⎨⎪⎩

∂t(u−uxx)+ (1+ t)uux−uxx = 0, x ∈ (−∞,0), t > 0,

u(t,−∞) = 0, u(t,0) = 0, t > 0,

u(0,x) = u0(x), x ∈ (−∞,0).
(4.1)

Define ϕ(t,x) as a rarefaction wave constructed in Section 2{
∂t(ϕ −ϕxx)+ (1+ t)ϕϕx−ϕxx = 0, x ∈ R, t > 0,

ϕ(0,x) = ϕ0(x), x ∈ R,
(4.2)

where the initial data ϕ0(x) are monontonically increasing ϕ ′
0(x) > 0 for all x ∈ R and

ϕ0(x) → 0 as x →−∞. Now we define r(t,x) as a solutión to the Dirichlet boundary
value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t(r− rxx)+ tϕrrx + tϕxr(r−1)

− 1
ϕ

[ϕxxrt +2∂t(ϕxrx)+ ϕt rxx +2ϕxrx]− rxx = 0, x ∈ (−∞,0), t > 0,

r(t,−∞) = 1, r(t,0) = 0, t > 0,

r(0,x) = r0(x), x ∈ (−∞,0).

(4.3)

Then the function u = ϕr satisfy problem (4.1).
For example we suppose that the initial data ϕ0(x) decay infinity as
ϕ0(x) = − 1

x + O(e−|x|) as x → −∞. We use the method of characteristics of solve
equation (4.2). We define characteristics χ(t,ξ ) as the solutions to the Cauchy problem{

χt = (1+ t)ϕ(t,χ)− ϕtχχ
ϕχ

− ϕχχ
ϕχ

, t > 0, ξ ∈ R,

χ(0,ξ ) = ξ , ξ ∈ R.

Then from equation (4.2) we get a simple equation

wt(t,ξ ) = ϕt + ϕχ χt = ϕt + ϕχ

(
(1+ t)ϕ − ϕtχχ

ϕχ
− ϕχχ

ϕχ

)
= ∂t(ϕ + ϕχχ)+ (1+ t)ϕϕχ −ϕχχ = 0

for the new dependent variable w(t,ξ ) = ϕ(t,χ(t,ξ )). Hence w(t,ξ ) = ϕ0(ξ ) for all
t > 0, ξ ∈ R . By a straightforward calculation we have

∂χ ϕ =
ϕ ′

0(ξ )
χξ (t,ξ )

, ∂ 2
χ ϕ =

ϕ ′′
0 (ξ )

χ2
ξ (t,ξ )

− ϕ ′
0(ξ )χξ ξ (t,ξ )

χ3
ξ (t,ξ )

=
1

χξ (t,ξ )
∂ξ

(
ϕ ′

0(ξ )
χξ (t,ξ )

)

∂ 3
χ ϕ(t,χ(t,ξ )) =

ϕ ′′′
0 (ξ )

χ3
ξ (t,ξ )

− 3ϕ ′′
0 (ξ )χξ ξ (t,ξ )

χ3
ξ (t,ξ )

− ϕ ′
0(ξ )χξ ξ ξ (t,ξ )

χ3
ξ (t,ξ )

+
3ϕ ′

0(ξ )χ2
ξ ξ (t,ξ )

χ4
ξ (t,ξ )
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whence

χt = (1+ t)ϕ0(ξ )− χξ (t,ξ )
ϕ ′

0(ξ )
∂t

[
1

χξ (t,ξ )
∂ξ

(
ϕ ′

0(ξ )
χξ (t,ξ )

)]
− 1

ϕ ′
0(ξ )

∂ξ

(
ϕ ′

0(ξ )
χξ (t,ξ )

)
.

Integration with respect to time t > 0, yields

χ(t,ξ ) = ξ +
1
2
(1+ t)2ϕ0(ξ )− 1

ϕ ′
0(ξ )

∂ξ

∫ t

0
ϕχ(t ′,χ(t ′,ξ ))dt ′

− 1
ϕ ′

0(ξ )

∫ t

0
χξ (t ′,ξ )

∂
∂ t ′

[
1

χξ (t ′,ξ )
∂ξ ϕχ(t ′,χ(t ′,ξ ))

]
dt ′.

Define the curve ξ0(t) such that χ(t,ξ0(t)) = 0. We easily see that ξ0(t) → −∞ as
t → ∞. In the firs approximation we write χ(t,ξ ) = ξ − 1

2ξ (1+ t)2 +O(ξ−1(1+ t)3),

hence ξ 2
0 = 1

2 (1+ t)2 +O((1+ t)3). Therefore the asymptotic expansions

ξ0(t) = − 1√
2
(1+ t)+O((1+ t)2), ϕχ(t,0) = (1+ t)−2 +O((1+ t)−3),

ϕχχ(t,0) =
1√
2
(1+ t)−3 +O((1+ t)−4), ϕχχχ(t,0) = −3(1+ t)−4 +O((1+ t)−5).

are valid for t → ∞. Then by virtue of the Taylor formula
ϕ(t,x) = ϕ(t,0)+ xϕx(t,0)+ 1

2x2ϕxx(t,0)+ 1
6x3ϕxxx(t, x̃), we have

ϕ(t,x) =
√

2(1+ t)−1 + x(1+ t)−2 +
1

2
√

2
x2(1+ t)−3 +O(x3(1+ t)−4)

for t → ∞. and similarly for ϕx(t,x), ϕt(t,x), ϕxx(t,x), ϕtx(t,x). Continuing this pro-
cedure we obtain the asymptotic expansions

(1+ t)ϕ(t,x) =
m

∑
k=0

ak(x)(1+ t)−k +O(xm+1(1+ t)−(m+1))

for t → ∞, and similarly for (1+ t)2ϕx(t,x), (1+ t) 2ϕx(t,x)
ϕ(t,x) ,(1+ t)2 ϕxx(t,x)

ϕ(t,x) ,

(1+ t)ϕt(t,x)
ϕ(t,x) , (1+ t)2 ϕtx(t,x)

ϕ(t,x) , where ak(x) is polynomial with respect to x of order less
that k.

Now as in Section 3 we construct an approximate solution Φ(t,x) to problem

(4.3) in the form Φ(t,x) =
m

∑
k=0

φk(x)(1+ t)−k. where the functions φk(x), 0 � k � m,

are defined recurrently via equations (which are obtain by comparing terms containing
(1+ t)−k )

φ ′′
0 −a0φ0φ ′

0 = 0, φ ′′
k −a0 (φkφ0)

′ = zk, k � 1, (4.4)

where

zk(t,x) =
k−1

∑
j=0

j

∑
l=0

(
ak− jφ ′

j−lφl +bk−1− jφ j−lφl
)
+

k−1

∑
l=1

a0φ ′
k−lφl
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−
k−1

∑
j=0

(
bk−1− jφ j + ek−1− jφ ′′

j + ck−1− jφ ′
j

)
−

k−2

∑
j=0

(
fk−2− jφ ′

j − jck−2− jφ ′
j

)
+

k−3

∑
j=0

jdk−3− jφ j

−(k−1)φk−1 +(k−1)φ ′′
k−1

for k � 1, where bk(x), ck(x), dk(x), ek(x) and fk(x) are polynomials with respect
to x of order less that k. By the boundary conditions we have φ0(x) → 1, φk(y) → 0,
k � 1 for y → −∞ and φk(0) = 0, k � 0. Integrating equation (4.4) with a0 = 0, we
get φ0(x) = − tanh

(
x
2

)
and

φk(x) =
1

cosh2 ( 1
2x
) x∫

0

cosh2
(

1
2

η
) η∫
−∞

zk(η ′)dη ′dη , for k � 1.

We have the estimates φk(x) �C |x|2k e−|x|, k � 1. For the difference w(t,x) = r(t,x)−
Φ(t,x) we obtain

wt −wtxx −wxx +(1+ t)(ϕΦw)x + 1
2 (1+ t)

(
ϕw2

)
x + 1

2 (1+ t)ϕxw2

+(1+ t)ϕx(Φ−1)w− 2ϕx

ϕ
wx − ϕxx

ϕ
wt − 2ϕtx

ϕ
wx − 2ϕx

ϕ
wtx − ϕt

ϕ
wxx +R = 0

(4.5)

where the remainder term

R = Φt −Φtxx −Φxx +(1+ t)ϕΦΦx +(1+ t)ϕxΦ(Φ−1)

−ϕxx

ϕ
Φt − 2ϕtx

ϕ
Φx − 2ϕx

ϕ
Φtx − ϕt

ϕ
Φxx − 2ϕx

ϕ
Φx.

Denoting W (t,x) =
∫ x
−∞ w(t,x′)dx′ and integrating equation (4.5) from −∞ to x, we

then find (
1− ϕxx

ϕ
+
(

2ϕx

ϕ

)
x

)
Wt − 2ϕx

ϕ
Wtx −Wtxx −

(
1+

ϕt

ϕ

)
Wxx

+
(

(1+ t)ϕΦ− 2ϕx

ϕ
− 2ϕtx

ϕ
+
(

ϕt

ϕ

)
x

)
Wx

+
(

(1+ t)ϕx(Φ−1)+
(

2ϕx

ϕ

)
x
+
(

2ϕtx

ϕ

)
x
−
(

ϕt

ϕ

)
xx

)
W

+ 1
2(1+ t)ϕw2 + 1

2(1+ t)∂−1
x

(
ϕxw2

)− (1+ t)∂−1
x ((ϕx(Φ−1))xW )

−∂−1
x

(((
2ϕx

ϕ

)
x
+
(

2ϕtx

ϕ

)
x
−
(

ϕt

ϕ

)
xx

)
x

W

)
+∂−1

x

(
∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
Wt

)
+R1 = 0

(4.6)

with the Neumann boundary condition Wx(t,0)= w(t,0)= 0, where R1=
∫ x
−∞R(t,x′)dx′.

Via (4.4), the estimates φ0(x), φk(x), k � 1 and its derivaties we have
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R1(t,x) = O((1+ t)−(m+1)|x|3me−|x|) as x →−∞.

We suppose that the initial data r(t0,x) are sufficiently close to Φ(t,x) so that the func-
tion W (t0,x)coshαx ∈ LLLLL∞((−∞,0)) for some α > 0 sufficiently small and the initial
time t = t0 is sufficiently large. The last requirement can be replaced by a sufficiently
large coefficient at the nonlinear term in equation (1.1) so that nonlinear effects domi-
nate the linear ones form the beginning.

We prove the following result.

THEOREM 4. Let the initial time t0 > 0 be sufficiently large, and the initial data
u0(x) ∈ LLLLL∞ be an odd function and close to the shock wave Φ(t0,x), that is

cosh(αx)
∫ x

−∞

(
u0(x′)
ϕ0(x′)

−Φ(t0,x′)
)

dx′ ∈ LLLLL∞

where α > 0 is sufficiently small and ϕ0(x) is such that ϕ ′
0(x) > 0 for all x ∈ (−∞,0)

and ϕ0(x) = − 1
x +O(e−|x|) as x →−∞. The a unique solution to the Cauchy problem

(1.1) has the asymtotic representation

u(t,x) = ϕ0(t,−|x|)Φ(t,−|x|)sign(x)+O(1)

for t → ∞ uniformly with respect to x ∈ R.

Since the solution u(t,x) is represented as u(t,x) = r(t,x)ϕ(t,x), then the result of
Theorem 4 follows from the next Lemma.

LEMMA 2. Let the initial time t0 > 0 be sufficiently large and the initial data
r(t0,x) ∈ LLLLL∞ be close to the shock wave Φ(t0,x), that is

cosh(αx)
∫ x

−∞

(
r(t0,x′)−Φ(t0,x′)

)
dx′ ∈ LLLLL∞.

where α > 0 is sufficiently small. Then there exists a unique r(t,x) to the Cauchy
problem (4.3) such that cosh

(α
2 x
)∫ x

−∞ (r(t,x′)−Φ(t,x′))dx′ ∈ CCCCC([t0,∞);LLLLL∞) and the
estimate ∥∥∥∥cosh

(α
2

x
)∫ x

−∞

(
r(t,x′)−Φ(t,x′)

)
dx′
∥∥∥∥

∞
� C (1+ t)−(m+1)

is true for all t � t0.

Thus we see that the solution r(t,x) to the Cauchy problem (4.3) tends to the shock
wave Φ(t,x) as t → ∞ uniformly with respect to x ∈ (−∞,0).

Proof. Denote g(t,x) = W (t,x)coshαx, h(t,x) = w(t,x)coshαx,
s(t,x) = w(t,x)cosh α

2 x y v(t,x) = W (t,x)cosh α
2 x, where α > 0 is sufficiently small.

We prove the following estimates

‖h(t,x)‖∞ < Cert , ‖g(t,x)‖∞ < Cept , (4.7)



122 J. J. PÉREZ

‖s(t,x)‖∞ < C(1+ t)−(m+1) y ‖v(t,x)‖∞ < C(1+ t)−(m+1),

for all t � t0 , where t0 is sufficiently large. By contradiction we suppose that there
exists T > t0 such that

‖h(t,x)‖∞ � Cert , ‖g(t,x)‖∞ � Cept , (4.8)

‖s(t,x)‖∞ � C(1+ t)−(m+1) y ‖v(t,x)‖∞ � C(1+ t)−(m+1),

for all t ∈ [t0,T ] . We follow the method of the proof of Theorem 3. By (4.5) we find
for h(t,x) = w(t,x)coshαx

∂t

[(
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h−hxx

+
(

2α tanhαx− 2ϕx

ϕ

)
hx

]
= −χ1h−ψ1hx +

(
1+

ϕt

ϕ

)
hxx − 1

coshαx (1+ t)ϕhhx−Rcoshαx

(4.9)

with boundary condition h(t,0) = 0, where

χ1 =
(

1+
ϕt

ϕ

)(
α2 −2α2 tanh2 αx+

2ϕx

ϕ
α tanhαx

)
+(1+ t)(ϕΦ)x

+(1+ t)ϕx(Φ−1)− (1+ t)ϕΦα tanhαx+(1+ t)ϕx
s

coshx

−(1+ t)ϕ
s

coshx
α tanhαx+

(
ϕxx

ϕ

)
t

ψ1 =
(

1+
ϕt

ϕ

)(
2α tanhαx− 2ϕx

ϕ

)
+(1+ t)ϕΦ.

Since 1 + α2 − 2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx > 0 we can apply the maximum

principle to equation (4.9) by virtue of Lemma 1. Let ζ (t) such that
h̃(t) = h(t,ζ (t)) = supx∈R h(t,x), then

∂t

((
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h̃−hxx(t,ζ (t))

)
= −χ1h̃+

(
1+

ϕt

ϕ

)
hxx(t,ζ (t))−Rcoshαx.

As hxx(t,ζ (t)) < 0, we apply Lemma 1 to h̃xx(t) = infx∈R hxx(t,x) < 0. We have
h̃xx(t) = hxx(t,ζ (t)) and h̃xxt (t) = hxxt(t,ζ (t)) in almost all t > 0. Therefore

∂t

((
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h̃− h̃xx

)
� −χ1h̃+

(
1+

ϕt

ϕ

)
h̃xx −Rcoshαx.
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applying the estimates 0 < 1+
ϕt

ϕ
< 1 and χ1 � c1, we have

(
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h̃t − h̃xxt = −c1h̃+ h̃xx −Rcoshαx

and |Rcoshαx| � C(1+ t)−(m+1) then

∂t

((
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h̃− h̃xx

)
� −c1h̃+ h̃xx +C(1+ t)−(m+1).

For J(t) =
(

1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
h̃(t)− h̃xx(t) > 0, we have

Jt � − c1

M2
J +

(
1− c1

M2

)
h̃xx +C(1+ t)−(m+1)

where M2 = max

(
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
> 0.

We can suppose c1 > 0 sufficiently small such that
(
1− c1

M2

)
> 0, then Jt � − c1

M2
J +

C(1+ t)−(m+1) � −rI +C(1+ t)−(m+1). Let J(t) = z(t)e−rt , then

zt � C(1+ t)−(m+1)ert . (4.10)

Let us prove that
z(t) < Cert (1+ t)−(m+1) (4.11)

for all t � t0. By contradiction we suppose that there exists T > t0 is such that z(t)�
Cert (1+t)−(m+1) for all t ∈ [t0,T ] . Thus from (4.10) we get zt �C (1+t)−(m+1) ert ,

hence integration with respect to time yields z(t) <Cert (1+ t)−(m+1) for all t ∈ [t0,T ] .
The contradiction obtained proves estimate (4.11) for all t � t0. Hence

z(t) < C (1+ t)−(m+1)

and since
m2h̃(t) < z(t)

where m2 = min

(
1+ α2−2α2 tanh2 αx− ϕxx

ϕ
+

2ϕx

ϕ
α tanhαx

)
> 0, then

h̃(t) <C (1+ t)−(m+1)

for all t � t0 .
For the value ĥ(t)= infx∈R h(t,x) similarly we obtain

ĥ(t)>−C (1+t)−(m+1)
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for all t � t0, hence we have

‖h‖∞ � C (1+ t)−(m+1) .

Let us consider now the estimates for the function s(t,x) = w(t,x)cosh α
2 x. From equa-

tion (4.5) we have ‖s‖∞ � C (1+ t)−(m+1) . Now for g(t,x) = W (t,x)coshαx we have
from equation (4.6)

∂t

[(
1+ α2−2α2 tanh2 αx−

(
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

)
+

2ϕx

ϕ
α tanhαx

)
g

+coshαx∂−1
x

(
∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
g

coshαx

)
+
(

2α tanhαx− 2ϕx

ϕ

)
gx−gxx

]
= −1

2
(1+ t)coshαxϕw2 − 1

2
(1+ t)coshαx∂−1

x

(
ϕxw2

)− χ2g−ψ2gx

+
(

1+
ϕt

ϕ

)
gxx +F −R1 coshαx

(4.12)
where

χ2 =
(

1+
ϕt

ϕ

)(
α2−2α2 tanh2 αx

)
+(1+ t)ϕx(Φ−1)− (1+ t)ϕΦα tanhαx(

2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
α tanhαx+ ∂x

[
2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

]
+∂t

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
−
(

2ϕx

ϕ

)
t
α tanhαx

ψ2 = (1+ t)ϕΦ−
(

2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
+
(

1+
ϕt

ϕ

)
2α tanhαx+

(
2ϕx

ϕ

)
t

F = (1+ t)coshαx∂−1
x

(
(ϕx(Φ−1))x

g
coshαx

)
+coshαx∂−1

x

((
2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
xx

g
coshαx

)
+coshαx∂−1

x

(
∂ 2
tx

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
g

coshαx

)
.

We notice that

coshαx∂−1
x

(
∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
g

coshαx

)
� ∂−1

x

(
∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
g

)
� sup

x∈R

|g(t,x)|∂−1
x

(∣∣∣∣∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]∣∣∣∣)
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Since

λ (t,x) = 1+ α2−2α2 tanh2 αx−
(

ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

)
+

2ϕx

ϕ
α tanhαx+ ∂−1

x

(∣∣∣∣∂x

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]∣∣∣∣)> 0

we can apply the maximum principle to equation (4.12) by virtue of Lemma 1, let ζ (t)
such that g̃(t) = g(t,ζ (t)) = supx∈R |g(t,x)| ,

∂t ([λ (t,ζ (t))g̃−gxx(t,ζ (t))])

� −χ2g̃+
(

1+
ϕt

ϕ

)
gxx(t,ζ (t))+ sup

x∈R

∣∣ 1
2 (1+ t)coshαxϕw2

∣∣
+sup

x∈R

∣∣ 1
2 (1+ t)coshαx∂−1

x

(
ϕxw2

)∣∣+ supx∈R |F(t,x)|−R1 coshαx.

As gxx(t,ζ (t)) < 0, we apply lemma 1 to g̃xx(t) = infx∈R gxx(t,x) < 0 we have g̃xx(t) =
gxx(t,ζ (t)) and g̃xxt(t) = gxxt(t,ζ (t)) in almost all t > 0. We also have the estimates

0 < 1+
ϕt

ϕ
< 1 and χ2 � c2, then

∂t ([λ (t,ζ (t))g̃− g̃xx])

� −c2g̃+ g̃xx + sup
x∈R

∣∣ 1
2 (1+ t)coshαxϕw2

∣∣
+sup

x∈R

∣∣ 1
2 (1+ t)coshαx∂−1

x

(
ϕxw2

)∣∣+ supx∈R |F(t,x)|−R1 coshαx.

Now calculate an estimate for F(t,x), by virtue of Young inequality we have the esti-
mates ∣∣∣(1+ t)coshαx∂−1

x

(
(ϕx(Φ−1))x

g
coshαx

)∣∣∣
� C(1+ t)‖ϕxx‖∞ ‖Φ−1‖1 g̃+Ct ‖ϕx‖∞ ‖Φx‖1 g̃,∣∣∣∣coshαx∂−1

x

((
2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
xx

g
coshαx

)∣∣∣∣
� C

∥∥∥∥(2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
xx

∥∥∥∥
1

g̃

and ∣∣∣∣coshαx∂−1
x

(
∂ 2
tx

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]
g

coshαx

)∣∣∣∣� C

∥∥∥∥∂ 2
tx

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]∥∥∥∥
1

g̃

therefore

|F(t,x)| � C(1+ t)‖ϕxx‖∞ ‖Φ−1‖1 g̃+C(1+ t)‖ϕx‖∞ ‖Φx‖1 g̃

+C

∥∥∥∥(2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
xx

∥∥∥∥
1

g̃+C

∥∥∥∥∂ 2
tx

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]∥∥∥∥
1
g̃.
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By the estimates ‖ϕ‖∞ �C, ‖ϕx‖∞ �C(1+t)−2, ‖ϕxx‖∞ �C(1+t)−2, ‖Φ−1‖1 �C,

‖Φx‖1 � C,

∥∥∥∥(2ϕx

ϕ
+

2ϕtx

ϕ
−
(

ϕt

ϕ

)
x

)
xx

∥∥∥∥
1

� C,

∥∥∥∥∂ 2
tx

[
ϕxx

ϕ
−
(

2ϕx

ϕ

)
x

]∥∥∥∥
1

� C, we

have

|F(t,x)| � Cg̃.

Now ∣∣∣∣12(1+ t)coshαx∂−1
x

(
ϕxw

2)∣∣∣∣ =

∣∣∣∣∣(1+ t)coshαx∂−1
x

(
ϕx

s2

2cosh2 α
2 x

)∣∣∣∣∣
� C(1+ t)‖ϕx‖∞ ‖s‖1 ‖s‖∞

since s(t,x) =
cosh α

2 x

coshαx
h(t,x), we have ‖s‖1 =

∥∥∥∥cosh α
2 x

coshαx

∥∥∥∥
1
‖h‖∞ � C‖h‖∞ , then

∣∣∣∣12(1+ t)coshαx∂−1
x

(
ϕxw

2)∣∣∣∣� C(1+ t)−1‖h‖∞ ‖s‖∞ � C(1+ t)−(2m+3).

We have
∣∣ 1
2 (1+ t)coshαxϕw2

∣∣= ∣∣∣∣ (1+ t)ϕsh
2cosh α

2 x

∣∣∣∣� (1+ t) |ϕsh| � C(1+ t)−(2m+1) and

|R1 coshαx| � C(1+ t)−(m+1) . With all these estimates we get

∂t ([λ (t,ζ (t))g̃− g̃xx])

� −c2g̃+ g̃xx +C(1+ t)−(2m+1)+C(1+ t)−(2m+3) +Cg̃+C(1+ t)−(m+1)

� −c2g̃+ g̃xx +C(1+ t)−(m+1).

For K = λ g̃− g̃xx > 0, we have

Kt � − c2

M3
K +

(
1− c2

M3

)
gxx +

C
m3

K +C(1+ t)−(m+1)

where M3 = maxλ (t,ζ (t)) > 0 and m3 = minλ (t,ζ (t)) > 0. We can suppose c2 > 0

sufficiently small such that
(
1− c2

M3

)
> 0, then

Kt � − c2

M3
K +

C
m3

K +C(1+ t)−(m+1) � −rK +CK +C(1+ t)−(m+1).

Let K(t)= z(t)e−rt , then zt �Cz+Cert(1+t)−(m+1), we have z(t)<Cert (1+ t)−(m+1)

for all t � t0 and since mg̃(t) < z(t), then g̃(t) <C (1+ t)−(m+1) for all t � t0. For the
value ĝ(t) = infx∈R g(t,x) similarly we obtain hĝ(t) > −C (1+ t)−(m+1) for all t � t0,
hence the result of the lemma is true. Lemma 2 is proved. �
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