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ALMOST PERIODIC HOMOGENIZATION

OF THE KLEIN–GORDON TYPE EQUATION

LAZARUS SIGNING

(Communicated by D. Hilhorst)

Abstract. In this paper, the homogenization problem for the Klein-Gordon type equation is stud-
ied in the almost periodic setting. The propagation speed and the potential are spatial and time
dependent almost periodically varying functions. One convergence theorem is proved and we
derive the macroscopic homogenized model verified by the mean wave function.

1. Introduction

We consider a non empty smooth bounded open subset Ω of R
N
x (the N -numerical

space RN of variables x = (x1, . . . ,xN) , where N is a given positive integer), and the
real numbers T and ε with T > 0 and 0 < ε < 1. Let f ∈H1

0 (Ω)⊗W1,∞ (RN
y ;R

)
and

g ∈ L∞ (RN
y ;R

)
, W 1,∞ (RN

y ;R
)

being the Sobolev space of functions in L∞ (RN
y ;R

)
with their derivatives of order 1 (H1

0 (Ω)⊗W 1,∞ (RN
y ;R

)
is the space of functions Φ of

Ω×R
N into R of the form Φ = ∑ f inite ϕiψi with ϕi ∈H1

0 (Ω) and ψi ∈W 1,∞ (
R

N
y ;R

)
).

Let us put

f ε (x) = f
(
x,

x
ε

)
and gε (x) = g

( x
ε

)
for x ∈ Ω.

The functions f ε and gε above-mentioned belong to H1
0 (Ω) and L∞ (Ω) respectively.

Next, we consider the Cauchy-Dirichlet boundary value problem

∂ 2uε
∂ t2

−div(cε ∇uε)+wεuε = 0 in Ω×]0,T [, (1.1)

uε = 0 on ∂Ω×]0,T [, (1.2)

uε (0) = ε f ε in Ω, (1.3)

∂uε
∂ t

(0) = gε in Ω, (1.4)

where the square of the propagation speed of the light in the vacuum c and the potential
w verify

c and w ∈ B1 (
Rτ ;L∞ (

R
N
y

))
(1.5)
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and,
c(y,τ) � α for all τ ∈ R (1.6)

and for almost all y ∈ RN , and where cε (x,t) = c
(

x
ε , t

ε
)
, wε (x,t) = w

(
x
ε , t

ε
)

((x,t) ∈
Ω× ]0,T [), Rτ being the numerical space R of variables τ (B1

(
Rτ ;L∞ (RN

y

))
is the

space of continuously differentiable functions of R into L∞ (RN
y

)
which are bounded

with their derivatives). Now, for t ∈ [0,T ] let aε (t; ., .) be the sesquilinear form on
H1 (Ω)×H1 (Ω) defined by

aε (t;u,v) =
∫

Ω
cε ∇u·∇vdx+

∫
Ω

wεuvdx
(
u,v ∈ H1 (Ω)

)
.

In view of (1.5)-(1.6), we see that for all 0 < ε < 1,

cε , wε ∈ C 1 ([0,T ] ;L∞ (Ω))

and
aε (t;v,v)+‖w‖∞ ‖v‖2

L2(Ω) � α ‖v‖2
H1

0 (Ω)

(
v ∈ H1

0 (Ω)
)
,

α being the constant in (1.6). Thus, the hypotheses of [10, Theorem 1.1, p. 294]
are fulfilled. Therefore the initial boundary value problem (1.1)-(1.4) admits a unique
solution uε in C

(
[0,T ] ;H1

0 (Ω)
)∩C 1

(
[0,T ] ,L2 (Ω)

)
. The aim here is to investigate

the limiting behaviour of uε solution of (1.1)-(1.4) when ε goes to zero, under the
hypothesis that the coefficient c and the potential w vary almost periodically in time
and space.

The homogenization problem for the linear Klein-Gordon type equation has been
discussed in the book of Bensoussan, Lions and Papanicolaou [1] for the periodic set-
ting using the asymptotic expansions. Later in 1992, Brahim-Otsmane, Francfort and
Murat in [5] investigated the non-periodic case via the Γ-convergence techniques. For
further results on this topic, one can refer to the book of Cioranescu and Donato [6].
This paper deals with the homogenization of an evolution hyperbolic problem with
time-dependent coefficients via the sigma-convergence.

The model (1.1)-(1.4) under investigation in this paper is connected with the rel-
ativistic version of the Schrödinger type equation describing the motion of spinless
particles.

Unless otherwise specified, vector spaces throughout are considered over the com-
plex field, C , and scalar functions are assumed to take complex values. Let us re-
call some basic notations. If X and F denote a locally compact space and a Banach
space respectively, then we write C (X ;F) for continuous mappings of X into F , and
B (X ;F) for those mappings in C (X ;F) that are bounded. We shall assume B (X ;F)
to be equipped with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖ (‖·‖ denotes the norm
in F ). For shortness we will write C (X) = C (X ;C) and B (X) = B (X ;C) . Likewise
in the case when F = C , the usual spaces Lp (X ;F) and Lp

loc (X ;F) (X provided with a
positive Radon measure) will be denoted by Lp (X) and Lp

loc (X) , respectively. Finally,
the numerical space RN and its open sets are each provided with Lebesgue measure
denoted by dx = dx1 . . .dxN .
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The rest of the paper is organized as follows. Section 2 is devoted to some prelimi-
nary results on the sigma-convergence of almost periodic structures, whereas in Section
3 one convergence theorem is established for (1.1)-(1.4).

2. Preliminaries

2.1. Almost periodic functions

2.1.1. Bohr almost periodic functions

DEFINITION 2.1. Let u ∈ B (Rm)(m being a positive integer) and let ε > 0 be a
real number. The vector s = (s1, . . . ,sm) ∈ Rm is said to be an ε -period of u if

sup
x∈Rm

|u(x+ s)−u(x)| � ε .

We denote by E (u,ε) the set of all ε -periods of u .

DEFINITION 2.2. A function u ∈ B (Rm) is said to be almost periodic in the
sense of Bohr if for all ε > 0, there exists some l = l (ε) = (l1, . . . , lm) ∈ Rm with
l j > 0 (1 � j � m) such that for every a = (a1, . . . ,am) ∈ Rm

([a1,a1 + l1[× [a2,a2 + l2[×· · ·× [am,am + lm[)∩E (u,ε) �= ∅.

EXAMPLE 1. For any k = (k1, . . . ,km) ∈ Rm we set

γk (y) = e2iπk·y (y ∈ R
m) .

The function γk is almost periodic in the sense of Bohr. Indeed, for all y = (y1, . . . ,ym)
and s = (s1, . . . ,sm) ∈ Rm we have

|γk (y+ s)− γk (y)| = |γk (s)−1| .

Further, for ε > 0 we put l j = 2
|k j| if k j �= 0 and l j = ε if k j = 0 (1 � j � m). For any

a = (a1, . . . ,am) ∈ Rm there exists (n1, . . . ,nm) ∈ Zm such that∣∣k j
∣∣a j � n j <

∣∣k j
∣∣a j +2 (1 � j � m) .

On the other hand, let s = (s1, . . . ,sm) with s j = n j

|k j| if k j �= 0 and s j = a j if k j = 0.

We have
sup
y∈Rm

|γk (y+ s)− γk (y)| = |γk (s)−1|= 0 < ε .

Thus, s ∈ ([a1,a1 + l1[× [a2,a2 + l2[×· · ·× [am,am + lm[)∩E (u,ε) .

PROPOSITION 2.1. A function u∈B (Rm) is almost periodic in the sense of Bohr
if and only if the translations τau (a ∈ Rm) form a relative compact set in B (Rm)
(τau(y) = u(y+a) for all a and y ∈ R

m ).
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The proof of the preceding proposition can be found in the book of Besicovitch
[2] and Guichardet [8] for m = 1. The general case m � 1 is just a simple adaptation
of the particular one m = 1.

We denote by AP(Rm) the espace of Bohr’s almost periodic functions on R
m

which is a C∗ -algebra with identity, the involution being the complex conjugation.
As usual, we denote by R̂m the dual group of the additif group Rm , that is, the

group of all continuous homomorphismsof Rm into the unit circle U={ξ ∈ C : |ξ |=1} .
Endowed with the topology of compact convergence on Rm , R̂m is a locally compact
abelian group. The elements of R̂

m are the so-called continuous characters of R
m . Let

us remark that
R̂

m = {γk : k ∈ R
m}

where the functions γk are defined in Example 1. Moreover, the γk belong to AP(Rm) ,
thus R̂m ⊂ AP(Rm) .

Let T (Rm) be the algebra of all trigonometric polynomial on Rm . T (Rm) con-
sists of all functions u of the form

u(y) = ∑
k∈R

ckγk (y) (y ∈ R
m) ,

where R is a finite subset (depending on u ) of Rm and ck ∈ C for all k ∈ R . Moreover,
in virtue of the Bohr approximation theorem T (Rm) is dense in AP(Rm) .

Let us state now the notion of the mean value on AP(Rm) .

PROPOSITION 2.2. For any u∈AP(Rm) , the closed convex hull of {τau : a ∈ Rm}
in B (Rm) contains one and only one constant function whose value we denote by
M (u) . Further, the mapping u→M (u) of AP(Rm) into C verifies the following prop-
erties:

i) M is a positive linear form;
ii) M is continuous;
iii) M (1) = 1 ;
iv) M is translation invariant, i.e., M (τau) = M (u) for all u ∈ AP(Rm) and all

a ∈ Rm .

The proof of this proposition can be found in [8, Proposition 5.5].

REMARK 2.1. Let ω = (0, . . . ,0) (the neutral element of R
m ). We have

M (γk) = 0,

for any k ∈ Rm\{ω} (γk is defined in Example 1). Indeed, by Proposition 2.2, for any
η > 0 there exists some α j > 0 (1 � j � n) with ∑n

j=1 α j = 1, and some a j ∈ R
m

(1 � j � n) such that ∣∣∣∣∣M (γk)−
n

∑
j=1

α jγk (y+a j)

∣∣∣∣∣< η , (2.1)
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for all y ∈ Rm . Since k = (k1, . . . ,km) �= ω , there exists some j0 ∈ {1, . . . ,m} such that
k j0 �= 0. Further, for any t ∈ R we choose in (2.1) a particular y = (y1, . . . ,ym) with
y j0 = t and y j = 0 for j �= j0 . This leads to∣∣∣∣∣M (γk)− e2iπk j0t

n

∑
l=1

αlγk (al)

∣∣∣∣∣< η ,

for all t ∈ R . The preceding inequality implies that∣∣∣∣∣M (γk)− 1
r

∫ r

0
e2iπk j0 t dt

(
n

∑
l=1

αlγk (al)

)∣∣∣∣∣< η ,

for all r > 0. Taking the limit as r → +∞ in the preceding inequality, we obtain

|M (γk)| � η ,

for all η > 0. Thus M (γk) = 0.

Now, let u ∈ AP(Rm) and ε > 0. We define uε ∈ B (Rm) by

uε (x) = u
( x

ε

)
(x ∈ R

m) ,

and we have the following proposition:

PROPOSITION 2.3. For any u ∈ AP(Rm) , uε converges to M (u) in L∞ (Rm
x )-

weak ∗ as ε → 0 .

Proof. Let ϕ ∈ L1 (Rm
x ) . We have to check that as ε → 0∫

Rm
uε ϕdx → M (u)

∫
Rm

ϕdx. (2.2)

To this end, thanks to the density of T (Rm) in AP(Rm) , it is enough to show (2.2) for
u = γk (Example 1), k being arbitrary in R

m . But,∫
Rm

γε
k ϕdx = Fϕ

(−k
ε

)
,

where F denotes the Fourier transformation on Rm . Hence, the result follows by
Remark 2.1 and the Riemann-Lebesgue lemma.

2.1.2. Stepanoff almost periodic functions

Let p ∈ R with p � 1, and let Y =
[− 1

2 , 1
2

]m
with m ∈ N∗ . We define (Lp, l∞) =

(Lp, l∞) (Rm) to be the space of all u ∈ Lp
loc (Rm) such that

‖u‖p,∞ = sup
k∈Zm

[∫
k+Y

|u(y)|p dy

] 1
p

< +∞.
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This is a vector subspace of Lp
loc (Rm) , and ‖.‖p,∞ is a norm on (Lp, l∞) . Further,

(Lp, l∞) equipped with this norm is a Banach space (see [7]). One can easily verify that
a function u ∈ Lp

loc (Rm) lies in (Lp, l∞) if and only if the translations τau (a ∈ Rm)
form a bounded set in Lp

loc (Rm) . Further, if BN denotes the open unit ball of Rm , we
put

Np,∞ (u) = sup
a∈Rm

[∫
BN

|u(y+a)|p dy

] 1
p

, (u ∈ (Lp, l∞)) .

This is a norm on (Lp, l∞) , and Np,∞ is equivalent to ‖.‖p,∞ .

DEFINITION 2.3. A function u∈Lp
loc(R

m) is said to be almost periodic in Stepanoff
sense if u belongs to (Lp, l∞) and if the translations τau (a ∈ R

m) form a relatively
compact set in (Lp, l∞) .

We denote by Lp
AP = Lp

AP (Rm) the set of all almost periodic functions in the sense
of Stepanoff which is a closed vector subspace of (Lp, l∞) . We assume Lp

AP to be
equipped with the norm ‖.‖p,∞ which makes it a Banach space. Further, Lp

AP is the
closure in (Lp, l∞) of the set of trigonometric polynomials T (Rm) (see [7]). Therefore,
AP(Rm) is dense in Lp

AP and we have the following proposition.

PROPOSITION 2.4. The mean value M : AP(Rm) → C is extended to a unique
continuous linear mapping, still denoted by M , of Lp

AP into C . Moreover, M is positive
and translation invariant on Lp

AP .

PROPOSITION 2.5. Let Ω be a bounded open set in Rm . Let u ∈ Lp
AP (1 � p <

+∞). We put uε (x) = u
(

x
ε
)

for all x ∈ Ω and we have uε →M (u) in Lp (Ω)-weak as
ε → 0 .

Before stating the next proposition we require a notation.
For u ∈ Lp (Ω;AP(Rm)) with 1 � p < +∞ , we put

ũ(x) = M (u(x)) (x ∈ Ω) . (2.3)

This defines a function ũ ∈ Lp (Ω) , and in particular if u ∈ C
(
Ω;AP(Rm)

)
then ũ ∈

B (Ω) . Moreover, the mapping u→ ũ sends continuously and linearly Lp (Ω;AP(Rm))
into Lp (Ω) and C

(
Ω;AP(Rm)

)
into B (Ω) , since M is a continuous linear form on

AP(Rm) (see Proposition 2.2).

PROPOSITION 2.6. Let u ∈ C
(
Ω;AP(Rm)

)
. For ε > 0 , we put uε (x) = u

(
x, x

ε
)

for all x ∈ Ω . This defines a function uε ∈ B (Ω) , and as ε → 0 , we have uε → ũ in
L∞ (Ω)-weak ∗ .

PROPOSITION 2.7. Let 1 � p < +∞ and u ∈ Lp (Ω;AP(Rm)) . Then, as ε → 0 ,
we have uε → ũ in Lp (Ω)-weak.

The preceding three propositions have their proofs in [14] (see also [19, Subsection
3.1]).
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2.2. Almost periodic homogenization algebras

Let u ∈ AP(Rm) . We define Sp(u) = {k ∈ Rm : M (γku) �= 0} , where γk is given
by Example 1. Sp(u) is a countable subset of Rm (see [8, p. 92]), Sp(u) = /0 (empty
set) if and only if u is the null function on Rm . The set Sp(u) will be called the
spectrum of u .

Now, let R be a countable subgroup of Rm . We set

APR (Rm) = {u ∈ AP(Rm) : Sp(u) ⊂ R} ,

and we verify easily that: APR (Rm) is a closed subalgebra of B (Rm) which is sep-
arable with the supremum norm and contains the constants. Further, if u ∈ APR (Rm)
then u∈ APR (Rm) . Thus, APR (Rm) (with the supremum norm) is a commutative B∗ -
algebra with identity (the constant function 1 on Rm ), the involution being the usual
one of complex conjugation.

Throughout the rest of this study we shall always assume that APR(Rm) is equipped
with the supremum norm.

Now, let S be a subgroup of Rm . We define

S∗ = {k ∈ R
m : k · y ∈ Z for all y ∈ S} ,

where the dot denotes the Euclidian inner product in Rm . The set S∗ is a closed sub-
group of Rm . Further, if S is a réseau in Rm (i.e. a discrete subgroup of rank m),
so also is S∗ ([4, VII, p.7, prop.5]). Similarly, we may define (S∗)∗ and we have
(S∗)∗ = S (see [4, VII, p.7, prop.6]). Thus, if S is closed then (S∗)∗ = S . Let us denote
by PS (Rm) the set of functions u∈B (Rm) which are S -periodic, i.e., u(y+ k) = u(y)
for all y ∈ Rm and all k ∈ S , where S is a réseau in Rm . The space PS (Rm) is a com-
mutative B∗ -algebra with identity and we have PS (Rm) = APS∗ (Rm) (see, e.g., [14]
and [19] for more details).

DEFINITION 2.4. An almost periodic homogenization algebra on Rm is an alge-
bra A = APR (Rm) , where R is a countable nontrivial subgroup of Rm .

Now, let A be an almost periodic homogenization algebra on Rm . We denote by
Δ(A) the spectrum of A , i.e., the set of all non-zero linear forms s : A → C such that
s(uv) = s(u)s(v) for all u , v ∈ A . We shall always assume that Δ(A) is endowed with
the Gelfand topology. We recall that the Gelfand transformation on A is the mapping
G : A → C (Δ(A)) defined by G (u)(s) = s(u) for all u ∈ A and all s ∈ Δ(A) . For
any u ∈ A , G (u) is called the Gelfand transformation of u and is denoted û . We recall
also the commutative Gelfand-Naimark Theorem (see [9, p.277]) which states that the
Gelfand transformation on A is an isometric ∗ -isomorphism of A onto C (Δ(A)) . On
the other hand the Gelfand transformation on A satisfies the following basic properties
(see, e.g., [14], [17] and [19] for details):

(i) If u ∈ A is real valued then G (u) is real valued, and further if u � 0 then
G (u) � 0.

(ii) Let p > 0 and u ∈ A . Then |u|p ∈ A and G (|u|p) = |G (u)|p .
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(iii) If f ∈ C (Δ(A)) is real valued then G −1 ( f ) is real valued, and further if
f � 0 then G −1 ( f ) � 0 (G −1 : C (Δ(A)) → A is the inverse isomorphism of G ).

We have the following proposition.

PROPOSITION 2.8. There exists a unique Radon measure β on Δ(A) such that

M (u) =
∫

Δ(A)
G (u)(s)dβ (s) (u ∈ A) .

Moreover, β is positive and of total mass 1 .

Proof. Let β be the mapping f →M
(
G −1 ( f )

)
of C (Δ(A)) into C . By the

preceding properties (i) and (iii), and Proposition 2.2, we see that β is a positive Radon
measure on Δ(A) and ‖β‖ = 1 (since G (1) = 1). Moreover, for any u ∈ A we have

M (u) = β (G (u)) = 〈β ,G (u)〉 =
∫

Δ(A)
G (u)(s)dβ (s) .

It is clear that β is unique.
We recall that B

(
RN

y

)
, B (Rτ) and B

(
RN

y ×Rτ
)

denote respectively the spaces
of bounded continuous complex functions on RN

y , Rτ and RN
y ×Rτ . It is well known

that the above spaces with the supremum norm and the usual algebra operations are
commutative C ∗ -algebras with identity (the involution is here the usual complex con-
jugation).

Throughout the rest of paper, Ay and Aτ denote respectively the almost peri-
odic homogenization algebras on RN

y and Rτ . Therefore Ay = APRy

(
RN

y

)
and Aτ =

APRτ (Rτ) where Ry and Rτ are respectively nontrivial countable subgroups of RN
y

and Rτ . Let us put R = Ry ×Rτ , and A = APR

(
RN

y ×Rτ
)
. The almost periodic

homogenization algebra A on R
N
y ×Rτ , coincides with the closure of APRy

(
R

N
y

)⊗
APRτ (Rτ) in B

(
RN

y ×Rτ
)

(see [17, Proposition 3.2]). Moreover, for all u ∈ Ay and
all v ∈ Aτ , we have uε → M (u) in L∞ (RN

x

)
-weak ∗ and vε → M (v) in L∞ (Rt)-weak

∗ as ε → 0 (ε > 0) , where:

uε (x) = u
( x

ε

) (
x ∈ R

N) ,
vε (t) = v

( t
ε

)
(t ∈ R) ,

the mapping u →M (u) of Ay (resp. Aτ ) into C being given by Proposition 2.2. Thus,
M (u⊗ v) = M (u)M (v) for all u ∈ Ay and all v ∈ Aτ , since for any w ∈ A , we have

wε → M (w) in L∞
(

R
N+1
(x,t)

)
-weak ∗ as ε → 0 (ε > 0) where

wε (x,t) = w
( x

ε
,
t
ε

) (
(x,t) ∈ R

N ×R
)
.

We denote by Δ(Ay) , Δ(Aτ) and Δ(A) the spectra of Ay , Aτ and A respectively,
and by G the Gelfand transformation on Ay , Aτ and A .
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The appropriate measures on Δ(Ay) , Δ(Aτ) and Δ(A) are the positive Radon
measures βy , βτ and β (of total mass 1) on Δ(Ay) , Δ(Aτ) and Δ(A) respectively
(given by Proposition 2.8), such that M (u) =

∫
Δ(Ay)G (u)dβy for u ∈ Ay , M (v) =∫

Δ(Aτ ) G (v)dβτ for v ∈ Aτ and M (w) =
∫

Δ(A) G (w)dβ for w ∈ A . Points in Δ(Ay)
(resp. Δ(Aτ)) are denoted by s (resp. s0 ). Furthermore, we have Δ(A) = Δ(Ay)×
Δ(Aτ) (Cartesian product) and β = βy ⊗βτ (see [17, Theorem 3.2 and Corollary 3.2]
for more details).

The partial derivative of index i (1 � i � N) on Δ(Ay) is defined to be the map-
ping ∂i = G ◦Dyi ◦G−1 (usual composition) of

D1 (Δ(Ay)) =
{

ϕ ∈ C (Δ(Ay)) : G−1 (ϕ) ∈ A1
y

}
into C (Δ(Ay)) , where A1

y =
{

ψ ∈ C 1
(
RN

y

)
: ψ , Dyiψ ∈ Ay (1 � i � N)

}
, Dyi = ∂

∂yi
.

Generally, we define the partial derivative of index i (0 � i � N) on Δ(A) as the map-
ping ∂0 = G ◦ ∂

∂τ ◦G−1 , or ∂i = G ◦Dyi ◦G−1 (1 � i � N) of

D1 (Δ(A)) =
{

ϕ ∈ C (Δ(A)) : G −1 (ϕ) ∈ A1}
into C (Δ(A)) with A1 =

{
ψ ∈ C 1

(
RN

y ×Rτ
)

: ψ , ∂ψ
∂τ and Dyiψ ∈ A (1 � i � N)

}
.

Higher order derivatives can be defined analogously (see [17]). Now, let A∞ be the
space of functions ψ ∈ C ∞ (RN

y ×Rτ
)

such that

Dα
(y,τ)ψ =

∂ |α |ψ
∂yα1

1 . . .∂yαN
N ∂τα0

∈ A

for every multi-index α = (α0,α1, . . . ,αN) ∈ NN+1 ( |α|= α0 +α1 + · · ·+αN ), and let

D (Δ(A)) =
{

ϕ ∈ C (Δ(A)) : G −1 (ϕ) ∈ A∞} .

Endowed with a suitable locally convex topology (see [17]), A∞ (resp. D (Δ(A)) ) is a
Fréchet space and further, G viewed as defined on A∞ is a topological isomorphism of
A∞ onto D (Δ(A)) . We have the following fundamental result proved in [14] (see also
[19, Proposition 2.24]).

PROPOSITION 2.9. For any ϕ ∈ D1 (Δ(A)) we have∫
Δ(A)

∂iϕ (s,s0)dβ (s,s0) = 0 (0 � i � N) .

By a distribution on Δ(A) is understood any continuous linear form on D (Δ(A)) .
The space of all distributions on Δ(A) is then the topological dual, D ′ (Δ(A)) , of
D (Δ(A)) . We endow D ′ (Δ(A)) with the strong dual topology.

Let us note that A∞ is dense in A . Indeed, we have A = APR

(
RN+1

)
, where R is

a countable subgroup of RN+1 , and moreover, TR = {γk : k ∈ R} ⊂ A∞ and we know
that TR is total in A . Thus, D (Δ(A)) is dense in C (Δ(A)) . Consequently, we have
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Lp (Δ(A)) ⊂ D ′ (Δ(A)) (1 � p � ∞) with continuous embedding. Further, we may
define

H1 (Δ(A)) =
{
u ∈ L2 (Δ(A)) : ∂iu ∈ L2 (Δ(A)) (0 � i � N)

}
,

where the derivative ∂iu is taken in the distribution sense on Δ(A) (exactly as the
Schwartz derivative is defined in the classical case). This is a Hilbert space with norm

‖u‖H1(Δ(A)) =

(
‖u‖2

L2(Δ(A)) +
N

∑
i=0

‖∂iu‖2
L2(Δ(A))

) 1
2 (

u ∈ H1 (Δ(A))
)
.

However, in practice the appropriate space is not H1 (Δ(A)) but its closed sub-
space

H1 (Δ(A))/C =
{

u ∈ H1 (Δ(A)) :
∫

Δ(A)
u(s)dβ (s) = 0

}
equipped with the seminorm

‖u‖H1(Δ(A))/C
=

(
N

∑
i=0

‖∂iu‖2
L2(Δ(A))

) 1
2 (

u ∈ H1 (Δ(A))/C
)
.

Unfortunately, the pre-Hilbert space H1 (Δ(A))/C is in general nonseparated and non-
complete. We introduce the separated completion, H1

# (Δ(A)) , of H1 (Δ(A))/C , and
the canonical mapping J of H1 (Δ(A))/C into its separated completion. We have the
following proposition:

PROPOSITION 2.10. (i) J is linear.
(ii) J

(
H1 (Δ(A))/C

)
is dense in H1

# (Δ(A)) .
(iii) ‖J (v)‖H1

# (Δ(A)) = ‖v‖H1(Δ(A))/C
for all v ∈ H1 (Δ(A))/C .

(iv) Let ∂i (0 � i � N) be considered as a mapping of H1 (Δ(A))/C into L2 (Δ(A)) .
There exists a unique continuous linear operator, still denoted by ∂i , of H1

# (Δ(A)) into
L2 (Δ(A)) such that

∂iJ (v) = ∂iv for all v ∈ H1 (Δ(A))/C.

Further,

‖v‖H1
# (Δ(A)) =

(
N

∑
i=0

‖∂iv‖2
L2(Δ(A))

) 1
2

for all v ∈ H1
# (Δ(A)) .

See [17] (and in particular Remark 2.4 and Proposition 2.6 there) for more details.
As a consequence of Proposition 2.10 we have:

PROPOSITION 2.11. (i) J (D (Δ(A))/C) is dense in H1
# (Δ(A)) , where

D (Δ(A))/C =
{

v ∈ D (Δ(A)) :
∫

Δ(A)
vdβ = 0

}
.

(ii)
∫

Δ(A) ∂ivdβ = 0 (0 � i � N) for all v ∈ H1
# (Δ(A)) .
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2.3. The Σ-convergence

Let us first introduce some basic notations. The letter E throughout will denote a
family of real numbers 0 < ε < 1 admitting 0 as an accumulation point. For example,
E may be the whole interval (0,1) ; E may also be an ordinary sequence (εn)n∈N

with 0 < εn < 1 and εn → 0 as n → ∞ . In the latter case E will be referred to as a
fundamental sequence. On the other hand, let Q = Ω× ]0,T [ . For any real 0 < ε < 1,
we define uε as

uε (x,t) = u
( x

ε
,
t
ε

)
((x,t) ∈ Q)

for u ∈ L1
loc

(
RN

y ×Rτ
)
, as is customary in homogenization theory. More generally, for

u ∈ L1
loc

(
Q×RN

y ×Rτ
)
, it is customary to put

uε (x,t) = u
(
x,t,

x
ε
,
t
ε

)
((x,t) ∈ Q)

whenever the right-hand side makes sense (see, e.g., [14] and [16]). Now, let 1 � p <
+∞ .

DEFINITION 2.5. A sequence (uε)ε∈E ⊂ Lp (Q) is said to:
(i) weakly Σ-converge in Lp (Q) to some u0 ∈ Lp (Q×Δ(A)) =

Lp (Q;Lp (Δ(A))) if as E � ε → 0,∫
Q

uε (x, t)ψε (x, t)dxdt →
∫ ∫

Q×Δ(A)
u0 (x,t,s,s0) ψ̂ (x, t,s,s0)dxdtdβ (s,s0) (2.4)

for all ψ ∈ Lp′ (Q;A)
(

1
p′ = 1− 1

p

)
, where ψε (x,t) = ψ

(
x,t, x

ε , t
ε
)

and ψ̂ (x,t, . . .) =
G (ψ (x, t, . . .)) a.e. in (x,t) ∈ Q ;

(ii) strongly Σ-converge in Lp (Q) to some u0 ∈ Lp (Q×Δ(A)) if the following
property is verified:⎧⎨⎩

Given η > 0 and v ∈ Lp (Q;A) with
‖u0− v̂‖Lp(Q×Δ(A)) � η

2 , there is some α > 0
such that ‖uε − vε‖Lp(Q) � η provided E � ε � α ,

(2.5)

where vε (x, t) = v
(
x,t, x

ε , t
ε
)

and v̂(x,t, ., .) = G (v(x, t, ., .)) a.e. in (x, t) ∈ Q .

We will briefly express weak and strong Σ-convergence by writing uε → u0 in
Lp (Q) -weak Σ and uε → u0 in Lp (Q)-strong Σ , respectively.

REMARK 2.2. The existence of such v’s as in (ii) results from the density of
Lp (Q;C (Δ(A))) in Lp (Q;Lp (Δ(A))) .

Let us now introduce some basic spaces. We denote by Ξp
(
R

N
)

the space of
functions u ∈ Lp

loc

(
RN

y

)
such that

‖u‖Ξp = sup
0<ε�1

(∫
BN

∣∣∣u( x
ε

)∣∣∣p dx

) 1
p

< ∞,
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where BN denotes the open unit ball in RN . Ξp is a complex vector space, and the
mapping u → ‖u‖Ξp , denoted by ‖.‖Ξp , is a norm on Ξp which makes it a Banach
space.

We define X
p
Ry

and X
p
R to be the closure of Ay and A in Ξp

(
R

N
)

and Ξp
(
R

N+1
)

respectively. We provide X
p
Ry

(resp. X
p
R ) with the Ξp

(
RN
)
-norm (resp. Ξp

(
RN+1

)
-

norm), which makes it a Banach space.

REMARK 2.3. Any function u ∈ X
p
Ry

can be considered as a function in X
p
R

which is independent of the variable τ . Indeed, let u ∈ X
p
Ry

and η > 0. There ex-
ists a function v ∈ Ay such that

‖u− v‖Ξp(RN) � η
2

, i.e., sup
0<ε�1

(∫
BN

|uε − vε |p dy

) 1
p

� η
2

,

but v = v⊗1∈ Ay⊗Aτ ⊂ A and∫
BN+1

|uε − vε |p dydτ � 2
∫

BN

|uε − vε |p dy � 2‖u− v‖Ξp(RN) .

It follows from the preceding inequalities that u ∈ Ξp
(
R

N+1
)

and ‖u− v‖Ξp(RN+1) �
η .

Let us also note that, if R = Ry ×Rτ with Ry = ZN and Rτ = Z then A =
Cper (Y ×Z) , the space of all Y ×Z -periodic continuous complex functions on RN

y ×Rτ

(with Y =
(− 1

2 , 1
2

)N
and Z =

(− 1
2 , 1

2

)
), and we have X

p
R = Lp

per (Y ×Z) (see, e.g., [19,
Remark 2.21]).

REMARK 2.4. It is of interest to know that if uε → u0 in Lp (Q) -weak Σ , then

(2.4) holds for ψ ∈ C
(
Q;Xp′

∞

)
, where Xp′

∞ = X
p′
R ∩L∞ (RN

y ×Rτ
)
. See [19, Proposi-

tion 3.7] for the proof.

Now, let us introduce the space Lp
AP,R

(
RN
)

(1 � p < +∞) for any countable

subgroup R of RN . To begin, we note that the notion of a spectrum introduced in
Subsection 2.2 extends naturally to Lp

AP

(
RN
)

by virtue of Proposition 2.4. Further-
more, since AP

(
R

N
)

is dense in Lp
AP

(
R

N
)
, and since each function in AP

(
R

N
)

has a
countable spectrum, we see that Sp(u) is countable for all u ∈ Lp

AP

(
RN
)
. We define

Lp
AP,R

(
R

N)=
{
u ∈ Lp

AP

(
R

N) : Sp(u) ⊂ R
}

.

We see that Lp
AP,R

(
RN
)
=∩k∈RN\RM−1

k ({0}) , where Mk is the continuous linear form

on Lp
AP

(
RN
)

defined by Mk (u) = M (γku) for any u ∈ Lp
AP

(
RN
)
. Thus, Lp

AP,R

(
RN
)

is a closed vector subspace of Lp
AP

(
RN
)
. Moreover, we have the following proposition

proved in [14] (see also [20, Subsection 4.1, Problem II]).
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PROPOSITION 2.12. Lp
AP,R

(
RN
)

is the closure of APR

(
RN
)

in (Lp, l∞)(Rm)
and Lp

AP,R

(
RN
)

is continuously embedded in X
p
R (Lp

AP,R

(
RN
)

equipped by the (Lp, l∞)-
norm), X

p
R being the closure of APR

(
RN
)

in Ξp
(
RN
)
.

Instead of repeating here the main results underlying Σ-convergence theory for
almost periodic structures, we find it more convenient to draw the reader’s attention to
a few references, see, e.g., [14], [15], [16], [17], [18], [19] and [20].

However, we recall below two fundamental results. First of all, let

Y (0,T ) =
{
v ∈ L2 (0,T ;H1

0 (Ω;R)
)

: v′ ∈ L2 (0,T ;H−1 (Ω;R)
)}

.

Y (0,T ) is provided with the norm

‖v‖Y (0,T) =
(
‖v‖2

L2(0,T ;H1
0 (Ω)) +

∥∥v′∥∥2
L2(0,T ;H−1(Ω))

) 1
2 (v ∈ Y (0,T ))

which makes it a Hilbert space.

THEOREM 2.1. Assume that 1 < p < ∞ and further E is a fundamental sequence.
Let a sequence (uε)ε∈E be bounded in Lp (Q) . Then, a subsequence E ′ can be ex-
tracted from E such that (uε)ε∈E ′ weakly Σ-converges in Lp (Q) .

THEOREM 2.2. Let E be a fundamental sequence. Suppose a sequence (uε)ε∈E
is bounded in H1 (Q) . Then, a subsequence E ′ can be extracted from E such that, as
E ′ � ε → 0 ,

uε → u0 in L2 (Q) -weak Σ,

∂uε
∂x j

→ ∂u0

∂x j
+ ∂ ju1 in L2 (Q) -weak Σ (1 � j � N)

and
∂uε

∂ t
→ ∂u0

∂ t
+ ∂0u1,

where u0 ∈ H1
(
Q;L2 (Δ(A))

)
and u1 ∈ L2

(
Q;H1

# (Δ(A))
)
.

THEOREM 2.3. Let E be a fundamental sequence. Suppose a sequence (uε)ε∈E
is bounded in Y (0,T ) . Then, a subsequence E ′ can be extracted from E such that, as
E ′ � ε → 0 ,

uε → u0 in Y (0,T ) -weak,

uε → u0 in L2 (Q) -strong,

∂uε
∂x j

→ ∂u0

∂x j
+ ∂ ju1 in L2 (Q) -weak Σ (1 � j � N)

where u0 ∈ Y (0,T ) and u1 ∈ L2
(
Q;L2

(
Δ(Aτ) ;H1

# (Δ(Ay))
))

.

The proof of Theorem 2.1 and Theorem 2.2 can be found in, e.g., [14], [18] and
[19] whereas Theorem 2.3 has its proof in, e.g., [20] in a general deterministic setting.
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3. A convergence result for (1.1)-(1.4)

In the sequel, we suppose that the square of the propagation speed of the light in
the vacuum c , and the potential w verify

c and w ∈ L2
AP

(
R

N
y ×Rτ

)
. (3.1)

Moreover, we make the assumption that the initial values in (1.1)-(1.4) verify

f ∈ C
(
Ω;L∞ (

R
N
y

))
; f (x, .) ∈ L2

AP

(
R

N
y

)
(3.2)

for all x ∈ Ω and
g ∈ L2

AP

(
R

N
y

)
. (3.3)

Having made the assumptions (3.1)-(3.3), its follows that there exists a countable sub-
group R0 of R

N
y ×Rτ containing Sp(c) and Sp(w) . Further, in virtue of [14, Propo-

sition 5.1] (see also [20, Proposition 4.1]) there exists a countable subgroup R
′
of R

N
y

such that
g ∈ L2

AP,R′
(
R

N
y

)
and f (x, .) ∈ L2

AP,R′
(
R

N
y

)
for any x ∈ Ω . Let R1 be the subgroup of RN

y ×Rτ spanned by R0∪ (R ′ × {0}) . We
have R1 ⊂ Ry ×Rτ where Ry and Rτ are respectively the projections of R1 on RN

y
and Rτ . Thus, in view of Proposition 2.12 we have

c, w ∈ X2
R (3.4)

with R = Ry×Rτ ;
g ∈ X2

Ry
, and f (x, .) ∈ X2

Ry
(3.5)

for all x ∈ Ω .
Before to state with some estimates of the solution to (1.1)-(1.4), let us recall the

following regularity results due to Lions-Magenes [11, Chapitre 5, Théorème 2.1].

PROPOSITION 3.1. Suppose that the initial data of (1.1)-(1.4) verify

f ∈ (H1
0 (Ω)∩H2 (Ω)

)⊗W2,∞ (
R

N
y ;R

)
and g ∈W 2,∞ (

R
N
y ;R

)
,

where W 2,∞ (RN
y ;R

)
is the Sobolev space of functions in L∞ (RN

y ;R
)

with their deriva-
tives of order � 2 . Then, for any ε > 0 , the solution of (1.1)-(1.4) verifies

u′ε ∈ L2 (0,T ;H1
0 (Ω)

)
and u′′ε ∈ L2 (0,T ;L2 (Ω)

)
.

Let us state some estimates. We denote by c(Ω) the constant in the Poincaré
inequality and we have the following proposition.

PROPOSITION 3.2. Suppose that the hypotheses of Proposition 3.1 are satisfied
and

α > c(Ω)2 ‖w‖∞ , (3.6)
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α being the constant in (1.6). Then, for any 0 < ε < 1 , the solution uε of (1.1)-(1.4)
verifies

‖uε‖L2(0,T ;H1
0 (Ω)) � C and

∥∥u′ε∥∥L2(0,T ;L2(Ω)) � C, (3.7)

where C > 0 is a constant independent of ε .

Proof. For all u,v ∈ H1
0 (Ω) , we put

a′ε (t;u,v) =
d
dt

aε (t;u,v) (t ∈ [0,T ])

for any ε > 0. Multiplying (1.1) by u′ε (t) and taking two times the real part of the
obtained equation lead to

d
dt

∥∥u′ε (t)
∥∥2

L2(Ω) +aε
(
t;uε (t) ,u′ε (t)

)
+aε

(
t;u′ε (t) ,uε (t)

)
= 0 (t ∈ [0,T ]) ,

i.e.,

d
dt

(∥∥u′ε (t)
∥∥2

L2(Ω) +aε (t;uε (t) ,uε (t))
)

= a′ε (t;uε (t) ,uε (t)) (t ∈ [0,T ]) .

Integrating the preceding equality and using (1.6) lead to

‖u′ε (t)‖2
L2(Ω) +

(
α − c(Ω)2 ‖w‖∞

)
‖uε (t)‖2

H1
0 (Ω)

� ‖gε‖2
L2(Ω) + c0ε2 ‖ f ε‖2

H1
0 (Ω) + c1

∫ t
0 ‖uε (s)‖2

H1
0 (Ω) ds

(3.8)

for all t ∈ [0,T ] , where c0 > 0 and c1 > 0 are constants independent of ε . Let us note
that ‖gε‖2

L2(Ω) +c0ε2 ‖ f ε‖2
H1

0 (Ω) is uniformly bounded with respect to 0 < ε < 1. Thus,

there exists a constant c2 > 0 such that

‖gε‖2
L2(Ω) + c0ε2 ‖ f ε‖2

H1
0 (Ω) � c2 (0 < ε < 1) .

Therefore, in view of (3.6), it follows from (3.8) that there exists a constant K > 0 such
that∥∥u′ε (t)

∥∥2
L2(Ω) +‖uε (t)‖2

H1
0 (Ω) � Kc2 +Kc1

∫ t

0

(∥∥u′ε (s)
∥∥2

L2(Ω) +‖uε (s)‖2
H1

0 (Ω)

)
ds

for all t ∈ [0,T ] . Thus, by the Gronwall Lemma the preceding inequality leads to∥∥u′ε (t)
∥∥2

L2(Ω) +‖uε (t)‖2
H1

0 (Ω) � Kc2 exp(Kc1t)

for all t ∈ [0,T ] , and (3.7) follows.
Now, let us introduce some functions spaces.

We consider the space

W (0,T ) =
{

v ∈ L2 (0,T ;H1
0 (Ω)

)
:

∂v
∂ t

∈ L2 (Q)
}
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which is a Hilbert space with the norm

‖v‖W (0,T ) =

(
‖v‖2

L2(0,T ;H1
0 (Ω)) +

∥∥∥∥∂v
∂ t

∥∥∥∥2

L2(Q)

) 1
2

(v ∈ W (0,T )) .

Further, we set
F

1
0 = W (0,T )×L2 (Q;H1

# (Δ(Ay)×Δ(Aτ))
)

provided with the norm

‖u‖
F1

0
=
(
‖u0‖2

W (0,T ) +‖u1‖2
L2(Q;H1

# (Δ(Ay)×Δ(Aτ)))

) 1
2 (

u =(u0,u1) ∈ F
1
0

)
,

which makes it Hilbert space. We consider also the space

F∞
0 = D (Q)× [D (Q)⊗ J (D (Δ(A))/C)]

which is a dense subspace of F1
0 . For u =(u0,u1) and v =(v0,v1) ∈

H1
0 (Ω)×L2

(
Ω;H1

# (Δ(Ay)×Δ(Aτ))
)
, we set

a(u,v)=
N

∑
i=1

∫ ∫ ∫
Ω×Δ(A)

ĉ
(

∂u0

∂xi
+ ∂iu1

)(
∂v0

∂xi
+ ∂iv1

)
dxdβydβτ +M (w)

∫
Ω
u0v0dx,

with of course M (w) =
∫ ∫

Δ(Ay)×Δ(Aτ ) ŵdβydβτ . This defines a sesquilinear hermitian

form on
[
H1

0 (Ω)×L2
(
Ω;H1

# (Δ(Ay)×Δ(Aτ))
)]2

which is continuous. Further, we
have the following result.

THEOREM 3.1. For any 0 < ε < 1 , let uε be the unique solution to (1.1)-(1.4).
Suppose that the hypotheses of Propositions 3.1 and 3.2 are satisfied. Then, given a
fundamental sequence E , there exists a subsequence E ′ extracted from E and functions
u0 ∈ Y (0,T ) and u1 ∈ L2

(
Q;H1

# (Δ(Ay)×Δ(Aτ))
)

such that as E ′ � ε → 0 ,

uε → u0 in Y (0,T ) -weak, (3.9)

∂uε
∂x j

→ ∂u0

∂x j
+ ∂ ju1 in L2 (Q) -weak Σ (1 � j � N) (3.10)

and
∂uε
∂ t

→ ∂u0

∂ t
+ ∂0u1 in L2 (Q) -weak Σ. (3.11)

Further u = (u0,u1) verifies the variational equation{
u =(u0,u1) ∈ F1

0, u0 (0) = 0 and u′0 (0) = g̃;
−∫ T

0 (u′0 (t) ,v′0 (t))dt−∫ ∫Q×Δ(A)∂0u1 (x,t)∂0v1 (x,t)dxdtdβ +
∫ T
0 a(u(t) ,v(t))dt =0

(3.12)
for all v =(v0,v1)∈F1

0 , where g̃(x,t) =
∫

Δ(A) ĝ(x,t)dβ ((x,t) ∈ Q) ((,) denotes the

scalar product in L2 (Ω) as well as the duality pairing between H1
0 (Ω) and H−1 (Ω) ).
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Proof. According to (3.7), the sequence (uε)ε∈E is bounded in H1(Q) and Y (0,T ) .
Hence, in virtue of Theorem 2.2 there exists a subsequence E ′ extracted from E and
some vector function u = (u0,u1) with u0∈H1

(
Q;L2(Δ(A))

)
and u1∈L2

(
Q;H1

# (Δ(A))
)

such that
uε → u0 in L2 (Q) -weak Σ (3.13)

and (3.10)-(3.11) hold when E ′ � ε → 0. Moreover, by Theorem 2.3 we see that the
subsequence E ′ can be extracted such that

uε → w0 in Y (0,T ) -weak, (3.14)

uε → w0 in L2 (Q) -strong (3.15)

and
∂uε
∂x j

→ ∂w0

∂x j
+ ∂ jw1 in L2 (Q) -weak Σ (1 � j � N) (3.16)

as E ′ � ε → 0, where w1 ∈ L2
(
Q;L2

(
Δ(Aτ) ;H1

# (Δ(Ay))
))

. By (3.13)-(3.16) we have
u0 = w0 and ∂ jw1 = ∂ ju1 (1 � j � N) , thus (3.9) holds when E ′ � ε → 0. On the

other hand (3.11) implies ∂u0
∂ t ∈L2 (Q) , thus u =(u0,u1)∈F1

0 . The theorem is certainly
proved if we can show that u verifies (3.12). We begin by verifying that u0 (0) = 0 (it is
worth recalling that u0 may be viewed as a continuous mapping of [0,T ] into L2 (Ω) ).

Let v ∈ H1
0 (Ω) , and let ϕ ∈ C 1 ([0,T ]) with ϕ (T ) = 0. By an integration by

parts, we have,∫ T

0

(
u′ε (t) ,v

)
ϕ (t)dt +

∫ T

0
(uε (t) ,v)ϕ ′ (t)dt = −(uε (0) ,v)ϕ (0) = −ε ( f ε ,v)ϕ (0) .

In view of (3.9), (3.5), Remarks 2.3 and 2.4, we pass to the limit in the preceding
equality as E ′ � ε → 0. We obtain∫ T

0

(
u′0 (t) ,v

)
ϕ (t)dt +

∫ T

0
(u0 (t) ,v)ϕ ′ (t)dt = 0.

Since ϕ and v are arbitrary, we see that u0 (0) = 0. Further, we have∫ T

0

(
u′ε (t) ,v

)
ϕ ′ (t)dt +

∫ T

0

(
u′′ε (t) ,v

)
ϕ (t)dt = −(u′ε (0) ,v

)
ϕ (0) = −(gε ,v)ϕ (0) .

Let us mention that by using (3.7), it is easy to see that the sequence (u′′ε )ε∈E is bounded
in L2

(
0,T ;H−1 (Ω)

)
. Thus, using (3.5), Remark 2.4 and the same argument as above

we pass to the limit in preceding equality as E ′ � ε → 0 (E ′ being well chosen). We
obtain ∫ T

0

(
u′0 (t) ,v

)
ϕ ′ (t)dt +

∫ T

0

(
u′′0 (t) ,v

)
ϕ (t)dt = −ϕ (0)

∫
Ω

g̃vdx.

As ϕ and v are arbitrary, one has u′0 (0) = g̃ . Now, let us establish the variational
equation in (3.12). Fix any arbitrary two functions

ψ0 ∈ D (Q) and ψ1 ∈ D (Q)⊗ (A∞/C) ,
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and let

ψε = ψ0 + εψε
1 , i.e., ψε (x,t) = ψ0 (x,t)+ εψ1

(
x,t,

x
ε
,
t
ε

)
for all (x,t) ∈ Q,

where ε > 0 is arbitrary. By (1.1), one as

−
∫

Q

∂uε
∂ t

∂ψε
∂ t

dxdt +
∫ T

0
aε (t;uε (t) ,ψε (t))dt = 0. (3.17)

The aim is to pass to the limit in (3.17) as E ′ � ε → 0. First, we have

∫
Q

∂uε
∂ t

∂ψε
∂ t

dxdt =
∫

Q

∂uε
∂ t

(
∂ψ0

∂ t
+ ε
(

∂ψ1

∂ t

)ε
+
(

∂ψ1

∂τ

)ε)
dxdt.

Thus, in view of (3.9) and (3.11) (and using Definition 2.5), we have,∫
Q

∂uε
∂ t

∂ψε
∂ t

dxdt →
∫

Q

∂u0

∂ t
∂ψ0

∂ t
dxdt +

∫ ∫
Q×Δ(A)

∂0u1∂0ψ̂1dxdtdβ

as E ′ � ε → 0, since ∫
Q

(∫
Δ(A)

∂0ψ̂1dβ
)

∂u0

∂ t
dxdt = 0

in virtue of Proposition 2.9.
Next, we have ∫ T

0
aε (t;uε (t) ,ψε (t))dt →

∫ T

0
a(u(t) ,φ (t))dt

as E ′ � ε → 0, where φ =(ψ0,J ◦ ψ̂1) . Indeed, ψε → ψ0 in L2 (Q)-strong and ∂ψε
∂x j

→
∂ψ0
∂x j

+∂ jψ̂1 in L2 (Q) -strong Σ as ε → 0. Further the sequences (ψε)ε>0 and
(

∂ψε
∂x j

)
ε>0

are bounded in L∞ (Q) . Thus using (3.4), Remark 2.4 and [19, Corollary 3.19] one
achieves the result in virtue of (3.10) and (3.15). Hence, passing to the limit in (3.17)
as E ′ � ε → 0 leads to

−
∫

Q

∂u0

∂ t
∂ψ0

∂ t
dxdt−

∫ ∫
Q×Δ(A)

∂0u1∂0ψ̂1dxdtdβ +
∫ T

0
a(u(t) ,φ (t))dt = 0 (3.18)

for all φ =(ψ0,J ◦ ψ̂1) ∈ F∞
0 . Moreover, since F∞

0 is a dense subspace of F1
0 , by

(3.18) we see that u =(u0,u1) verifies (3.12). The theorem is proved.
For further needs, we wish to give a simple representation of the function u1 in

Theorem 3.1. For this purpose, let us introduce the form â on H1
# (Δ(A))×H1

# (Δ(A))
defined by

â(w,v) =
N

∑
j=1

∫
Δ(A)

ĉ∂ jw∂ jvdβ
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for all w , v ∈ H1
# (Δ(A)) . The sesquilinear form â is continuous and hermitian. Next,

for any index l with 1 � l � N , we consider the variational problem{
χ l ∈ H1

# (Δ(A)) ,
−∫Δ(A) ∂0χ l∂0vdβ + â

(
χ l,v

)
=
∫

Δ(A) ĉ∂lvdβ for all v ∈ H1
# (Δ(A)) .

(3.19)

In the sequel we suppose that (3.19) admits a solution and we set

z(x,t) = −
N

∑
j=1

χ j ∂u0

∂x j
(x,t) ((x,t) ∈ Q) .

The function z belongs to L2
(
Q;H1

# (Δ(A))
)
. Further, z verifies

−
∫

Δ(A)
∂0z(x, t)∂0vdβ+â(z(x,t) ,v)=−

N

∑
l=1

∂u0

∂xl
(x,t)

∫
Δ(A)̂

c∂lvdβ for all v∈H1
# (Δ(A))

(3.20)
((x,t) ∈ Q). Indeed, multiplying the equality in (3.19) by ∂u0

∂xl
(x,t) and taking the sum

over 1 � l � N of the obtained equation lead to (3.20).

3.1. The macroscopic homogenized equation

Our aim here is to derive the initial boundary value problem for u0 . To begin, for
1 � i, j � N , let

qi j = δi j

∫
Δ(A)

ĉdβ −
∫

Δ(A)
ĉ∂iχ jdβ ,

δi j being the Krönecker symbol, and let w̃ =
∫

Δ(A) ŵdβ . To the coefficients qi j we
attach the differential operator Q on Q mapping D ′ (Q) into D ′ (Q) (D ′ (Q) being
the usual space of complex distributions on Q) as

Qu = −
N

∑
i, j=1

qi j
∂ 2u

∂x j∂xi
for all u ∈ D ′ (Q) .

We consider the following initial boundary value problem:

∂ 2u0

∂ t2
+Qu0 + w̃u0 = 0 in Q = Ω×]0,T [, (3.21)

u0 = 0 on ∂Ω×]0,T [, (3.22)

u0 (0) = 0 in Ω, (3.23)

∂u0

∂ t
(0) = g̃ in Ω. (3.24)

The initial boundary value problem (3.21)-(3.24) is the so-called macroscopic homog-
enized equation.
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THEOREM 3.2. Suppose the hypotheses of Propositions 3.1 and 3.2 are satisfied.
Suppose further that (3.20) admits at most one solution. Then, for any fundamental
sequence E , there exists a subsequence E ′ extracted from E such that as E ′ � ε → 0 ,
we have uε → u0 in Y (0,T )-weak (uε ∈Y (0,T ) being defined by (1.1)-(1.4)), where
u0 is a weak solution to (3.21)-(3.24) in Y (0,T ) .

Proof. As in the proof of Theorem 3.1, from any fundamental sequence E one can
extract a subsequence E ′ such that as E ′ � ε → 0, we have (3.9)-(3.11), and further
(3.12) holds. In (3.12), choosing a test function v = (v0,v1) ∈ F1

0 such that v0 = 0 and
v1 (x, t) = ϕ (x, t)v in (x,t) ∈ Q , where ϕ ∈ D (Q) and v ∈ H1

# (Δ(A)) , we see that u1

verifies (3.20) since ϕ is arbitrary. Thus, in virtue of the unicity of solution to (3.20),
one has

u1 (x,t) = −
N

∑
j=1

χ j ∂u0

∂x j
(x,t) ((x,t) ∈ Q). (3.25)

Now, substituting (3.25) in (3.18) and then choosing therein the φ ’s such that ψ1 = 0,
a simple computation yields (3.21) with (3.22)-(3.24), of course. Hence the theorem
follows.
A concluding remark. In our study, we come up against the lack of unicity of the
solutions of both the global homogenized equation (3.12) and the local or microscopic
problem (3.19) as well as the equation (3.20) verified by the corrector term. Those
results would have been fundamental in the proof of the macroscopic homogenized
problem (3.21)-(3.23). Without those unicity results, it would be a difficult task, even
to derive the macroscopic homogenized equation (3.21) since the corrector term u1

verifying (3.20) is not certainly of the form (3.25).
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1968.



Differ. Equ. Appl. 12, No. 2 (2020), 143–163. 163

[12] D. LUKKASSEN, G. NGUETSENG AND P. WALL, Two-scale convergence, Int. J. Pure and Appl. Math,
2 (2002), 35–86.

[13] G. NGUETSENG, A general convergence result for a functional related to the theory of homogeniza-
tion, SIAM J. Math. Anal., 20 (1989), 608–623.

[14] G. NGUETSENG, Almost periodic homogenization: Asymptotic analysis of a second order elliptic
equation, (Publ. math. LAN 01). Univ. Yde I 2000.

[15] G. NGUETSENG, Deterministic homogenization of a semilinear elliptic partial differential equation
of order 2m , Maths, Reports, 8 (58) (2006), 167–195.

[16] G. NGUETSENG, Sigma-convergence of parabolic differential operators, Multiscale problems in
biomathematics, mechanics, physics and numerics, 93–132, Gakuto Internat. Ser. Math. Sci. Appl.,
31, Tokyo, 2009.

[17] G. NGUETSENG, Homogenization Structures and applications I, Zeit. Anal. Anwend. 22 (2003) 73–
107.

[18] G. NGUETSENG AND H. NNANG, Homogenization of Nonlinear monotone operators beyond the
periodic setting, Electronic Journal of Differential Equations, Vol. 2003 (2003), No. 36, pp. 1–24.

[19] G. NGUETSENG AND N. SVANSTEDT, Σ -convergence, Banach J. Math. Anal. 5 (2011), No. 1, 101–
135.

[20] G. NGUETSENG AND J.L. WOUKENG, Deterministic homogenization of parabolic monotone opera-
tors with time dependent coefficients, Electronic Journal of Differential Equations, Vol. 2004 (2004),
No. 82, pp. 1–23.

(Received June 3, 2019) Lazarus Signing
Department of Mathematics and Computer Science

University of Ngaoundere
P.O.Box 454 Ngaoundere, Cameroon

e-mail: lsigning@yahoo.fr

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


