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MULTIPLE SOLUTIONS OF SYSTEMS INVOLVING FRACTIONAL

KIRCHHOFF–TYPE EQUATIONS WITH CRITICAL GROWTH

AUGUSTO C. R. COSTA AND BRÁULIO B. V. MAIA

Abstract. In this paper we are going to study existence and multiplicity of solutions of a system
involving fractional Kirchhoff-type and critical growth of form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1(||u||2X )(−Δ)su = λ f (x,v(x))
[∫

Ω
F(x,v(x))dx

]r1
+ |u|2∗s−2u in Ω,

M2(||v||2X )(−Δ)sv = γg(x,u(x))
[∫

Ω
G(x,u(x))dx

]r2
+ |v|2∗s −2v in Ω,

u = v = 0 in R
n \Ω,

where s ∈ (0,1) , n > 2s , Ω ⊂ R
n is a bounded and open set, 2∗s = 2n/(n− 2s) denotes the

fractional critical Sobolev exponent, the functions M1 , M2 , f and g are continuous functions,
(−Δ)s is the fractional laplacian operator, ||.||X is a norm in the fractional Hilbert Sobolev space

X(Ω) , F(x,v(x)) =
∫ v(x)
0 f (τ)dτ , G(x,u(x)) =

∫ u(x)
0 g(τ)dτ , r1 and r2 are positive constants, λ

and γ are real parameters. For this problem we prove the existence of infinitely many solutions,
via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii.
Also we show that these solutions are sufficiently regular and solve the problem pointwise.
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