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ON WEAKLY NONLINEAR BOUNDARY

VALUE PROBLEMS ON INFINITE INTERVALS

BENJAMIN FREEDMAN ∗ AND JESÚS RODRÍGUEZ

(Communicated by P. Korman)

Abstract. In this paper, we study weakly nonlinear boundary value problems on infinite intervals.
For such problems, we provide criteria for the existence of solutions as well as a qualitative
description of the behavior of solutions depending on a parameter. We investigate the relationship
between solutions to these weakly nonlinear problems and the solutions to a set of corresponding
linear problems.

1. Introduction

The results in this paper pertain to nonlinear boundary value problems on infinite
intervals. We consider problems with weak nonlinearities in both the differential equa-
tion and the boundary conditions. We provide a framework which allows us to establish
conditions for the existence of solutions and which also enables us to provide a quali-
tative description of the dependence of solutions on parameters.

We consider nonlinear boundary value problems on the infinite interval [0,∞) of
the form

x′(t)−A(t)x(t) = h(t)+ ε f (t,x(t)) (1)

subject to

Γ(x) = u+ ε
∫ ∞

0
g(t,x(t))dt (2)

where A is a continuous n×n matrix-valued function on [0,∞) , f and g are continu-
ously differentiable maps from R

n+1 into R
n , and Γ is a bounded linear map from the

space of bounded, continuous functions from [0,∞) into R
n .

Given that Γ is an arbitrary linear map, it should be observed that the problems
we’re considering include ones of the form

x′(t)−A(t)x(t) = ε f (t,x(t))
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subject to

∫ ∞

0
B(t)x(t)dt +

∞

∑
k=0

Ckx(tk) = ε
∫ ∞

0
g(t,x(t))dt

where B is a function-valued matrix whose entries are integrable functions from [0,∞)
into R

n . and Ck for k � 0 is an n×n matrix with

∞

∑
k=0

‖Ck‖ < ∞.

Note that if B and g are identically zero, this is a set of linear multipoint boundary
conditions.

Our main focus will be on the case where the bounded, continuous function h and
vector u ∈ R

n are such that the linear problem

x′(t)−A(t)x(t) = h(t) (3)

subject to

Γ(x) = u (4)

has a solution.

In our analysis, we use a scheme somewhat similar to the Lyapunov-Schmidt pro-
cedure and results are obtained through an application of the implicit function theorem
for Banach spaces. We provide a framework which allows us to determine cases when
for ε sufficiently small in magnitude, (1)-(2) has solutions which emanate from a par-
ticular solution to (3)-(4).

There has been extensive literature studying boundary value problems on finite in-
tervals. Examples include [12], [13], [14], [15], [19], [28], [29] and [30]. For results
establishing existence of solutions to boundary value problems on infinite intervals the
reader is referred to [2], [3], [5], [6], [17] and [23] in the continuous case and [1], [24],
[27], [31] and [32] in the discrete case. The use of projection methods such as the
Lyapunov-Schmidt procedure in the study of boundary value problems is employed in
[8], [9], [11], [20], [22], [25], [26], [33], [34], [35] and [36].

2. Main results

We use C to denote the space of bounded, continuous functions from [0,∞) into
R

n , and pair this space with the norm ‖x‖∞ = supt�0 |x(t)| . It is clear that (C ,‖ · ‖∞)
is a Banach space. We use | · | to denote the Euclidean norm on R

n and ‖ · ‖ for the
standard operator norm on the space of n× n real-valued matrices. Throughout this
section, we assume that Γ : C → R

n is a bounded linear map and write

‖Γ‖ = sup
‖x‖∞=1

|Γ(x)|.



Differ. Equ. Appl. 12, No. 2 (2020), 185–200. 187

Let Φ(t) denote the fundamental matrix for x′(t)−A(t)x(t) = 0 such that Φ(0) =
I and Φi denote the ith column of Φ for 1 � i � n . As mentioned in the introduc-
tion, our analysis will include a discussion of a set of closely related linear problems.
Throughout the paper, the reader will see that conditions we will impose on A guarantee
that for any ψ ∈ C , Φ(·)∫ ·

0 Φ−1(s)ψ(s)ds ∈ C .
We define Λ as the n×n matrix

Λ = [Γ(Φ1(·)) | Γ(Φ2(·)) | · · · | Γ(Φn(·))].
Note that a function x ∈ C is a solution to

x′(t)−A(t)x(t) = 0

subject to

Γ(x) = 0

if and only if x(0) ∈ ker(Λ) . Given ψ ∈ C and w ∈ R
n , we know by variation of

parameters that any solution to x′(t)−A(t)x(t) = ψ(t) is of the form

x(t) = Φ(t)x(0)+ Φ(t)
∫ t

0
Φ−1(s)ψ(s)ds.

Imposing the condition that Γ(x) = w we get that

Λx(0) = w−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)ψ(s)ds

)
.

Let p denote the dimension of ker(Λ) for some integer 0 � p � n . If p = 0, it is clear
that (3)-(4) has a unique solution. The bulk of our results concern the case where p � 1.
In this case, we let W be a matrix whose columns form a basis for [ker(ΛT )]⊥ . Note
that there exists a solution to the linear boundary value problem

x′(t)−A(t)x(t) = ψ(t)

subject to

Γ(x) = w

if and only if

WT
[
w−Γ

(
Φ(·)

∫ ·

0
Φ−1(s)ψ(s)ds

)]
= 0.

Throughout this paper we will mainly be studying the structure of the solution set to
(1)-(2) in the cases when the matrix Λ is singular and the corresponding linear problem
(3)-(4) has a solution, or equivalently where h and u satisfy

WT
[
u−Γ

(
Φ(·)

∫ ·

0
Φ−1(s)h(s)ds

)]
= 0.
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Based on the discussion above, it is clear that there exists a solution to the nonlin-
ear boundary value problem

x′(t)−A(t)x(t) = h(t)+ ε f (t,x(t))

subject to

Γ(x) = u+ ε
∫ ∞

0
g(t,x(t))dt

for ε �= 0 if there exists x ∈ C and v ∈ ker(Λ) satisfying

x(t) = Φ(t)v+ Φ(t)
∫ t

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds

and

WT
[∫ ∞

0
g(t,x(t))dt−Γ

(
Φ(·)

∫ ·

0
Φ−1(s) f (s,x(s))ds

)]
= 0.

We now list the following set of conditions which we will impose in our first
theorem.

I) There exist positive constants K,α such that

‖Φ(t)Φ−1(s)‖ � Ke−α(t−s)

for all t � s � 0.

II) For any compact subset S ⊂ R
n , ∂ f

∂x is uniformly continuous on [0,∞)×S and

sup
t�0

∥∥∥∥∂ f
∂x

(t,0)
∥∥∥∥ < ∞.

III) For any compact subset S ⊂ R
n , ∂g

∂x is uniformly continuous on [0,∞)×S and

∫ ∞

0

∥∥∥∥∂g
∂x

(t,0)
∥∥∥∥dt < ∞.

IV) For all h ∈ C , ∫ ∞

0
|g(t,h(t))|dt < ∞.

V) There exists an integrable s : [0,∞) → R satisfying∥∥∥∥∂g
∂x

(t,x1)− ∂g
∂x

(t,x2)
∥∥∥∥ � s(t)|x1 − x2|

for all t � 0 and x1,x2 ∈ R
n .
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Note that for x ∈ C , v ∈ ker(Λ) , ε ∈ R , and t � 0 we have that,∣∣∣∣x(t)−Φ(t)v−Φ(t)
∫ t

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds

∣∣∣∣
�‖x‖∞ + sup

s�0
‖Φ(s)‖+

∫ ∞

0
‖Φ(t)Φ−1(s)‖|h(s)+ ε f (s,x(s))|ds

�‖x‖∞ + sup
s�0

‖Φ(s)‖+[‖h‖∞ + |ε|sup
s�0

| f (s,x(s))|]K
∫ ∞

0
e−α(t−s)ds

=‖x‖∞ + sup
s�0

‖Φ(s)‖+[‖h‖∞ + |ε|sup
s�0

| f (s,x(s))|]Kα−1.

Also observe that∣∣∣∣WT
[∫ ∞

0
g(t,x(t))dt−Γ

(
Φ(·)

∫ ·

0
Φ−1(s) f (s,x(s))ds

)]∣∣∣∣
�

∥∥WT
∥∥[∫ ∞

0
|g(t,x(t))|dt−‖Γ‖

(∫ ∞

0
‖Φ(t)Φ−1(s)‖| f (s,x(s))|ds

)]

�
∥∥WT

∥∥[∫ ∞

0
|g(t,x(t))|dt−‖Γ‖

(
sup
s�0

| f (s,x(s))|K
∫ ∞

0
e−α(t−s)ds

)]

=
∥∥WT

∥∥[∫ ∞

0
|g(t,x(t))|dt−‖Γ‖

(
sup
s�0

| f (s,x(s))|Kα−1
)]

< ∞.

From this is follows that H given by

H((x,v),ε)=
[

H1((x,v),ε)
H2((x,v),ε)

]
=

⎡
⎣ x(t)−Φ(t)v−Φ(·)∫ ·

0 Φ−1(s)[h(s)+ε f (s,x(s))]ds

WT
[∫ ∞

0 g(t,x(t))dt−Γ
(
Φ(·)∫ ·

0 Φ−1(s) f (s,x(s))ds
)]

⎤
⎦

is a well-defined map from C ×ker(Λ)×R to C ×R
p .

Our main result will involve an application of the implicit function theorem for
Banach spaces [18]. This requires continuous Fréchet differentiability of H .

In the following lemma, for i = 1,2 we use ∂Hi
∂ (x,v) to denote the partial (Fréchet)

derivative of Hi with respect to (x,v) .

LEMMA 1. Suppose that I)−V ) hold. Then for any ((x,v),ε) ∈C ×ker(Λ)×R ,
the bounded linear maps ∂H1

∂ (x,v) ((x,v),ε) and ∂H2
∂ (x,v) ((x,v),ε) exist and are given by[

∂H1

∂ (x,v)
((x,v),ε)

]
(ψ ,w)(t) = ψ(t)−Φ(t)w− ε

(
Φ(t)

∫ t

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)

and [
∂H2

∂ (x,v)
((x,v),ε)

]
(ψ ,w)

=WT
[∫ ∞

0

∂g
∂x

(t,x(t))ψ(t)dt−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)]
.

Further, H1 and H2 are continuously (Fréchet) differentiable.
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Proof. For x,ψ ∈ C and v,w ∈ ker(Λ) we have that

H1((x+ ψ ,v+w),ε)−H1((x,v),ε)−ψ(t)+ Φ(t)w

+ ε
(

Φ(t)
∫ t

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)

=ε
(

Φ(t)
∫ t

0
Φ−1(s)

[
f (s,(x+h)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

]
ds

)
.

For a,b ∈ R
n , let L(a,b) denote the straight line segment connecting a and b .

Note that by the mean value theorem, for all t � 0 we have that the following hold∣∣∣∣ f (t,(x+ ψ)(t))− f (t,x(t))
∣∣∣∣ � sup

ν(t)∈L(x(t),(x+ψ)(t))

∣∣∣∣∂ f
∂x

(t,ν(t))ψ(t)
∣∣∣∣∣∣∣∣g(t,(x+ ψ)(t))−g(t,x(t))

∣∣∣∣ � sup
ζ (t)∈L(x(t),(x+ψ)(t))

∣∣∣∣∂g
∂x

(t,ζ (t))ψ(t)
∣∣∣∣.

Then we have that for t � 0,∣∣∣∣
(∫ t

0
Φ(t)Φ−1(s)

[
f (s,(x+h)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

]
ds

)∣∣∣∣
� sup

ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥
[

∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
]∥∥∥∥

(∫ ∞

0

∥∥Φ(t)Φ−1(s)
∥∥ds

)
‖ψ‖∞

� sup
ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥
[

∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
]∥∥∥∥Kα−1‖ψ‖∞

and supν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥
[

∂ f
∂x (s,ν(s))− ∂ f

∂x (s,x(s))
]∥∥∥∥Kα−1 → 0 as ‖ψ‖∞ → 0 by

II) .
We also have that∣∣∣∣∣H2((x+ ψ ,v+w),ε)−H2((x,v),ε)−

WT
[∫ ∞

0

∂g
∂x

(t,x(t))ψ(t)dt −Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)]∣∣∣∣∣
=

∣∣∣∣WT
(∫ ∞

0

[
g(s,(x+ ψ)(s))−g(s,x(s))− ∂g

∂x
(s,x(s))ψ(s)

]
ds

−Γ
(

Φ(t)
∫ t

0
Φ−1(s)

[
f (s,(x+ ψ)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

]
ds

)]∣∣∣∣
�

(∥∥WT
∥∥∫ ∞

0
sup

ζ (s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂g
∂x

(s,ζ (s))− ∂g
∂x

(s,x(s))
∥∥∥∥ds‖ψ‖∞

+
∥∥WT

∥∥‖Γ‖ sup
ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
∥∥∥∥
∫ ∞

0

∥∥Φ(t)Φ−1(s)
∥∥dt

)
‖ψ‖∞
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�
∥∥WT

∥∥(
‖s‖L1‖ψ‖∞+‖Γ‖ sup

ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
∥∥∥∥Kα−1

)
‖ψ‖∞

where ‖ · ‖L1 denotes the standard norm on L1[0,∞) . Note that∥∥WT
∥∥(

‖s‖L1‖ψ‖∞+‖Γ‖supν(s)∈L(x(s),(x+ψ)(s))

∥∥∥ ∂ f
∂x (s,ν(s))− ∂ f

∂x (s,x(s))
∥∥∥Kα−1

)
→ 0

as ‖ψ‖∞ → 0 by II) . Now we will show that the map

(x,v) 
→ ∂Hi

∂ (x,v)

is continuous for i = 1,2. Note that for ‖ψ‖∞ = 1,∥∥∥∥
[

∂H1

∂ (x,v)
(x1,v1)− ∂H1

∂ (x,v)
(x2,v2)

]
ψ

∥∥∥∥
∞

= sup
t∈[0,∞)

∣∣∣∣
(∫ t

0
Φ(t)Φ−1(s)

[
∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
]

ψ(s)ds

)∣∣∣∣
�

∥∥∥∥∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
∥∥∥∥
(∫ ∞

0

∥∥Φ(t)Φ−1(s)
∥∥dt

)

�K

∥∥∥∥∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
∥∥∥∥α−1

and K
∥∥∥ ∂ f

∂x (s,x1(s))− ∂ f
∂x (s,x2(s))

∥∥∥α−1 → 0 as ‖x1− x2‖∞ → 0. We also have that

∣∣∣∣
[

∂H2

∂ (x,v)
(x1,v1)− ∂H2

∂ (x,v)
(x2,v2)

]
ψ

∣∣∣∣
�

∥∥WT
∥∥(∫ ∞

0

∥∥∥∥∂g
∂x

(s,x1(s))− ∂g
∂x

(s,x2(s))
∥∥∥∥ds

+‖Γ‖
∫ ·

0
‖Φ(·)Φ−1(s)‖

∥∥∥∥∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
∥∥∥∥ds

]))∣∣∣∣
�

∥∥WT
∥∥(

‖x1− x2‖∞‖s‖L1 +Kα−1‖Γ‖
∥∥∥∥∂ f

∂x
(s,x1(s))− ∂ f

∂x
(s,x2(s))

∥∥∥∥
)

.

Note that
∥∥WT

∥∥(
‖x1− x2‖∞‖s‖L1 +Kα−1‖Γ‖

∥∥∥ ∂ f
∂x (s,x1(s))− ∂ f

∂x (s,x2(s))
∥∥∥)

→ 0 as

‖x1− x2‖∞ → 0, proving our desired result.

REMARK. The most interesting case and the one we will focus mostly on is the
case where Λ is singular. In this case, solving the nonlinear boundary value problem
(1)-(2) is equivalent to solving the operator equation H1((x,v),ε) = H2((x,v),ε) = 0.
For the sake of completeness in our analysis it is worth mentioning the case where Λ is
invertible. If Λ is invertible, then (3)-(4) has a unique solution and the matrix W does
not exist. The nonlinear boundary value problem (1)-(2) is then equivalent to finding a
continuous function x and v ∈ R

n satisfying

x(t)−Φ(t)v−Φ(t)
∫ t

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds = 0
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where

v = Λ−1
[
u+ ε

∫ ∞

0
g(t,x(t))dt−Γ

(
Φ(·)

∫ ·

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds

)]
.

Define Ψ : C ×R
n+1 → C ×R

n by [Ψ1,Ψ2]T where

Ψ1((x,v),ε)(t) = x(t)−Φ(t)v−Φ(t)
∫ t

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds

and

Ψ2((x,v),ε)(t) = v−Λ−1
[
u+ ε

∫ ∞

0
g(t,x(t))dt

−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)[h(s)+ ε f (s,x(s))]ds

)]
.

and note that Ψ((x ,v0),0)= 0 where x denotes the unique solution to x′(t)−A(t)x(t)=
h(t) satisfying x(0) = v0 where

v0 = Λ−1
[
u−Γ

(
Φ(·)

∫ ·

0
Φ−1(s)h(s)ds

)]
.

Further note that by an analogous argument to the one appearing in the previous lemma,
Ψ is continuously differentiable at each point in C ×R

n+1 under conditions I)−V)
and

∂Ψ
∂ (x,v)

((x ,v0),0)[ψ ,w]T = [ψ(·)+ Φ(·)w,w]T

which is clearly a bijection from C ×R
n to C ×R

n . Therefore by the implicit function
theorem for Banach spaces, there exists a solution to (1)-(2) for sufficiently small ε and
those solutions converge uniformly to x as ε goes to 0.

Now we shift our focus back to the case where Λ is singular. For the sake of
notation, for any y ∈ R

n we define the function xy(t) = Φ(t)y+ Φ(t)
∫ t
0 Φ−1(s)h(s)ds .

We also write

∂H
∂ (x,v)

=

⎡
⎢⎣

∂H1
∂ (x,v)

∂H2
∂ (x,v)

⎤
⎥⎦ .

THEOREM 1. Suppose that I)−V ) hold and that there exists y ∈ ker(Λ) such
that

WT
[∫ ∞

0
g(t,xy(t))dt−Γ

(
Φ(·)

∫ ·

0
Φ−1(s) f (s,xy(s))ds

)]
= 0
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and φ : ker(Λ) → R
p given by

φ(w) = WT
[∫ ∞

0

∂g
∂x

(t,xy(t))Φ(t)dt −Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,xy(s))Φ(s)ds

)]
w

is a bijection from ker(Λ)⊂R
n onto R

p . Then there exists ε0 such that for all |ε|� ε0 ,
the boundary value problem

x′(t) = A(t)x(t) = h(t)+ ε f (t,x(t))

subject to

Γ(x) = u+ ε
∫ ∞

0
g(t,x(t))dt.

is guaranteed a solution xε . Moreover ‖xε − xy‖∞ → 0 as ε → 0 .

Proof. We have shown that H is continuously differentiable. Note that H1((xy,y),0)
= 0 = H2((xy,y),0) . Suppose that ∂H

∂ (x,v) ((xy,y),0)(z,v) = 0. Then z(t) = Φ(t)v for all
t � 0 and therefore

WT
[∫ ∞

0

∂g
∂x

(s,xy(s))Φ(s)ds−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,xy(s))Φ(s)ds

)]
v = 0

implying that v = 0. Therefore ∂H
∂ (x,v) ((xy,y),0) is one-to-one. Let (ĥ, v̂) ∈ C ×R

p .

Then by assumption there exists a unique w ∈ ker(Λ) satisfying

WT
[∫ ∞

0

∂g
∂x

(s,xy(s))Φ(s)ds−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,xy(s))Φ(s)ds

)]
w = v̂− v∗.

where v∗ denotes the vector

v∗ = WT
[∫ ∞

0

∂g
∂x

(s,xy(s))ĥ(s)ds−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,xy(s))ĥds

)]
.

Therefore [
∂H1

∂ (x,v)
((xy,y),0)

]
(ĥ+ Φ(·)w,w)(t) = ĥ(t)

and [
∂H2

∂ (x,v)
((xy,y),0)

]
(ĥ+ Φ(·)w,w)(t) = (v̂− v∗)+ v∗ = v̂

and ∂H
∂ (x,v) ((xy,y),0) is a bijection from C × ker(Λ) onto C ×R

p . Our result follows
from the implicit function theorem for Banach spaces.

In results up to this point, we assume that h is simply an element of C . In the
following set of results, we investigate problems where we know that h∈ C ∩L1[0,∞) .
In this case, we impose the following set of conditions.
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I′ ) There exists positive constant K such that

‖Φ(t)Φ−1(s)‖ � K

for all t � s � 0.

II′ ) ∂g
∂x is uniformly continuous on [0,∞)×R

n and∫ ∞

0

∥∥∥∥∂g
∂x

(t,0)
∥∥∥∥dt < ∞.

III′ ) For all h ∈ C , ∫ ∞

0
|g(t,h(t))|dt < ∞.

IV ′ ) ∂ f
∂x is uniformly continuous on [0,∞)×R

n and
∫ ∞

0

∥∥∥∥∂ f
∂x

(t,0)
∥∥∥∥dt < ∞.

V ′ ) There exists s ∈ L1[0,∞) satisfying∥∥∥∥∂g
∂x

(t,x1)− ∂g
∂x

(t,x2)
∥∥∥∥ � s(t)|x1 − x2|

for all t � 0 and x1,x2 ∈ R
n .

VI′ ) There exists h1 ∈ L1[0,∞) such that for every compact subset S of R
n there

exists a constant C satisfying

| f (t,x)| � Ch1(t)

for all t � 0 and x ∈ S and

| f (t,x1)− f (t,x2)| � h1(t)|x1− x2|
for all x1,x2 ∈ S and t � 0.

VII′ ) There exists h2 ∈ L1[0,∞) such that for any compact subset S ⊂ R
n ,∥∥∥∥∂ f

∂x
(k,x1)− ∂ f

∂x
(k,x2)

∥∥∥∥ � h2(k)|x1 − x2|

for all t � 0 and x1,x2 ∈ S .

Before stating the main theorem in this section, it is worth mentioning for the sake of
completeness that if Λ is invertible, an analogous argument to the one appearing in
Remark 2 holds. This is because Ψ is continuously differentiable on C ×R

n+1 under
conditions I′)−VII′) and satisfies the conditions of the implicit function theorem at
the point ((x ,v0),0) where x and v0 are defined the same as in Remark 2. Therefore,
we can guarantee solutions to (1)− (2) for ε sufficiently small and these solutions
converge uniformly to x as the absolute value of ε goes to zero.
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THEOREM 2. Suppose that I′)−VII′) hold and that there exists y ∈ ker(Λ) such
that

WT
[∫ ∞

0
g(t,xy(t))dt−Γ

(
Φ(·)

∫ ·

0
Φ−1(s) f (s,xy(s))ds

)]
= 0

and φ : ker(Λ) → R
p defined by

φ(w) = WT
[∫ ∞

0

∂g
∂x

(t,xy(t))Φ(t)dt −Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,xy(s))Φ(s)ds

)]
w

is a bijection from ker(Λ)⊂R
n onto R

p . Then there exists ε0 such that for all |ε|� ε0 ,
the boundary value problem

x′(t)−A(t)x(t) = h(t)+ ε f (t,x(t))

subject to

Γ(x) = u+ ε
∫ ∞

0
g(t,x(t))dt.

is guaranteed a solution xε . Moreover ‖xε − xy‖∞ → 0 as ε → 0 .

Proof. We wish to show that H is continuously differentiable under this new set
of conditions. Recall that

H1((x+ ψ ,v+w),ε)(t)−H1((x,v),ε)(t)

−
[

ψ(t)−Φ(t)w+ ε
(

Φ(t)
∫ t

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)]

=ε
(

Φ(t)
∫ t

0
Φ−1(s)

[
f (s,(x+ ψ)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

])
.

We have that∥∥∥∥Φ(·)
∫ ·

0
Φ−1(s)

[
f (s,(x+ ψ)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

]
ds

∥∥∥∥
∞

�K
∫ ∞

0
sup

ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
∥∥∥∥ds‖ψ‖∞ � K‖h2‖L1‖ψ‖2

∞

and K‖h2‖L1‖ψ‖∞ → 0 as ‖ψ‖∞ → 0. Note also that for ‖ψ‖∞ = 1,∥∥∥∥Φ(·)
(∫ ·

0
Φ−1(s)

[
∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
]

ψ(s)ds

)∥∥∥∥
∞

�‖Φ(t)Φ−1(s)‖
∫ ∞

0

∥∥∥∥∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
∥∥∥∥ds

�K‖h2‖L1‖x1− x2‖∞ → 0
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as ‖x1− x2‖∞ → 0. We also have that∣∣∣∣H2((x+ ψ ,v+w),ε)−H2((x,v),ε)−

WT
[∫ ∞

0

∂g
∂x

(t,x(t))ψ(t)dt−Γ
(

Φ(·)
∫ ·

0
Φ−1(s)

∂ f
∂x

(s,x(s))ψ(s)ds

)]∣∣∣∣
=

∣∣∣∣WT
(∫ ∞

0

[
g(s,(x+ ψ)(s))−g(s,x(s))− ∂g

∂x
(s,x(s))ψ(s)

]
ds

−Γ
(

Φ(t)
∫ t

0
Φ−1(s)

[
f (s,(x+ ψ)(s))− f (s,x(s))− ∂ f

∂x
(s,x(s))ψ(s)

]
ds

)]∣∣∣∣
�

(∥∥WT
∥∥∫ ∞

0
sup

ζ (s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂g
∂x

(s,ζ (s))− ∂g
∂x

(s,x(s))
∥∥∥∥ds‖ψ‖∞

+
∥∥WT

∥∥‖Γ‖ sup
ν(s)∈L(x(s),(x+ψ)(s))

∥∥∥∥∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
∥∥∥∥

×K
∫ t

0

∥∥∥∥∂ f
∂x

(s,ν(s))− ∂ f
∂x

(s,x(s))
∥∥∥∥dt

)
‖ψ‖∞

�
∥∥WT

∥∥(
‖s‖L1‖ψ‖∞ +‖Γ‖K‖ψ‖∞‖h2‖L1 |

)
‖ψ‖∞

and
∥∥WT

∥∥(‖s‖L1‖ψ‖∞ +‖Γ‖‖ψ‖∞‖h2‖L1 |K) → 0 as ‖ψ‖∞ → 0. Also note that for
‖ψ‖∞ = 1 ∣∣∣∣

[
∂H2

∂ (x,v)
(x1,v1)− ∂H2

∂ (x,v)
(x2,v2)

]
ψ

∣∣∣∣
�

∥∥WT
∥∥(∫ ∞

0

∥∥∥∥∂g
∂x

(s,x1(s))− ∂g
∂x

(s,x2(s))
∥∥∥∥ds

+‖Γ‖‖Φ(·)
∫ ·

0
Φ−1(s)‖

∥∥∥∥∂ f
∂x

(s,x1(s))− ∂ f
∂x

(s,x2(s))
∥∥∥∥ds

]))∣∣∣∣
�

∥∥WT
∥∥(

‖x1− x2‖∞‖s‖L1 + α−1‖Γ‖‖x1− x2‖∞‖h2‖L1

)
.

It is clear that
∥∥WT

∥∥( ‖x1− x2‖∞‖s‖L1 + α−1‖Γ‖‖x1− x2‖∞‖h2‖L1

) → 0 as ‖x1 −
x2‖∞ → 0. Therefore, H1 and H2 is continuously differentiable and so H is as well. It
follows that H satisfies the conditions of the conditions of the implicit function theorem
for Banach spaces by an analogous argument to the one appearing in Theorem 1.

EXAMPLE. Consider the boundary value problem

x′(t)−Ax(t) = ε f (t,x(t))

subject to

∞

∑
k=0

Ckx(tk) = ε
∫ ∞

0
g(t,x(t))dt
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where x : Z
+ → R

n , f : R
3 → R

2 is twice continuously differentiable, Ck is an 2×2
real-valued matrix and tk � 0 for all k � 0. We assume that

Λ =
∞

∑
k=0

Cke
Atk

is singular. Suppose that the matrix A is diagonalizable. That is, there exists an invert-
ible matrix

P =
[

p1 p2

p3 p4

]

and diagonal matrix

B =
[

α 0
0 β

]

satisfying

A = PBP−1.

Therefore, we have that

Ak = PBkP−1

and so

eAt = P

[ ∞

∑
k=0

1
k!

Bktk
]
P−1.

As mentioned above, we assume that Λ is singular, which implies that the second
row is a scalar multiple of the first. Suppose that the second row of Λ is κ times row
one for some κ ∈ R . It is clear that Λ and ΛT have a one-dimensional kernel and that
the kernel of ΛT is spanned by the vector [−κ ,1]T . Write g as g = [g1,g2] . Suppose
that there exists y ∈ ker(Λ) that satisfies for all t � 0,

0 = f1(t,eAty) = f2(t,eAty) =
∂ f1
∂x

(t,eAty) =
∂ f2
∂x

(t,eAty) = g1(t,eAty) = g2(t,eAty)

and

−κ
∫ ∞

0

∂g1

∂x
(t,eAty)dt �=

∫ ∞

0

∂g2

∂x
(t,eAty)dt.

Under these assumptions, we have

WT
[∫ ∞

0
g(t,etAy)dt−

∞

∑
k=0

Cke
Ask

∫ t

0
eAtk f (s,eAsy)ds

]

=WT
[∫ ∞

0
(0)dt−

∞

∑
k=0

Cke
Ask

∫ t

0
eAtk (0)ds

]
= 0
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and that ∣∣∣∣WT
[∫ ∞

0

∂g
∂x

(t,etAy)−
∞

∑
k=0

Cke
Atk

∫ t

0
e−sAy

∂ f
∂x

(s,esAy)dsdt

]∣∣∣∣
=

∣∣∣∣
∫ ∞

0

∂g1

∂x
(t,eAty)−κ

(
∂g2

∂x
(t,eAty)

)
dt

∣∣∣∣ �= 0.

Thus for ε sufficiently small in absolute value, we are guaranteed solutions to the
nonlinear boundary value problem above.

Alternatively, suppose for the problem above that the rows of Λ are identical, that
A is the matrix

A =

[
− 1

2 0
1 − 1

2

]

and that f : R
3 → R

2 and g : R
3 → R

2 are given by

f (t,x1,x2) =

[
(x1−e−t/2)2

t6
(x1−e−t/2)2+3(x2−e−t/2(t+1))2

t8

]

and

g(t,x1,x2) =

[
x2
1−e−t

t2
5(te−t/2−e−t/2−x2)

t2

]
.

Then y = [1,−1] ∈ ker(Λ) satisfies the conditions imposed in Theorem 1. That is,

WT
[∫ ∞

0
g(t,e−t/2,e−t/2(t −1))dt+

∞

∑
k=0

Cke
Atk

∫ t

0
e−A(s+1) f (s,e−s/2,e−s/2(s−1))dsdt

]

=0,

and

WT
∞

∑
k=0

Cke
Atk

∫ t

0
e−A(s+1) ∂ f

∂x
(s,e−s/2,e−s/2(s−1))dsdt

=WT
∞

∑
k=0

Cke
Atk

∫ t

0
e−A(s+1)(0)dsdt = 0

so we have∣∣∣∣WT
[∫ ∞

0

∂g
∂x

(t,e−t/2,e−t/2(t−1))dt

−
∞

∑
k=0

Cke
Atk

∫ t

0
e−A(s+1) ∂ f

∂x
(s,e−s/2,e−s/2(s−1))dsdt

]∣∣∣∣
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=
∣∣∣∣WT

[∫ ∞

0

∂g
∂x

(t,e−t/2,e−t/2(t−1))dt

]∣∣∣∣
=

∣∣∣∣WT
∫ ∞

0

[
∂g1

∂x
(t,e−t/2,e−t/2(t−1))dt− ∂g2

∂x
(t,e−t/2,e−t/2(t−1))

]
dt

∣∣∣∣ �= 0.

Therefore, by results in the preceding sections we can guarantee solutions to the
nonlinear boundary value problem in this example for ε sufficiently close to zero.
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