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OSCILLATORY BEHAVIOR OF SECOND ORDER

NONLINEAR DELAY DIFFERENTIAL EQUATIONS

WITH POSITIVE AND NEGATIVE NEUTRAL TERMS

SAID R. GRACE, JOHN R. GRAEF ∗ AND IRENA JADLOVSKÁ

(Communicated by L. Berezansky)

Abstract. The aim of the paper is to initiate a study of the oscillation of solutions of second order
nonlinear differential equations with positive and negative nonlinear neutral terms. The results
are illustrated by some examples.

1. Introduction

This paper is concerned with oscillatory behavior of all solutions of nonlinear
second order delay differential equations with positive and negative neutral terms. The
second term in the equation contains a delay as well. In particular, the equations under
consideration here have the form(

r(t)
(
y′(t)

)β
)′

+q(t)xγ(τ(t)) = 0, t � t0 � 1, (1.1a)

where
y(t) := x(t)+ p1(t)xα1(σ(t))− p2(t)xα2(σ(t)). (1.1b)

In the sequel, we will make use of the following conditions:

(H0 ) α1 , α2 , β , and γ are the ratios of positive odd integers;
(H1 ) p1 , p2 , q ∈ C ([t0,∞), [0,∞)) and q does not vanish identically on any half-line
of the form [t∗,∞) for any t∗ > t0 ;
(H2 ) the delay functions τ, σ ∈ C ([t0,∞),R) are such that τ(t) � t, σ(t) � t , σ ′(t) >
0, and limt→∞ τ(t) = limt→∞ σ(t) = ∞ ;
(H3 ) r ∈ C 1([t0,∞),(0,∞)) satisfies

R(t,t0) :=
∫ t

t0

1

r1/β (s)
ds → ∞ as t → ∞;
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(H4 ) h(t) = σ−1(τ(t)) � t , h′(t) � 0, and limt→∞ h(t) = ∞ .

Let T � t0 be such that τ(t) � t0 and σ(t) � t0 for t � T . By a solution of
equation (1.1), we mean a function x ∈ C ([T,∞),R) having the property that r (y′)γ ∈
C 1([T,∞),R) and which satisfies (1.1) on [T,∞) . We only consider those solutions of
(1.1) that exist on some half-line to the right and satisfy the condition

sup{|x(t)| : T1 � t < ∞} > 0 for any T1 � T.

Moreover, we tacitly assume that equation (1.1) possesses such solutions. As is cus-
tomary, a solution x of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, and it is said to be nonoscillatory otherwise. The equation it-
self is termed oscillatory if all its solutions oscillate. We note that the equation is called
half–linear if γ = β , sub-half-linear if γ � β and super-half-linear if γ � β .

In recent years, there has been considerable research activity concerning the oscil-
lation and nonoscillation of solutions of various differential equations The qualitative
study of neutral differential equations, has besides its theoretical interest, significant
practical importance. This is due to fact that they arise in various phenomena including
problems concerning electric networks containing lossless transmission lines (as in high
speed computers where such lines are used to interconnect switching circuits), in the
study of vibrating masses attached to an elastic bar, and in the solution of variational
problems with time delays. We refer the reader to Hale’s monograph [7] for further
applications in science and technology.

In reviewing the literature, it becomes apparent that results on the oscillatory
behavior of second-order differential equations with a single sublinear neutral term
are relatively scarce. For initial contributions on such equations, we refer the reader
to [6] where some oscillation results for (1.1) were obtained in the linear case β =
γ = 1and p2(t) = 0 using the Riccati transformation technique and some inequali-
ties. On the other hand, Grace [5] established some new results for the case p1(t) =
0 and α2 = 1. Li and Rogovchenko [13, 14] have obtained oscillation results for
neutral equations with p2(t) = 0 by comparing to first order equations and inequali-
ties respectively. Additional results on equations with neutral terms can be found in
[1, 2, 3, 4, 11, 13, 14, 16, 17, 18, 20]; while some of the equations studied in these
papers have advanced and delayed arguments in their neutral terms and some have pos-
itive and some have negative terms, it is important to note that in all cases the neutral
terms are linear functions.

To the best of our knowledge, there are no results for second-order differential
equations with a neutral term of the form (1.1b) as studied in this paper. The aim of
the present paper is to initiate the study of the oscillation problem for the nonlinear
delay differential equation (1.1) under conditions (H0 )–(H4 ) and different ranges on
the values of α1 and α2 .

2. Main results

As usual, all functional inequalities considered in this paper are assumed to be
satisfied for all sufficiently large t . Without loss of generality, in our proofs we only
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need to be concerned with positive solutions of (1.1) since the proofs for eventually
negative solutions are similar.

The following three lemmas are needed in the proofs of our main results.

LEMMA 1. Let q : [t0,∞) → R
+ , g : [t0,∞) → R , and f : R → R be continuous

functions, f be nondecreasing with x f (x) > 0 for x �= 0 , and g(t) → ∞ as t → ∞ . If
the first-order delay differential inequality (i.e., g(t) � t )

y′(t)+q(t) f (y(g(t))) � 0

has an eventually positive solution, then so does the delay equation

y′(t)+q(t) f (y(g(t))) = 0.

Proof. This lemma is an extension of known results in [9, 10, 15] and the proof is
immediate. �

LEMMA 2. (Young’s Inequality) Let X , Y be nonnegative, n > 1 , and 1/n +
1/m = 1 . Then

XY � 1
n
Xn +

1
m

Ym, (2.1)

and equality holds if and only if Y = Xn−1 .

LEMMA 3. ([8]) Let X , Y be nonnegative. Then

Xλ +(λ −1)Yλ −λXYλ−1 � 0 for λ > 1

Xλ − (1−λ )Yλ −λXYλ−1 � 0 for 0 < λ < 1,
(2.2)

where equality holds if and only if X = Y .

Our first oscillation result is contained in the following theorem.

THEOREM 1. Let 0 < α1 < α2 � 1 , conditions (H0 )–(H4 ) hold,

lim
t→∞

p1(t) = 0, (2.3)

0 < p2(t) < p < 1 for α2 = 1,

0 < p2(t) < p < ∞ for 0 < α2 < 1.
(2.4)

If there exist a constant θ ∈ (0,1) and a nondecreasing function ξ (t) : [t0,∞) → R
+

such that h(t) � ξ (t) � t for t � t0 and both equations

W ′(t)+ θq(t)Rγ(τ(t),t1)W γ/β (τ(t)) = 0, (2.5)

where t is large enough that τ(t) � t1 , and

Z′(t)+
q(t)

pγ/α2
2 (h(t))

Rγ/α2(ξ (t),h(t))Zγ/α2β (ξ (t)) = 0 (2.6)

are oscillatory, then equation (1.1) is oscillatory.
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Proof. Suppose, to the contrary, that x is an eventually positive solution of (1.1).
Then there exists t1 ∈ [t0,∞) such that x(τ(t)) > 0 and x(σ(t)) > 0 on [t1,∞) . From
(1.1), we have (

r
(
y′

)β
)′

(t) = −q(t)xγ(τ(t)) � 0

on [t1,∞) , which implies that r(t)(y′(t))β is nonincreasing and eventually does not
change its sign on [t2,∞) for some t2 � t1 . We claim that y′(t) > 0 on [t2,∞) . Indeed,
for the sake of a contradiction, assume that y′(t) < 0 on [t2,∞) . Then there exists
t ′2 � t2 such that

r(t)
(
y′(t)

)β � r(t ′2)
(
y′(t ′2)

)β
:= c0 < 0 on [t ′2,∞).

Integrating the above inequality from t ′2 to t and taking (H3 ) into account, we have

y(t) � y(t ′2)+ c1/β
0

∫ t

t′2
r−1/β (s)ds →−∞ as t → ∞. (2.7)

Since y(t) >−p2(t)xα2(σ(t)) , x(t) must be unbounded, and so there exists an increas-
ing sequence {sk} such that s1 > t ′2 , limk→∞ sk = ∞ , and limk→∞ x(sk) = ∞ , where
x(sk) = max{x(u) : t0 � u � sk} . Since limt→∞ σ(t) = ∞ , σ(sk) > t0 for all sufficiently
large k . Also, since σ(t) � t , we see that

x(σ(sk)) � max{x(u) : t0 � u � sk} = x(sk).

Therefore,

y(sk) � x(sk)− p2(sk)xα2(σ(sk)) �
(

1− p2(sk)
x1−α2(sk)

)
x(sk) > 0

for all sufficiently large k , which contradicts the fact that limt→∞ y(t) = −∞ . Hence,
we have proven the claim, i.e., y′(t) > 0 on [t2,∞) .

Next, we have two cases to consider: either y(t) > 0 or y(t) < 0 for t � t3 , for
some t3 � t2 . First, suppose that y(t) > 0 for t � t3 . Applying (2.1) from Lemma 2
with

n =
α2

α1
> 1, X = xα1(σ(t)), Y =

α1

α2

(
p1(t)
p2(t)

)
, and m =

α2

α2 −α1
,

and simplifying, we obtain

p1(t)xα1(σ(t))−p2(t)xα2(σ(t))� α2−α1

α1

(
α1

α2
p1(t)

)α2/(α2−α1)

pα1/(α1−α2)
2 (t)=P(t).

Thus, we see that

x(t) �
(

1− P(t)
y(t)

)
y(t).

Since y(t) is increasing,
y(t) � y(t3) =: c1 (2.8)
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for t � t3 . Hence,

x(t) � y(t)
(

1− P(t)
c

)
.

Since in view of (2.3), limt→∞ P(t) = 0, for any fixed ε ∈ (0,1) there exists tε � t3
such that

x(t) � εy(t) (2.9)

for t � tε . Thus, we have(
r(t)

(
y′(t)

)β
)′

+ εγq(t)yγ(τ(t)) � 0. (2.10)

Due to the fact that r1/β y′ is nonincreasing, we see that

y(t) �
∫ t

tε
r−1/β (s)r1/β (s)y′(s)ds � R(t, tε)r1/β (t)y′(t). (2.11)

Letting W (t)=r(t)(y′(t))β , we have y′(t)=(W (t)/r(t))1/β , and so y(t)�R(t,tε)W 1/β(t) .
Using the above inequality in (2.10) gives

W ′(t)+ εγq(t)Rγ(τ(t),tε )W γ/β (τ(t)) � 0.

It follows from Lemma 1 that the corresponding differential equation (2.5) also has a
positive solution, which is a contradiction.

Next, we consider the case where y(t) < 0 for t � t3 . It follows from the definition
of y that

z(t) = −y(t) = −x(t)− p1x
α1(σ(t))+ p2(t)xα2(σ(t)) � p2(t)xα2(σ(t)),

or

x(σ(t)) �
(

z(t)
p2(t)

)1/α2

,

or

x(t) �
(

z(σ−1(t))
p2(σ−1(t))

)1/α2

,

and so

(
r
(
z′
)β

)′
(t) = q(t)xγ(τ(t)) � q(t)

(
z(σ−1(τ(t)))
p2(σ−1(τ(t)))

)γ/α2

=
q(t)

pγ/α2
2 (h(t))

zγ/α2(h(t)).

(2.12)
Clearly, we see that z′(t) = −y′(t) < 0 for t � t3 . Now, for t3 � u � v , we may write

z(u)− z(v) = −
∫ v

u
r−1/β (s)r1/β (s)z′(s)ds � R(v,u)

(
−r1/β (v)z′(v)

)
. (2.13)

We let u = h(t) and v = ξ (t) in the above inequality to obtain

z(h(t)) � R(ξ (t),h(t))
(
−r1/β (ξ (t))z′(ξ (t))

)
. (2.14)
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Using (2.14) in (2.12) gives(
r
(
z′
)β

)′
(t) � q(t)

pγ/α2
2 (h(t))

zγ/α2(h(t))

� q(t)

pγ/α2
2 (h(t))

Rγ/α2(ξ (t),h(t))
(
−r1/β (ξ (t))z′(ξ (t))

)γ/α2
.

Setting Z(t) = −r(t)(z′(t))β , we obtain

Z′(t)+
q(t)

pγ/α2
2 (h(t))

Rγ/α2(ξ (t),h(t))Zγ/α2β (ξ (t)) � 0.

The remainder of the proof is similar to the case where y > 0 and hence is omitted. �

THEOREM 2. Let 0 < α1 < α2 � 1 and conditions (H0 )–(H4 ), (2.3), and (2.4)
hold. If there exists a constant θ ∈ (0,1) such that (2.5) is oscillatory for any t1 � t0
large enough with t � τ(t) � t1 and

limsup
t→∞

∫ t

h(t)

q(s)

pγ/α2
2 (h(s))

Rγ/α2(h(t),h(s))ds

{
> 1 if α2β = γ
= ∞ if α2β > γ

, (2.15)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that x is an eventually positive solution of (1.1).
Then there exists t1 ∈ [t0,∞) such that x(τ(t)) > 0 and x(σ(t)) > 0 on [t1,∞) . Pro-
ceeding as in the proof of Theorem 1, we obtain (2.12) and (2.13). Letting u = h(s)
and v = h(t) in (2.13), we arrive at

z(h(s)) � R(h(t),h(s))
(
−r1/β (h(t))z′(h(t))

)
.

Integrating (2.12) from h(t) to t , we have

Z(t) := −r(h(t))
(
z′(h(t))

)β �
∫ t

h(t)

q(s)

pγ/α2
2 (h(s))

zγ/α2(h(s))ds

�
(
−r1/β (h(t))z′(h(t))

)γ/α2
∫ t

h(t)

q(s)

pγ/α2
2 (h(s))

Rγ/α2(h(t),h(s))ds

= Zγ/α2β (t)
∫ t

h(t)

q(s)

pγ/α2
2 (h(s))

Rγ/α2(h(t),h(s))ds,

that is,

Z1−γ/α2β (t) �
∫ t

h(t)

q(s)

pγ/α2
2 (h(s))

Rγ/α2(h(t),h(s))ds.

Taking the limsup on both sides of the above inequality, we arrive at a contradiction to
(2.15). The proof is now complete. �

Next, we have the following corollaries. The first two are based on a well known
oscillation result in [9, Theorem 1].
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COROLLARY 1. Let α1 < α2 = β = γ = 1 , and conditions (H0 )–(H4 ), (2.3), and
(2.4) hold. If

liminf
t→∞

∫ t

τ(t)
q(s)R(τ(s),t1)ds >

1
e

for any t1 � t0 large enough, and there exists a nondecreasing function ξ (t) : [t0,∞) →
R

+ such that h(t) � ξ (t) � t for t � t0 such that

liminf
t→∞

∫ t

ξ (t)
q(s)R(ξ (s),h(s))ds >

1
e
,

then (1.1) is oscillatory.

COROLLARY 2. Let 0 < α1 < α2 � 1 , γ � α2β , and conditions (H0 )–(H4 ), (2.3)
and (2.4) hold. If ∫ ∞

t0
q(s)Rγ (τ(s),t0)ds >

1
e

and there exists a nondecreasing function ξ (t) : [t0,∞) →R
+ such that h(t) � ξ (t) � t

for t � t0 such that ∫ ∞

t0
q(s)Rγ/α2(ξ (s),h(s))ds = ∞,

then (1.1) is oscillatory.

COROLLARY 3. Let 0 < α1 < α2 � 1 and conditions (H0 )–(H4 ), (2.3) and (2.4)
hold. If

limsup
t→∞

R(τ(t),t1)
(∫ ∞

t
q(s)ds

)1/β
{

> 1 if β = γ,

= ∞ if β > γ,
(2.16)

for any t1 � t0 with t � τ(t) � t1 and (2.15) holds, then (1.1) is oscillatory.

Proof. Suppose to the contrary that x is an eventually positive solution of (1.1).
Then there exists t1 ∈ [t0,∞) such that x(τ(t)) > 0 and x(σ(t)) > 0 on [t1,∞) . Pro-
ceeding as in the proof of Theorem 1, we obtain (2.10) and (2.11). Integrating (2.10)
from t to u and passing to the limit as u approaches ∞ in the resulting inequality, we
obtain

r(τ(t))
(
y′(τ(t))

)β � r(t)
(
y′(t)

)β � εγ
∫ ∞

t
q(s)yγ (τ(s))ds � εγyγ (τ(t))

∫ ∞

t
q(s)ds

Using the above inequality in (2.11), we get

y(τ(t)) � R(τ(t), t1)r1/β (τ(t))y′(τ(t)) � εγ/β yγ/β (τ(t))R(τ(t),t1)
(∫ ∞

t
q(s)ds

)1/β
,

that is,

y1−γ/β (τ(t)) � εγ/β R(τ(t),t1)
(∫ ∞

t
q(s)ds

)1/β
,
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which clearly contradicts (2.16). The rest of the proof is similar to that of Theorem 2
and is omitted. �

The following results serve as analogs to Theorem 1 in cases of different ranges
on α1 and α2 .

THEOREM 3. Let α1 < 1 , α2 > 1 , and conditions (H0 )–(H4 ) hold. Assume there
exist a continuous function p(t) : [t0,∞) → R

+ such that

lim
t→∞

pα2(t)
p2(t)

= lim
t→∞

p1(t)
pα1(t)

= 0, (2.17)

a constant θ ∈ (0,1) , and a nondecreasing function ξ (t) : [t0,∞) → R
+ with h(t) �

ξ (t) � t for t � t0 such that both equations (2.5) and (2.6) are oscillatory and

∫ ∞

t0

Rγ/α2(h(t),t0)q(t)

pγ/α2
2 (h(t))

dt = ∞. (2.18)

Then a solution x(t) of (1.1) is either oscillatory or satisfies limt→∞ |x(t)| = ∞ .

Proof. Suppose to the contrary that x is an eventually positive solution of (1.1)
such that say x(τ(t)) > 0 and x(σ(t)) > 0 on [t1,∞) for some t1 � t0 . From (1.1), we
have (

r
(
y′

)β
)′

(t) = −q(t)xγ(τ(t)) � 0

on [t1,∞) , which implies that r(t)(y′(t))β is nonincreasing and eventually does not
change its sign on [t2,∞) for some t2 � t1 . We shall distinguish the following four
cases for t � t2 :

(I) y(t) > 0 and y′(t) < 0; (II) y(t) > 0 and y′(t) > 0;

(III) y(t) < 0 and y′(t) > 0; (IV) y(t) < 0 and y′(t) < 0.

First, we consider case (I). As in the proof Theorem 1 we arrive at (2.7), which
yields a contradiction.

For case (II), from the definition of y ,

y(t) = x(t)+ (p(t)x(σ(t))− p2(t)xα2(σ(t)))+ (p1(t)xα1(σ(t))− p(t)x(σ(t))) ,

or

x(t) = y(t)− (p(t)x(σ(t))− p2(t)xα2(σ(t)))− (p1(t)xα1(σ(t))− p(t)x(σ(t))) .

Applying (2.2) from Lemma 3 with

λ = α2 > 1, X = p1/α2
2 (t)x(t), and Y =

(
1

α2
p(t)p−1/α2

2 (t)
)1/(α2−1)

,
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we have

p(t)x(σ(t))− p2(t)xα2(σ(t)) � (α2 −1)αα2/(1−α2)
2 p1/(1−α2)

2 (t)pα2/(α2−1)(t) = g2(t).

If we apply (2.2) with

λ = α1 < 1, X = p1/α1
1 (t)x(t), and Y =

(
1

α1
p(t)p−1/α1

1 (t)
)1/(α1−1)

,

we have

p1(t)xα1(σ(t))− p(t)x(σ(t)) � (1−α1)α
α1/(1−α1)
1 p1/(1−α1)

1 (t)pα1/(α1−1)(t) = g1(t).

Thus, we see that

x(t) �
(

1− g1(t)+g2(t)
y(t)

)
y(t).

In view of (2.17), for any ε ∈ (0,1) there exists tε � t2 such that (2.9) holds for t � tε .
The rest of the proof for this case is similar to that of Theorem 1 and hence is omitted.

The nonexistence of the case (III) is shown as in the proof of Theorem 1. For case
(IV), we use (2.12) with z(t) = −y(t) . Clearly, r(t)(z′(t))β � r(t3)(z′(t3))β =: c > 0.
Thus, z(t) � c1/β R(t,t3) , which in view of (2.12) gives

(
r
(
z′
)β

)′
(t) � q(t)

pγ/α2
2 (h(t))

zγ/α2(h(t)) � cγ/β α2
Rγ/α2(h(t),t3)q(t)

pγ/α2
2 (h(t))

.

Now, we claim that limt→∞ r(t)(z′(t))β = ∞ . If not, then by integrating the above
inequality from t3 to t and passing to the limit as t approaches ∞ , we obtain a contra-
diction to the positivity of z′ . From (H3 ) and the fact that z(t) � p2(t)xα2(t) , we also
have limt→∞ z(t) = limt→∞ x(t) = ∞ . The proof of the theorem is now complete. �

3. Examples

We conclude this paper with some examples to illustrate our results.

EXAMPLE 1. Consider the delay differential equation with mixed neutral terms((
x(t)+ p1(t)xα1(σ t)− 1

2
x(σ t)

)′)′
+

q0

t2
x(λ t) = 0, t � t0 � 1, (3.1)

where α1 < 1 and γ are quotients of odd positive integers, q0 > 0, λ , σ ∈ (0,1) ,
p1(t) > 0, and p1(t) → 0 as t → ∞ . Here we have r(t) = 1, p2(t) = 1/2, α2 = β =
γ = 1, R(t, t0) = t − t0 , and h(t) = λ t/σ . It is clear that (H0 )–(H4 ), (2.3), and (2.4)
hold. With ξ (t) = 2λ t/σ and 2λ/σ < 1, it is easy to see that if

min

{
q0λ ln

1
λ

,
q0λ
σ

ln
σ
2λ

}
>

1
e
, (3.2)

then the integral conditions in Corollary 1 hold, and so equation (3.1) is oscillatory.
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EXAMPLE 2. Consider the equation

(
t

(
x(t)+

1
t
x3/7

( t
2

)
− 1

2
x5/7

( t
2

))′)′
+q(t)xγ

( t
4

)
= 0, t � t0 � 1. (3.3)

Here we have r(t) = t , p1(t) = 1/t , p2(t) = 1/2, α1 = 3/7, α2 = 5/7, β = 1,
R(t,t0) = ln(t/t0) , and h(t) = t/2. Conditions (H0 )–(H4 ), (2.3), and (2.4) hold. We
take γ � α2β = 5/7 and ξ (t) = 3t/4. Then if

∫ ∞

t0
q(s) ln

s
4t0

ds >
1
e

and
∫ ∞

t0
q(s)(ln

3
2
)7γ/5ds = ∞,

equation (3.3) is oscillatory by Corollary 2.

EXAMPLE 3. Consider the equation

(
e−t

(
x(t)+

1
t
x1/3

( t
2

)
− x3

( t
2

))′)′

+
(

3
4
et/6− e−7t/6

(
2
t3

+
5

6t2
− 5

6t

))
x
( t

3

)
= 0, t � t0 � 1. (3.4)

Here r(t) = e−t , p1(t) = 1/t , p2(t) = 1, α1 = 1/3, α2 = 3, β = γ = 1, R(t,t0) =
et − et0 , and h(t) = 2t/3. Conditions (H0 )–(H4 ), (2.3), and (2.4) are seen to hold.
With p(t) = 1/t , condition (2.17) holds. Take ξ (t) = 5t/6. Then by [9, Theorem 1],
equations (2.5) and (2.6) are oscillatory. It is also clear that condition (2.18) holds, so
by Theorem 3, a solution x(t) of (3.4) is either oscillatory or limt→∞ |x(t)| = ∞ . One
such solution is x(t) = et .
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Letná 9, 042 00 Košice, Slovakia
e-mail: irena.jadlovska@tuke.sk

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


