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ROTHE’S METHOD FOR NONLINEAR PARABOLIC

VARIATIONAL INEQUALITIES IN NONCYLINDRICAL DOMAINS

GULCHEHRA KULIEVA ∗ AND KOMIL KULIEV

(Communicated by E. Marušić-Paloka)

Abstract. In this paper, a nonlinear parabolic variational inequality in noncylindrical domain is
considered. Using extended Rothe’s method recently achieved in [11] an approximate solution is
constructed. Existence and uniqueness results are proved. Also, we present some further results
and comments related to the main result.

1. Introduction

Let us consider in R
N+1 the domain Q defined by

Q = {(x,t) : x ∈ Ωt ,0 < t < T},

where (0,T ) is a finite interval, Ωt ∈C0,1(RN) (here, C0,1(RN) is a set of all bounded
domains in R

N , whose boundary can be locally described by a function from C0,1(Δ) ,
where Δ ⊂ R

N−1 is a cube; see [7] ) and for every t,s ∈ (0,T ),t < s, it is

/0 �= Ω0 ⊂ Ωt ⊂ Ωs ⊂ ΩT .

Let t ∈ [0,T ] and p > 1, let

Vt = Wk,p
0 (Ωt)

and let V ∗
t be its dual space. We denote by 〈·, ·〉t the duality between V ∗

t and Vt , and
(·, ·)t denotes the inner product in L2(Ωt).

We will solve the parabolic variational inequality

u(t) ∈ Kt :

(
du(t)
dt

,v−u(t)
)

t
+ 〈Au(t),v−u(t)〉t � ( f (t),v−u(t))t for all v ∈ Kt

(1)
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and for t ∈ (0,T ), where Kt is a closed convex subset of the space1 Vt ∩L2(Ωt). More-
over, A is a nonlinear differential operator of order 2k (k ∈ Z+) in the form:

(Au)(x) = ∑
|α |�k

(−1)|α |∂ α(aα(x, δk u))

for x ∈ ΩT , where δk u = {∂ β u}|β |�k and the function f is defined in Q. Together
with (1) we consider the initial condition

u(0) = 0. (2)

REMARK 1. The main goal of the work is to show a way of solution of the
parabolic variational inequalities in the noncylindrical domains. That is why we sim-
plify the data of the variational inequalities.

The case when Kt = K,(t ∈ (0,T )) the problem of the type (1) – (2) was studied by
the many authors e.g. by I. Bock and J. Kačur in [1] and J. Kačur in [6]. In the
special case when the closed convex set Kt = Vt(t ∈ (0,T )) this problem equivalent
to the parabolic boundary value problem, which has been considered by J. Dasht, J.
Engström, A. Kufner and L.-E. Persson in [2], K. Kuliev and L.-E. Persson in [11]
and K. Kuliev in [10]. In this paper we solve the problem (1) – (2) by applying the
method of Rothe. A solution of the given problem is transformed into the solution of
the sequence of elliptic variational inequalities. In Section 2 we briefly present an idea
of construction of the Rothe method for parabolic variational inequalities. Further, in
Section 3 we prove the existence and uniqueness of the solution u(x,t) which is regular
in t (see Theorem 1). Finally, in Section 4 we present further results (see Propositions
1 and 2) and comments related to the main result.

2. Rothe’s method on noncylindrical domains

The following assumptions ensure the existence and uniqueness of the solution in
the sense of Definition 1 below of the problem (1) – (2).

ASSUMPTION 1. The coefficients of the operator A satisfy the following condi-
tions:

(A1) The Carathéodory condition, i.e. aα(x; ·) is continuous on R
m for a.e. x ∈ ΩT

and aα(·;ξ ) is measurable on ΩT for every ξ ∈ R
m, where m is the number of

all multiindices of length |α| � k.

1The norm of the space Vt ∩L2(Ωt) is defined by

‖ ·‖Vt∩L2(Ωt ) = ‖ ·‖Vt +‖ ·‖L2(Ωt ).
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(A2) The growth condition

|aα(x;ξ )| � Cα

(
gα(x)+ ∑

|β |�k

|ξβ |p−1

)
for a.e. x ∈ ΩT

for all ξ ∈ R
m , where Cα is a given positive constant and gα is a given function

from Lp′(ΩT ), p′ = p
p−1 .

(A3) The monotonicity condition

∑
|α |�k

[aα(x;ξ )−aα(x;η)](ξα −ηα) > 0 for a.e. x ∈ ΩT

and every ξ ,η ∈ R
m, ξ �= η .

(A4) The coercivity condition

∑
|α |�k

aα(x;ξ )ξα � c0 ∑
|α |�k

|ξα |p for a.e. x ∈ ΩT

for every ξ ∈ R
m with a suitable constant c0 > 0.

(A5) The symmetry condition aαβ (x;ξ ) = aβ α(x;ξ ) for a.e. x ∈ ΩT and for all ξ ∈
R

m.

(A6) The function f (t) satisfies the following condition: there exists a function F ∈
C(I,L2(ΩT ))∩V 1(I, L2(ΩT )) such that

F(x,t) = f (x,t) for all (x,t) ∈ Q

and we extend our function f to the set ΩT × [0,T ] as

f (x,t) =

{
f (x,t), (x,t) ∈ Q,

0, ΩT × [0,T ]\Q.

(A7) The sets Kt (t ∈ (0,T )) satisfy the following condition: if we denote by Kt (t ∈
[0,T ]) the set of all elements of Kt extended by zero to the whole domain ΩT ,
i.e.

Kt =
{

u ∈ KT , u(t)
∣∣∣
Ωt

∈ Kt , u(t)
∣∣∣
ΩT \Ωt

= 0 a.e. in I

}
,

then K0 ⊂ Kt ⊂ Ks ⊂ KT .

We apply the idea of Rothe in the following way:
Divide the interval I = [0,T ] into n subintervals I1, I2, ..., In (I j = [t j−1, t j], j =

1,2, ...,n) of the length h = T
n . According to the initial condition (2) we put z0(x) =

0, x ∈ ΩT , for t0 = 0 and successively for j = 1,2, ...,n define functions z j(x) as the
solutions of the following variational inequalities:

z j ∈ Ktj :
(z j

h
,v− z j

)
t j

+ 〈Azj,v− z j〉t j �
(

f j +
z j−1

h
,v− z j

)
t j

for all v ∈ Ktj . (3)
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We obtain these problems if we in (1) replace the derivative ∂u
∂ t by the differential

quotient
z j−z j−1

h in the points t = t j and put z j−1 = 0 on Ωt j \Ωt j−1 , j = 1,2, ...,n.
The inequality (3) can be expressed in the form

z j ∈ Ktj : 〈Ahz j,v− z j〉t j �
(

f j +
z j−1

h
,v− z j

)
t j

for all v ∈ Ktj , (4)

where 〈Ahu,v〉t = ( u
h ,v)t + 〈Au,v〉t . The operator A+ 1

h I : Kt → (Vt ∩L2(Ωt))
∗ = Vt +

L2(Ωt) is bounded, continuous, strictly monotone and coercive. Hence, due to [7,
Theorem 43.2] there exists a unique solution z j ∈ Ktj of (4), which implies (3).

We solve the problem (4) in the following way: first we consider (4) for j = 1,
which takes the form

z1 ∈ Kt1 :
( z1

h
,v− z1

)
t1

+ 〈Az1,v− z1〉t1 �
(

f1 +
z0

h
,v− z1

)
t1

for all v ∈ Kt1 ,

then we redefine the obtained solution in the form:

z1(x) =

⎧⎨
⎩

z1(x), x ∈ Ωt1 ,

0, x ∈ ΩT \Ωt1

and we get z1 ∈ KT .
Repeating the above procedure for j = 2,3, ...,n we get functions

z1,z2, ...,zn ∈ KT .

Now we construct a function un(x,t), called Rothe’s function, and defined on
ΩT × I by putting

un(x,t) = z j−1(x)+
t− t j−1

h
(z j(x)− z j−1(x)) (5)

for t ∈ I j, j = 1,2, ...,n, and x ∈ ΩT .
In this way we get a sequence {un(x,t)}∞

n=1 which is called Rothe’s sequence of
approximate solutions of the problem (1) – (2).

In the next Section we prove that this sequence in fact converges to the (unique)
solution of our problem.

3. Existence and uniqueness results

The notion of a solution of the problem introduced above will be given now. Let
us first define the following set:

KQ = {u ∈ L2(I,VT ∩L2(ΩT )), u(t) ∈ Kt for almost all t ∈ I}.
By the definition of Kt it follows that the set KQ is also a convex closed set in L2(I,VT ∩
L2(ΩT )).
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DEFINITION 1. A function u(t) is called a weak solution of the problem (1) – (2)
if the following conditions are fulfilled:

1) u ∈ KQ,

2) u ∈ AC(I,L2(ΩT )),

3) u′ ∈ L2(I,L2(ΩT )),

4) u(0) = 0,

5)
∫ T
0 〈Au(t),v(t)−u(t)〉T dt+

∫ T
0 (u′(t),v(t)−u(t))Tdt �

∫ T
0 ( f ,v(t)−u(t))T dt , for

all v ∈ KQ .

Our main result in this section reads as follows:

THEOREM 1. Assume that Assumption 1 holds. Then there exists exactly one so-
lution of the problem (1) – (2) in the sense of Definition 1, i.e. exactly one function
which is a weak (strong) limit of the sequence of Rothe’s functions un(t) in the space
L2(I,VT ∩L2(ΩT )) (C(I,L2(ΩT ))).

Proof. (Uniqueness) Let u(t) be a solution of the problem (1) – (2). Let a ∈ R+
be arbitrary and define

v(t) =
{

w(t), 0 < t < a,
u(t), a � t � T,

where w(t) ∈ Kt for t ∈ (0,a). Putting this function into integral inequality 5) (of
Definition 1) we get that∫ a

0
〈Au(t),w(t)−u(t)〉Tdt +

∫ a

0
(u′(t),w(t)−u(t))Tdt �

∫ a

0
( f (t),w(t)−u(t))T dt.

Assume that u1(t) and u2(t) are solutions of the problem (1) – (2). Replacing u, w in
the last inequality by u1, u2, respectively, and then u, w and u = u2, w = u1, respec-
tively, and adding the resulting inequalities we obtain that

−
∫ a

0
〈Au2(t)−Au1(t),u2(t)−u1(t)〉T dt−

∫ a

0
(u′2(t)−u′1(t),u2(t)−u1(t))T dt � 0.

From this and from (A3) we get that∫ a

0
(u′2(t)−u′1(t),u2(t)−u1(t))T dt � 0.

Taking into account that
∫ a

0
(u′2(t)−u′1(t),u2(t)−u1(t))T dt =

1
2

∫ a

0

d
dt
‖u2(t)−u1(t))‖2

L2(ΩT )dt

=
1
2
‖u2(a)−u1(a)‖2

L2(ΩT )−
1
2
‖u2(0)−u1(0)‖2

L2(ΩT ) =
1
2
‖u2(a)−u1(a)‖2

L2(ΩT ),
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we find that
‖u2(a)−u1(a)‖2

L2(ΩT ) = 0.

Hence u2 = u1, since a was arbitrary. The proof of the uniqueness is complete.
(Existence) Let us consider the inequality

〈Azj,v− z j〉t j +
(

z j − z j−1

h
,v− z j

)
t j

� ( f j,v− z j)t j for all v ∈ Ktj . (6)

Choose v = z j−1 in (6); by the properties of z j we can extend the integrals in (6) to the
whole domain ΩT and we have that

〈Azj,z j − z j−1〉T +
(

z j − z j−1

h
,z j − z j−1

)
T

� ( f j,z j − z j−1)T .

Adding the resulting inequalities for both sides from j = 1 to i we get that

i

∑
j=1

〈Azj,z j − z j−1〉T +
1
h

i

∑
j=1

(z j − z j−1,z j − z j−1)T �
i

∑
j=1

( f j,z j − z j−1)T .

If we denote

S1
i =

i

∑
j=1

〈Azj,z j − z j−1〉T ,

S2
i =

1
h

i

∑
j=1

(z j − z j−1,z j − z j−1)T ,

S3
i =

i

∑
j=1

( f j,z j − z j−1)T ,

then we can rewrite the last inequality as

S1
i +S2

i � S3
i . (7)

According to (A5) of Assumption 1 we find that

S1
i =

1
2

i

∑
j=1

{2〈Azj,z j〉T −2〈Azj−1,z j〉T}

=
1
2

{
〈Azi,zi〉T +

i

∑
j=1

[〈Azj,z j〉T −2〈Azj−1,z j〉T + 〈Azj−1,z j−1〉T
]}

=
1
2

{
〈Azi,zi〉T +

i

∑
j=1

〈Azj −Azj−1,z j − z j−1〉T
}

.

From this and from (A4) and (A6) of Assumption 1 we obtain that

S1
i � 1

2
〈Azi,zi〉T � C‖zi‖p

Wk,p(ΩT ), (8)
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S2
i =

1
h

i

∑
j=1

‖z j − z j−1‖2
L2(ΩT ), (9)

S3
i �

i

∑
j=1

‖ f j‖L2(ΩT ) ‖z j − z j−1‖L2(ΩT )

� h
2

i

∑
j=1

‖ f j‖2
L2(ΩT ) +

1
2h

i

∑
j=1

‖z j − z j−1‖2
L2(ΩT )

� h
2
iV ( f )2 +

1
2
S2

i � TV ( f )2 +
1
2
S2

i ,

where

V ( f ) = sup
I
‖ f (t)‖L2(ΩT ) + sup

{ti}

n

∑
i=1

‖ f (ti)− f (ti−1)‖L2(ΩT ),

for all finite divisions {ti} of the interval [0,T ].
From this and from (7) – (9) it follows that

S2
i � S3

i � TV ( f )2 +
1
2
S2

i ,

and, consequently,
S2

i � 2TV ( f )2,

i.e.
1
h

i

∑
j=1

‖z j − z j−1‖2
L2(ΩT ) � C (10)

and
S3

i � 2TV ( f )2.

According to (7) and (8) we find that

‖zi‖Wk,p(ΩT ) � C. (11)

The estimate
‖zi‖L2(ΩT ) � C (12)

follows from the following calculation:

‖zi‖2
L2(ΩT ) �

(
i

∑
j=1

‖z j − z j−1‖L2(ΩT )

)2

� i
i

∑
j=1

‖z j − z j−1‖2
L2(ΩT )

= ihS2
i � T 2V ( f )2.

Now we consider the Rothe sequence {un(t)}∞
n=1 given by (5). From (11) and (12) it

follows that

‖un(t)‖VT∩L2(ΩT ) =
∥∥∥∥z j−1 +

t− t j−1

h
(z j − z j−1)

∥∥∥∥
VT∩L2(ΩT )
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�
(

1− t− t j−1

h

)
‖z j−1‖VT∩L2(ΩT ) +

t− t j−1

h
‖z j‖VT∩L2(ΩT ) � C

for every t ∈ I and n = 1,2, ... .
Thus, we get that

‖un‖2
L2(I,VT∩L2(ΩT )) =

∫ T

0
‖un(t)‖2

VT∩L2(ΩT )dt � C2T

for n = 1,2, .... From this and from the reflexivity of the space L2(I,VT ∩L2(ΩT )) it
follows that the Rothe sequence {un}∞

n=1 has a subsequence {unk}∞
k=1, which converges

weakly to some function u ∈ L2(I,VT ∩L2(ΩT )), i.e.

unk ⇀ u in L2(I,VT ∩L2(ΩT )). (13)

We will show that the function u is the desired solution. Denote Zj = z j−z j−1
h . Then

we can write (5) in the form

un(t) = z j−1 +Zj(t− t j−1) in I j, j = 1,2, ...,n.

Now we define functions Un : t �→ L2(ΩT ), (n = 1,2, ...) in the form

Un(t) =

⎧⎨
⎩

Z1, t = 0,

Zj, t ∈ (t j−1,t j], j = 1,2, ...,n.

From (10) it follows that the sequence {Un}∞
n=1 is bounded, because

‖Un‖2
L2(I,L2(ΩT )) =

∫ T

0
‖Un(t)‖2

L2(ΩT )dt =
n

∑
j=1

∫ t j

t j−1

‖Zj‖2
L2(ΩT )dt

=
n

∑
j=1

∥∥∥∥ z j − z j−1

h

∥∥∥∥
2

L2(ΩT )
(t j − t j−1) =

1
h

n

∑
j=1

∥∥z j − z j−1
∥∥2

L2(ΩT ) � C. (14)

Hence, we can choose a subsequence {Unk}∞
k=1 converging weakly to some function

U ∈ L2(I,L2(ΩT )), i.e.

Unk ⇀ U in L2(I,L2(ΩT )). (15)

Thus, there exists ω defined by

ω(t) =
∫ t

0
U(τ)dτ.

According to (13) – (15) and the relation

∫ t

0
Unk(τ)dτ = unk(t)
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we find that
w = u.

(To obtain the last equality we apply Lebesgue dominated convergence theorem.) Then
we get that

u ∈ AC(I,L2(ΩT )),

u′(t) = U(t) a.e. in I,

i.e.,

u(t) =
∫ t

0
U(τ)dτ

and
u(0) = 0.

From the above considerations and from Lemma A3 in [12] it follows that

u ∈ KQ,

which implies the fact that the sequence {un}∞
n=1, defined by

un(t) =

{
z0, t ∈ [t0, t1],
z j−1, t ∈ (t j−1, t j], j = 2,3, ...,n,

is a subset of the set KQ and this set is a convex, closed set in L2(I,VT ∩ L2(ΩT )).
(Here, we apply Theorem 25.2 in [7], i.e. that every convex, closed set in a reflexive
Banach space is weakly closed.)

Thus, we have proved that the function u satisfies the conditions 1)−4) of Defi-
nition 1.

Now, we show that this function satisfies also the integral inequality 5). For this
aim we first show that the Rothe sequence converges uniformly to the solution u, i.e.

un → u in C(I,L2(ΩT )). (16)

Let us consider the integral inequality (6) written for k , i.e.

〈Azj,v− z j〉t j +
(

z j − z j−1

h
,v− z j

)
t j

� ( f j,v− z j)t j for all v ∈ Ktj ,

j = 1,2, . . . ,k. Let v ∈ KQ ∩L∞(I, VT ∩L2(ΩT )) be arbitrary. We can rewrite the last
inequality in the form

〈Aũk(t),v(t)− ũk(t)〉T +(Uk(t),v(t)− ũk(t))T � ( fk(t),v(t)− ũk(t))T (17)

for all t ∈ I, where Uk(t) is defined as above and

ũk(t) =

⎧⎨
⎩

z0, t = 0,

z j, t ∈ (t j−1,t j], j = 1,2, ...,k
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and

fk(t) =

⎧⎨
⎩

f1, t = 0,

f j, t ∈ (t j−1,t j], j = 1,2, ...,k.

Integrating both sides of (17) over the interval (0,T ) we get

∫ T

0
〈Aũk(t),v(t)− ũk(t)〉T dt+

∫ T

0
(Uk(t),v(t)− ũk(t))T dt �

∫ T

0
( fk(t),v(t)− ũk(t))T dt.

(18)
Putting for k = m ,

v(t) =

{
ũn(t) t ∈ (0,τ),
ũm(t) t ∈ [τ,T ),

and for k = n,

v(t) =

{
ũm(t) t ∈ (0,τ),
ũn(t) t ∈ [τ,T ),

we obtain after adding that

τ∫
0

〈Aũn(t)−Aũm(t), ũn(t)− ũm(t)〉T dt +
τ∫

0

(
∂ (un(t)−um(t))

∂ t
, ũn(t)− ũm(t)

)
T

dt

�
τ∫

0

( fn(t)− fm(t), ũn(t)− ũm(t))T dt.

(19)

From this and (A3) we find that

∫ τ

0

(
∂ (un(t)−um(t))

∂ t
, ũn(t)− ũm(t)

)
T

dt �
∫ τ

0
( fn(t)− fm(t), ũn(t)− ũm(t))T dt

and

∫ τ

0

(
∂ (un(t)−um(t))

∂ t
,un(t)−um(t)

)
T

dt

�
∫ τ

0
( fn(t)− fm(t), ũn(t)− ũm(t))T dt

+
∫ τ

0

(
∂ (un(t)−um(t))

∂ t
,un(t)− ũn(t)+ ũm(t)−um(t)

)
T

dt.

(20)

It easy to see that (see, the uniqueness part of the proof)

∫ τ

0

(
∂ (un(t)−um(t))

∂ t
,un(t)−um(t)

)
T

dt =
1
2
‖un(τ)−um(τ)‖2

L2(ΩT ).



Differ. Equ. Appl. 12, No. 3 (2020), 227–242. 237

The integrals on the right hand side in (20) can be estimated as follows:∫ τ

0
( fn(t)− fm(t), ũn(t)− ũm(t))T dt

�
∫ τ

0
‖ fn(t)− fm(t)‖L2(ΩT ) ‖ũn(t)− ũm(t)‖L2(ΩT )dt

� max
I

‖ f (Tn(t))− f (Tm(t))‖L2(ΩT )

∫ τ

0
‖ũn(t)− ũm(t)‖L2(ΩT )dt

� Cmax
I

‖ f (Tn(t))− f (Tm(t))‖L2(ΩT ), (21)

where the functions Tn(t) and Tm(t) are defined as

Tk(t) =

{
to t = 0,

t j t ∈ (t j−1, t j], j = 1,2, . . . ,k

and∫ τ

0

(
∂ (un(t)−um(t))

∂ t
,un(t)− ũn(t)+ ũm(t)−um(t)

)
T

dt

�
∫ τ

0

∥∥∥∥∂ (un(t)−um(t))
∂ t

∥∥∥∥
L2(ΩT )

[
‖un(t)− ũn(t)‖L2(ΩT ) +‖ũm(t)−um(t)‖L2(ΩT )

]
dt

�
∫ τ

0
‖Un(t)−Um(t)‖L2(ΩT )

[
‖Un(t)‖L2(ΩT )(t −Tn(t))+‖Um(t)‖L2(ΩT )(t −Tm(t))

]
dt

�
(

1
n

+
1
m

)∫ τ

0
‖Un(t)−Um(t)‖L2(ΩT )

[
‖Un(t)‖L2(ΩT ) +‖Um(t)‖L2(ΩT )

]
dt

� C

(
1
n

+
1
m

)
.

From the calculations above we conclude that

‖un(τ)−um(τ)‖2
L2(ΩT ) � Cmax

I
‖ f (Tn(t))− f (Tm(t))‖L2(ΩT ) +C

(
1
n

+
1
m

)
. (22)

Using (A6) of Assumption 1 we get that the Rothe sequence {un}∞
n=1 is fundamental

in the space C(I,L2(ΩT )).
From the uniform convergence of the Rothe sequence and from the fact that

‖unk(t)− ũnk(t)‖2
L2(ΩT ) = ‖Unk(t)(t−Tnk(t))‖2

L2(ΩT )

= ‖Unk(t)
√

hnk‖2
L2(ΩT )

(t −Tnk(t))
2

hnk

� C(t −Tnk(t))

� C
nk

, (23)

it follows that the sequence {ũnk(t)}∞
k=1 also converges uniformly to the solution u(t).

Moreover, it can be shown (by using Lemma A6 in [12]) that the following estimate
holds:

‖unk(t)−unk(t
′)‖2

L2(ΩT ) � C |t− t ′|. (24)
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By the limiting process we get that

‖u(t)−u(t ′)‖2
L2(ΩT ) � C |t− t ′|. (25)

From (14), (23) and (25) it follows that the sequence

{(Unk(t),u(t)− ũnk(t))T }∞
k=1

has a subsequence which converges to zero for all t ∈ I, i.e.

(Unk(t),u(t)− ũnk(t))T → 0 as k → ∞, (26)

since, by applying Hölder’s inequality, we have that∫ T

0
|(Unk(t),u(t)− ũnk(t))T |dt �

∫ T

0
‖Unk(t)‖L2(ΩT )‖u(t)− ũnk(t)‖L2(ΩT ) dt

� C max
I

‖u(t)− ũnk(t)‖L2(ΩT ).

From this we find that∫ T

0
|(Unk(t),u(t)− ũnk(t))T |dt → 0 as k → ∞,

which implies the existence of a subsequence which converges to zero almost every-
where in I. Finally, we note that (24) and (25) imply (26).

Putting v(t) = u(t) in (17) we obtain that

〈Aũnk(t), ũnk(t)−u(t)〉T � ( fnk(t), ũnk(t)−u(t))T +(Unk(t),u(t)− ũnk(t))T .

From this and according to (26) we have that

lim
k→∞

sup〈Aũnk(t), ũnk(t)−u(t)〉T dt � 0.

The operator A is pseudomonotone (see [13, Chapter 2]), which implies that

〈Aũ(t), ũ(t)− v(t)〉T � lim
k→∞

inf〈Aũnk(t), ũnk(t)− v(t)〉T . (27)

Using the monotonicity of A and the boundedness of ũn in L∞(I, VT ∩L2(ΩT )) we find
that

〈Aũnk(t), ũnk(t)− v(t)〉T � −C(‖v‖L∞(I,VT∩L2(ΩT ))).

Moreover, according to Fatou’s lemma we get from (27) that∫ T

0
〈Aũ(t), ũ(t)− v(t)〉T dt � lim

k→∞
inf
∫ T

0
〈Aũnk(t), ũnk(t)− v(t)〉T dt. (28)

After integrating (17) over the interval I , we obtain that∫ T

0
〈Aũnk(t),v(t)− ũnk(t)〉T dt +

∫ T

0
(Unk(t),v(t)− ũnk(t))T dt

�
∫ T

0
( fnk(t),v(t)− ũnk(t))T dt.

(29)
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The convergence∫ T

0
(Unk(t),v(t)− ũnk(t))T dt →

∫ T

0
(u′(t),v(t)−u(t))Tdt

and ∫ T

0
( fnk (t), ũnk(t)− v(t))Tdt →

∫ T

0
( f (t),u(t)− v(t))T dt

as k → ∞, follow from (13), (15), (A6) and Lemma A3 (see [12]). By using these facts
and (28) we obtain that∫ T

0
〈Au(t),v(t)−u(t)〉Tdt +

∫ T

0
(u′(t),v(t)−u(t))Tdt �

∫ T

0
( f (t),v(t)−u(t))Tdt.

Moreover, since the set KQ ∩L∞(I, VT ∩L2(ΩT )) is dense in KQ and due to the defini-
tion of v we conclude that the function u satisfies the integral inequality 5) of Defini-
tion 1.

Thus, we have proved that there exists a subsequence {unk(t)}∞
k=1 of Rothe’s se-

quence {un(t)}∞
n=1 , which converges to the solution u(t) of the problem (1) – (2).

Moreover, from the uniqueness of the weak solution it follows that not only the subse-
quence but also the whole sequence converges weakly (strong) in L2(I,VT ∩L2(ΩT ))
(C(I, L2(ΩT ))) to the solution u . �

4. Further results and discussion

In this section we present some results which are connected with the main result
in the previous section.

PROPOSITION 1. Let the assumptions in Theorem 1 be satisfied except that in-
stead of (A6) the function f (t) satisfies the Lipschitz condition

‖ f (t)− f (t ′)‖L2(Ωt) � C|t − t ′| for all t,t ′ ∈ I.

Then we obtain the estimate

max
t∈I

‖un(t)−u(t)‖2
L2(ΩT ) � C

n
.

REMARK 2. This result is interesting also from the numerical point of view.

Proof. The proof immediately follows from the assertion of the proposition and
(22), i.e.,

‖un(τ)−um(τ)‖2
L2(ΩT ) � Cmax

I
‖ f (Tn(t))− f (Tm(t))‖L2(ΩT ) +C

(
1
n

+
1
m

)

� C

(
1
n

+
1
m

)
.

By the limiting process in the last estimate when m → ∞ we get our conclusion. �
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PROPOSITION 2. Let the assumptions in Theorem 1 be satisfied except that in-
stead of (A3) and (A4) the form 〈Au,v〉t is strongly monotone, i.e.,

〈Au−Av,v−u〉t � C0‖u− v‖p
Vt
. (30)

Then Rothe’s sequence {un}∞
n=1 converges strongly to the solution u in the space

L2(I, VT ), i.e.,
‖un−u‖L2(I,VT ) → 0 as n → ∞.

Proof. Let us consider the integral inequality (19) written for τ = T, i.e.,

∫ T

0
〈Aũn(t)−Aũm(t), ũn(t)− ũm(t)〉T dt

+
∫ T

0

(
∂ (un(t)−um(t))

∂ t
, ũn(t)− ũm(t)

)
T

dt �
∫ T

0
( fn(t)− fm(t), ũn(t)− ũm(t))T dt.

From this and from (30) we get that

C
∫ T

0
‖ũn(t)− ũm(t)‖2

VT
dt �

∫ T

0
( fn(t)− fm(t), ũn(t)− ũm(t))T dt

−
∫ T

0

(
∂ (un(t)−um(t))

∂ t
, ũn(t)− ũm(t)

)
T

dt.

The integrals on the right hand side of this inequality tend to zero as n,m → ∞, which
follows from (A6), (14) and from the fact that the Rothe sequence {un(t)}∞

n=1 converges
uniformly to the solution u(t) . Hence, we have that

∫ T

0
‖ũn(t)− ũm(t)‖2

VT
dt � C

(
1
n

+
1
m

)
,

which implies that the Rothe sequence is a fundamental sequence in the space L2(I, VT ).
By the limiting process in the last estimate when m→∞ we obtain the conclusion. �
Now we will discuss what the variational inequality really means for a particularly
chosen operators A and sets Kt (t ∈ I). Let us consider the problem (1) – (2).

• If the set Kt = Vt , then the variational problem (1) – (2) is equivalent to the
following parabolic boundary value problem:

∂u
∂ t

+Au = f in Q,

u(x, t) =
∂u
∂ν

(x,t) = ... =
∂ k−1u
∂νk−1 (x,t) = 0 0 < t < T, x ∈ ∂Ωt ,

u(x,0) = 0 x ∈ Ω0.

Moreover, if Assumption 1 holds, then, according to Theorem 1, this problem
has exactly one solution in the sense of Definition 1. In this sense the result of
the previous section in fact generalizes the results in [10] and [11].
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• Let A be defined by

Au = −
n

∑
i, j=1

∂
∂xi

(
ai, j(x)

∂u
∂x j

)
+a0(x)u,

where

a0, ai, j ∈ L∞(ΩT ), ai, j(x) = a j,i(x),
n

∑
i, j=1

ai, j(x)ξi ξ j � α|ξ |2, a.e. in ΩT ,

a0(x) � α0 > 0, a.e. in ΩT ,

and let

Kt = {v |v ∈Vt = W 1,2
0 (Ωt), |gradv(x)| � 1 a.e. in Ωt}.

Then, by Theorem 1, the corresponding parabolic variational inequality has ex-
actly one solution, which is also a weak solution of the following boundary value
problem:

∂u
∂ t

+A = f in Q′,

|gradxu(x,t)| = 1 in Q\Q′,
u(x,t) = 0 0 < t < T, x ∈ ∂Ωt ,

u(x,0) = 0 x ∈ Ω0,

where Q′ = {(x,t) ∈ Q, |gradxu(x,t)| < 1}.

• Let the operator A be defined by

Au = −
n

∑
i=1

∂
∂xi

(∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u
∂xi

)
+ |u|p−2u

and let
Kt = {v ∈Vt = W 1,p

0 (Ωt), v(x) � 0, a.e. in Ωt}.
Then, in view of Theorem 1, the corresponding parabolic variational inequality
has exactly one solution, which is also weak solution of the following boundary
value problem:

∂u
∂ t

+Au = f in Q,

u(x,t) � 0 in Q,

u(x,t) = 0 0 < t < T, x ∈ ∂Ωt ,

u(x,0) = 0 x ∈ Ω0.
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