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Abstract. In this study, fractional reduced differential transform method (FRDTM) is developed
to derive a semi- analytical solution of fractional partial differential equations which involves
Riesz space fractional derivatives. We focus primarily on implementing the novel algorithm of
FRDTM to Riesz space -fractional telegraph equation while the telegraph equation has fractional
order. Some theorems with their proofs which are used for calculating differential transform
of Riesz derivative operator are presented, as well as the convergence condition and the error
bound of the proposed method are established. To illustrate the reliability and capability of the
method, some examples are provided. The results reveal that the algorithm is very effective and
uncomplicated.

1. Introduction

Fractional differential equations are generalization of integer order differential equa-
tions to fractional order equations. Partial differential equations of fractional order
derivatives are the convenient methods to describe a lot of governing phenomena in
physics, chemistry and biochemistry, control theory, fluid mechanics, quantum me-
chanics, viscoelasticity and other science. A great attention has been conducted to
find analytical and numerical solutions of the fractional differential equations. Time
fractional telegraph equation with Riesz space fractional derivative is a typical frac-
tional diffusion- wave equation which is applied in signal analysis and modeling of
the reaction diffusion and the random walk of suspension flows and so on. Lately nu-
merical methods such as finite element approximation [1, 2], L1/L2 – approximation
method, the standard/shifted Grunwald method and the matrix transform method [3],
Chebyshev Tau approximation [4] and radial basis function approximation [5], the dis-
continuous Galerkin finite element method [6] are used for solving telegraph equation.
Riesz derivative operator appears in some partial differential equations such as tele-
graph equation, wave equation, diffusion equation, advection-dispersion equation and
other partial differential equations. Several methods are used to find an approximate
solution for fractional telegraph equation with Riesz space fractional derivative [7,8,9].
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Differential transform method (DTM) is a reliable and effective method which was
constructed by Zhou [10] for solving linear and nonlinear differential equations arising
in electrical circuit problems. This method constructs an iterative procedure based on
Taylor expansion to obtain an analytical solution in the form of a polynomial. DTM
has extremely been extended to obtain numerical solution for wide range of ordinary
differential equations and partial differential equations [11]. Moreover, the generalized
differential transform method (GDTM) was used for fractional ordinary differential
equations [12] and fractional partial differential equation [13]. DTM and GDTM were
applied by Soltanizadeh, Vineet and Garg [14, 15, 16] to find exact and numerical solu-
tions for telegraph equations without incorporating Riesz space derivative. Compared
to the classical Taylor series method, DTM and GDTM needs less computational time
work, however to conquer the demerit of multi part computations in DTM and GDTM,
the reduced differentia transform method (RDTM) was introduced and used to find the
approximate solution of PDEs [17], then it was improved to fractional reduced differ-
ential transform (FRDTM) to obtain an approximate solution of fractional PDEs [18].

Lately FRDTM was used to obtain analytical approximation of time-fractional
telegraph equation [19] and multi term time-fractional diffusion equation [20] and
space-time fractional order heat-like and wave-like partial differential equations [21].
These types of equations which previously were solved by FRDTM were not involved
Riesz derivative operator. The main goal of this study is applying an improved scheme
for FRDTM and RDTM based on the order of equation, to determine an approximate
solution for such equations which are involving Riesz space fractional derivative. For
the simplicity we consider a kind of telegraph equation with Riesz operator on a finite
one dimensional domain in the form:

C
0 D2β

t u(x, t)+2κ C
0 Dβ

t u(x,t)+ ϑ 2u(x,t)−η
∂ γu(x,t)

∂ |x|γ = f (x,t) , 0 < β � 1 (1.1)

a � x � b, 0 � t � T,

subject to the initial conditions:

u(x,0) = ϕ (x) ,
∂u(x,0)

∂ t
= ψ (x) , a � x � b,

and boundary conditions:

u(a,t) = u(b,t) = 0, 0 � t � T,

where κ > ϑ � 0 and η > 0 are constants.
Generally the Riesz space-fractional operator ∂ γ

∂ |x|γ over [a,b] is defined by:

∂ γ

∂ |x|γ u(x, t) = − 1

2cos
(πγ

2

) 1
Γ(n− γ)

∂ n

∂xn

b∫
a

u(s,t)ds

|x− s|γ−1 , n−1 < γ < n ,n ∈ N.

In this paper we suppose that 1 < γ < 2, and u(x,t) , f (x, t) ,ϕ (x) and ψ (x) are real-
-valued and sufficiently well-behaved functions.
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The rest of this study is organized as follows. In Section 2 we propose some
preliminary definitions of fractional calculus. In Section 3 we give some knowledge
of fractional reduced differential transform method. Section 4 discusses about apply-
ing RFDTM for fractional telegraph equation with Riesz operator accompanied with
some theorems. In Section 5 convergence analysis and error bound of the method are
discussed. In Section 6 some numerical examples are presented to demonstrate the ef-
ficiency and convenience of the theoretical results. The concluding remarks are given
in Section 7.

2. Some definitions of fractional calculus

In this section some necessary definitions of fractional calculus are introduced. Since
the Riemann-Liouville and the Caputo derivatives are often used, as well as the Riesz
fractional derivative is defined based on left and right Riemann-Liouville and Caputo
derivatives, we focus in these definitions of fractional calculus. Furthermore in the
modeling of most physical problems, the initial conditions are given in integer order
derivatives and the integer order derivatives are coincided with Caputo initial conditions
definition; therefore the Caputo derivative is used in numerical algorithm.

DEFINITION 1. The left and right Riemann-Liouville integrals of order α > 0 for
a function f (x) on interval (a,b) are defined as follows,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aJ
α
x f (x) = 1

Γ(α)

x∫
a

f (s)

(x− s)1−α ds,

xJ
α
b f (x) = 1

Γ(α)

b∫
x

f (s)
(s−x)1−α ds,

where Γ(z) =
∞∫
0

e−ttz−1dt , z ∈ C is the Gamma function.

DEFINITION 2. The left and right Riemann-Liouville derivatives of order α > 0
for a function f (x) defined on interval (a,b) are given as follows,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RL
a Dα

x f (x) = 1
Γ(m−α)

dm

dxm

x∫
a

(x− s)m−α−1 f (s)ds,

RL
x Dα

b f (x) = (−1)m

Γ(m−α)
dm

dxm

b∫
x

(s− x)m−α−1 f (s)ds,

where m−1 < α � m .
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REMARK 1. From the Riemann-Liouville derivatives definition and the definition
of the Riesz space fractional derivative one can conclude for 0 � x � L

∂ γ

∂ |x|γ u(x, t) = −ζγ(RL
0 Dγ

x + RL
x Dγ

L)u(x,t) , while ζγ = 1
2cos( πγ

2 ) , γ �= 1, and, RL
0 Dγ

x

and RL
x Dγ

L are left and right Riemann-Liouville derivatives.

DEFINITION 3. The left and right Caputo derivatives of order α for function
f (x) is defined as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
a Dα

x f (x) = 1
Γ(m−α)

x∫
a

(x− s)m−α−1 dm f (s)
dsm ds, m−1 < α � m ,

C
x Dα

b f (x) = (−1)m

Γ(m−α)

b∫
x

(s− x)m−α−1 dm f (s)
dsm ds, m−1 < α � m.

From the Caputo’s derivative definitions we have

DαC = 0, (C is a constant) (2.1)

C
0 Dα

t tβ =

{
0, for β ∈ N0 and β � α

Γ(β+1)
Γ(β+1−α)t

β−α for β ∈ N0 and β � α.
(2.2)

There are relations between Riemann-Liouville derivatives and Caputo derivatives as
follows:

C
a Dα

x f (x) = RL
a Dα

x f (x)−
m−1

∑
k=0

f (k) (a)(x−a)k−α

Γ(1+ k−α)
, (2.3)

C
x Dα

b f (x) = RL
x Dα

b f (x)−
m−1

∑
k=0

f (k) (b)(b− x)k−α

Γ(1+ k−α)
. (2.4)

It is clear that if in (2.3), f (k) (a) = 0, k = 0,1, ..,m− 1 then the left Riemann-
Liouville derivatives and the left Caputo derivatives are equivalent, the same is hold for
the right Riemann-Liouville derivatives and the right Caputo derivatives in (2.4) when
f (k) (b) = 0, k = 0,1, ..,m−1. For comprehensive properties of fractional derivatives
and integrals one can refer to the literature [22, 23, 24, 25].

In general the Caputo derivative operators C
a Dα

t and C
a Dβ

t do not commute. The
following lemma provides appropriate conditions for interchanging Caputo derivatives
in some special cases.

LEMMA 1. Let m− 1 < α < m, n− 1 < β < n, m,n are positive integers and
f ∈Cn[a,b] . Then

aJ
α
t

C
a Dβ

t f (t) = C
a Dβ−α

t f (t) , α �= β , (2.5)
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aJ
α
t

C
a Dα

t f (t) = f (t)−
m−1

∑
k=0

(t −a)k

Γ(k+1)
f (k) (a) , (2.6)

C
a Dβ

t aJ
α
t f (t) = aJ

α−β
t f (t) , β � α or α < β , α ∈ N, (2.7)

C
a Dβ

t aJ
α
t f (t) = C

a Dβ−α
t f (t)+

n−m

∑
k=0

(t −a)k+α−β

Γ(k+1+ α −β )
f (k) (a) , α < β , (2.8)

C
a Dβ

t
C
a Dm

t f (t) = C
a Dm+β

t f (t) , β > 0, (2.9)

C
a Dm

t
C
a Dβ

t f (t) = C
a Dm+β

t f (t))+
m+n−1

∑
j=n

(t −a) j−m−β

Γ(1+ j−m−β )
f ( j) (a) , (2.10)

The interchange of the Caputo derivative operators in (2.10) is allowed under the
following conditions:

f ( j)(a) = 0, j = n,n+1, . . . ,m+n−1, m = 0,1,2, . . . .

When n−1 < β < n then 0 < n−β < 1 . For 0 < n−β < 1 , one has

C
a Dn−β

t
C
a Dβ

t f (t) = f (n) (t) , 0 < n−β < 1, (2.11)

Let 0 < α < 1 , n−1 < α + β < n, n is positive integer. Then one has

C
a Dα

t
C
a Dβ

t f (t) = C
a Dα+β

t f (t) , 0 < α < 1, (2.12)

Note that relations (2.5) to (2.8)) are also hold for Caputo right derivative. The proofs
and details of Lemma1 are discussed by C. Li and F. Zeng [25].

3. Fractional reduced differential transform method (FRDTM)

Consider a function of two variables u(x,t) and suppose that it can be represented as a
product of two single-variable functions, i.e. u(x,t) = f (x)g(t) . If u(x,t) is analytic
and can be differentiated continuously with respect to space x and time t in the domain
of interest, then the function u(x,t) is represented as:

u(x,t) =
∞

∑
k=0

Uk (x) (t− t0)
kα , (3.1)

where 0 < α � 1 , Uk (x) is called the spectrum function of u(x,t) which is defined as
follows

Uk (x) =
1

Γ(αk+1)

[
(Dα

t )k u(x,t)
]
(t=t0)

, (3.2)

while (Dα
t )k = Dα

t .Dα
t . . . .Dα

t , k− times, and Dα
t represents the derivative operator

of Caputo definition with respect to time t. Substituting (3.2) in (3.1) yields

u(x, t) =
∞

∑
k=0

1
Γ(αk+1)

[
(Dα

t )k u(x,t)
]
(t=t0)

(t− t0)
kα . (3.3)
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In practical application u(x,t) is approximated by

uN (x,t) =
N

∑
k=0

Uk (x)(t − t0)
kα , (3.4)

where N is the order of approximate solution. The exact solution can be obtained as

u(x,t) = lim
N→∞

uN (x,t) . (3.5)

Based on the definitions (3.1) and (3.2), we have the following results.

THEOREM 1. Suppose that Uk (x) , Vk (x) and Wk (x) are the FRDT of the func-
tions u(x, t) , v(x, t) and w(x,t) , respectively; then

(a) If u(x, t) = v(x, t)±w(x,t) , thenUk (x) = Vk (x)±Wk (x) ,

(b) If u(x, t) = cv(x, t) , c ∈ R, thenUk (x) = cVk (x) ,

(c) If u(x, t) = v(x, t)w(x,t) , then Uk (x) =
k
∑

r=0
Vk (x)Wk−r (x) ,

(d) If u(x, t) = (x− x0)
mβ (t− t0)

nα , thenUk (x) = (x− x0)
mβ δ (k−n) ,

where δ (k) =
{

1, k = 0,
0, k �= 0.

(e) If u(x, t) = Dα
t v(x,t) , 0 < α � 1, then Uk (x) = Γ(α(k+1)+1)

Γ(αk+1) Vk+1 (x) ,

(f) If u(x, t) = DNα
t v(x,t) , 0 < α � 1, then Uk (x) = Γ(αk+Nα+1)

Γ(αk+1) Vk+N (x) .

In case α = 1 , FRDTM is reduced to classical reduced differential transform method
(RDTM) which is well addressed in [17].

4. Description of the method

To obtain fractional differential transform of Eq. (1.1) we need some theorems which
are presented as follows. For simplicity we suppose (x0,t0) = (0,0) in both Theorem 2
and Theorem 3.

THEOREM 2. Suppose u(x) =
∞

∑
k=0

U (k)xk and v(x) = RL
0 Dγ

xu(x) 1 < γ < 2,

is the left Riemann-Liouville derivative then v(x) =
∞

∑
k=0

U (k) Γ(k+1)
Γ(k+1−γ)x

k−γ .
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Proof. By replacing u(x) =
∞
∑

k=0
U (k)xk in the left Riemann-Liouville derivative

definition it is easy to achieve

v(x) = RL
0 Dγ

xu(x) =
1

Γ(2− γ)
∂ 2

∂x2

x∫
0

∑∞
k=0U (k)ξ k

(x− ξ )γ−1 dξ

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

x∫
0

ξ k

(x− ξ )γ−1 dξ

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

⎛
⎝L−1

⎛
⎝L

⎛
⎝ x∫

0

ξ k

(x− ξ )γ−1 dξ

⎞
⎠
⎞
⎠
⎞
⎠

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2 L−1(L(xk ∗ x1−γ))

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

(
L−1

(
Γ(k+1)

sk+1 .
Γ(2− γ)

s2−γ

))

=
∞

∑
k=0

U (k)
∂ 2

∂x2

(
Γ(k+1)

Γ(k+3− γ)
xk+2−γ

)

=
∞

∑
k=0

Γ(k+1)
Γ(k+1− γ)

U (k)xk−γ .

THEOREM 3. Suppose u(x) =
∞

∑
k=0

U (k)xk and v(x) = RL
x Dγ

l u(x) 1 < γ < 2, is

the right Riemann-Liouville derivative, then

v(x) =
∞

∑
k=0

∞

∑
i=k

(
i
k

)
(−1)k (l)i−kU (i) Γ(k+1)

Γ(k+1−γ) (l− x) k−γ .

Proof. By replacing u(x) =
∞

∑
k=0

U (k)xk in the right Riemann-Liouville derivative

definition it is easy to obtain

v(x) = RL
x Dγ

l u(x) =
1

Γ(2− γ)
∂ 2

∂x2

l∫
x

∑∞
k=0U (k)ξ k

(ξ − x)γ−1 dξ

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

l∫
x

ξ k

(ξ − x)γ−1 dξ ,

With replacing ξ − x = t ,

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

⎛
⎝ l−x∫

0

(t + x)k

tγ−1 dt

⎞
⎠
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=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2

⎛
⎝L−1

⎛
⎝L

⎛
⎝ y∫

0

(l− (y− t))k

tγ−1 dt

⎞
⎠
⎞
⎠
⎞
⎠

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2 L−1(L((l− y)k ∗ y1−γ))

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2 L−1

(
L

(
k

∑
i=0

(
k
i

)
(−1)i (l)k−i yi ∗ y1−γ

))

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2 L−1

(
k

∑
i=0

(
k
i

)
(−1)i (l)k−i L(yi ∗ y1−γ)

)

=
1

Γ(2− γ)

∞

∑
k=0

U (k)
∂ 2

∂x2 L−1

(
k

∑
i=0

(
k
i

)
(−1)i (l)k−i

(
Γ(i+1)

si+1 .
Γ(2− γ)

s2−γ

))

=
∞

∑
k=0

U (k)
∂ 2

∂x2

(
k

∑
i=0

(
k
i

)
(−1)i (l)k−i

(
Γ(i+1)

Γ(i+3− γ)
(l− x)i+2−γ

))

=
∞

∑
k=0

k

∑
i=0

(
k
i

)
(−1)i (l)k−iU (k)

Γ(i+1)
Γ(i+1− γ)

(l− x)i−γ

=
∞

∑
k=0

∞

∑
i=k

(
i
k

)
(−1)k (l)i−kU (i)

Γ( k+1)
Γ( k+1− γ)

(l− x) k−γ .

In both Theorem 2 and Theorem 3 L is Laplace transform operator, which is defined as

L( f ) =
∞∫
0

f (t)e−stdt, s ∈C, and (f*g) represents the convolution of functions f and

g, which is defined as ( f ∗ g)(t) =
t∫
0

f (t− τ)g(τ)dτ.

These theorems support us to apply FRDTM for Eq (1.1).

Recall Eq (1.1), then with applying FRDTM, the attained recurrence relation is

Γ(β (k+2)+1)
Γ(βk+1)

Uk+2 (x)+2κ
Γ(β (k+1)+1)

Γ(βk+1)
Uk+1 (x)+ϑ 2Uk (x)−η

∂ γUk (x)
∂ |x|γ =Fk (x) ,

k = 0,1,2, . . . . (4.1)

Where Fk (x) is the FRDT of f (x,t) . Fractional reduced differential transform of initial
conditions are

U0 (x) = Φ( x) , U1 (x) = Ψ( x) , (4.2)

where Φ( x) and Ψ( x) are the FRDT of ϕ (x) and ψ (x) , respectively. Relation (4.1)
is a recurrence relation and we can calculate Uk (x) , k = 0,1,2, . . . from (4.1) and

(4.2), as well ∂ γUk(x)
∂ |x|γ can be computed according to Theorem 2 and Theorem 3.
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After calculating Uk (x) , k = 0,1,2, . . . ,N from (4.1) and (4.2) with the inverse trans-
formation we will get

uN (x,t) =
N

∑
k=0

Uk (x)(t − t0)
kα , (4.3)

which is the approximate of u(x,t) . In the next section we will show that

lim
N→∞

uN (x,t) = u(x,t) .

5. Convergence analysis and error estimate of the method

THEOREM 4. Suppose that 0D
kα
t u(x,t) ∈C ([0,L]× [0,T ]) for k = 0,1, . . . .,N +

1 where 0 < α < 1 , let

uN (x,t) =
N

∑
k=0

Uk (x) tkα .

Then lim
N→∞

uN (x, t) = u(x,t) , in addition, there exist a value ξ , with 0 < ξ < 1 while

the error term EN (x,t) is obtained from

EN (x,t) = sup
t∈[0,t]

∣∣∣∣∣ 0D
(N+1)α
t u(x,ξ ) t(N+1)α

Γ((N +1)α +1)

∣∣∣∣∣ .
Proof.

Jkα
0D

kα
t u(x,t)− J(k+1)α

0D
(k+1)α
t u(x,t) (5.1)

Based on the aforementioned points in Lemma1 for 0 < α < 1

= Jkα
(

0D
kα
t u(x,t)− Jα

0D
α
t

(
0D

kα
t u(x,t)

))
(5.2)

With (2.8)

= Jkα
(

0D
kα
t u(x,0)

)
(5.3)

= 0D
kα
t u(x,0) t

Γ(kα +1)

kα

(5.4)

With (3.2)
= Uk (x) tkα . (5.5)

The N-th order approximation of u(x,t) is

N

∑
k=0

Uk (x)tkα =
N

∑
k=0

Jkα
0D

kα
t u(x,t)− J(k+1)α

0D
(k+1)α
t u(x,t) (5.6)
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= u(x,t)− J(N+1)α
0D

(N+1)α
t u(x,t) (5.7)

= u(x,t)− 1
Γ((N +1)α)

t∫
0

0D
(N+1)α
t u(x,τ)

(t− τ)1−(N+1)α dτ (5.8)

Applying integral mean value theorem we will have

= u(x,t)− 0D
(N+1)α
t u(x,ξ )

Γ((N +1)α)

t∫
0

dτ
(t− τ)1−(N+1)α (5.9)

= u(x,t)− 0D
(N+1)α
t u(x,ξ )

Γ((N +1)α +1)
t(N+1)α . (5.10)

Hence we will get

u(x,t) =
N

∑
k=0

Uk (x)tkα + 0D
(N+1)α
t u(x,ξ )

Γ((N +1)α +1)
t(N+1)α . (5.11)

Therefore the error term is in the form

EN (x, t) = u(x,t)−
N

∑
k=0

Uk (x) tkα = sup
t∈[0,1]

∣∣∣∣∣ 0D
(N+1)α
t u(x,ξ )

Γ((N +1)α +1)
t(N+1)α

∣∣∣∣∣ . (5.12)

When N → ∞, then EN → 0, and u(x,t) can be approximated by

u(x,t) ∼=
N

∑
k=0

Uk (x)tkα . (5.13)

6. Numerical results

In this section, some examples are illustrated to show the applicability of the mentioned
scheme. We noted that if the partial derivative in equation is integer order, RDTM is
used and in the cases that the equation has fractional order derivatives then FRDTM is
used. The examples are presented in both cases.

EXAMPLE 1. Consider the following Riesz -space fractional telegraph equation
with constant coefficients [7]

∂ 2u(x,t)
∂ t2

+20
∂u(x,t)

∂ t
+25u(x,t)− ∂ γu(x,t)

∂ |x|γ = f (x,t) , (6.1)

where the initial and boundary conditions are

u(0,t) = u(1,t) = 0, 0 � t � T,

u(x,0) = 0,
∂u(x,0)

∂ t
= x2 (1− x)2 , 0 � x � 1,
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and the inhomogeneous term is

f (x,y) =x2 (1− x)2 [24sin t +20cost]+
sin t

2cos γπ
2

{
Γ(5)

Γ(5− γ)

(
x4−γ +(1− x)4−γ

)

+2
Γ(4)

Γ(4− γ)

(
x3−γ +(1− x)3−γ

)
+

Γ(3)
Γ(3− γ)

(
x2−γ +(1− x)2−γ

)}
.

Under these assumptions, the exact solution of Eq (6.1) is u(x,t) = x2 (1− x)2 sin t.
With applying RDTM for Eq (6.1) we obtain the recurrence relation as follows

(k+2)(k+1)Uk+2 (x)+20(k+1)Uk+1 (x)+25Uk (x)− ∂ γUk (x)
∂ |x|γ = Fk (x) , (6.2)

while

Fk (x) =x2 (1− x)2 [24S (k)+20C (k)]+ ξγS (k)
{

Γ(5)
Γ(5− γ)

(
x4−γ +(1− x)4−γ

)

+2
Γ(4)

Γ(4− γ)
(x3−γ +(1− x)3−γ)+

Γ(3)
Γ(3− γ)

(
x2−γ +(1− x)2−γ

)}
.

Where S (k) and C (k) indicate differential transforms of sin t and cost, respectively
which are calculated by

S (k) =

{
0 k is even

(−1)
k−1
2

k! k is odd,
C (k) =

{
0 k is odd

(−1)
k
2

k! k is even.
(6.3)

RDTM of initial conditions are

U0 (x) = 0, U1 (x) = x2 (1− x)2 . (6.4)

After simple calculation from (6.2) and (6.3) and (6.4) we will get

U2 (x) = 0, U3 (x) =
−1
3!

x2 (1− x)2 , U4 (x) = 0,

U5 (x) =
1
5!

x2 (1− x)2 , . . . ,Uk (x) =

{
0, k is even

(−1)
k−1
2

k! x2 (1− x)2 , k is odd.
(6.5)

With inverse Transformation

u(x, t) =
∞

∑
k=0

Uk (x)tk = x2 (1− x)2
(

t− t3

3!
+

t5

5!
+ . . .

)
= x2 (1− x)2 sin t. (6.6)

Which is the exact solution.

Chen et al. [7] proposed a class of unconditionally stable difference scheme (FD)
based on the Pade approximation to solve the problem (6.1) at t = 2.0 with several
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choices for h and τ , where h and τ are the space and time step sizes, respectively.
In Table 1, we compare ‖u−uN‖2 at t = 2.0 with different choice for N . The results
show that our method is more accurate than the three schemes which were proposed
on their work. The main advantage of this method is lower computational work than
Chen et al. [7] , where with τ = 10−4 as a time step length they need to evaluate 2000
iterations to reach t = 2.

Table 1: Comparison of ‖u− uN‖2 for different values of h and τ for Example 1 at
t = 2.0.

N Improved RDTM method FD schemes [7](τ = 10−4)
h SchemeI SchemeII SchemeIII

5 3.5194e-4 0.25 8.5871-4 1.0948e-3 1.7573e-3
10 5.8880e-7 0.125 1.9827e-4 2.5363e-4 4.2490e-4
15 3.4711e-12 0.0625 5.0593e-5 6.1691e-5 1.0145e-4
20 3.3912e-16 0.03125 1.4007e-5 1.6003e-5 2.4455e-5

EXAMPLE 2. Consider the following fractional telegraph equation with Riesz
space fractional derivative [1]

C
0 D2β

t u(x,t)+C
0 Dβ

t u(x,t)+
(RL
0 Dγ

x + RL
x Dγ

l u(x,t)
)

= f (x,t) ,
1/2 < β < 1, 0 � x � 1, 0 � t � 1, (6.7)

with initial conditions

u(x,0) = x2 (1− x)2 ,
∂u(x,0)

∂ t
= −4x2 (1− x)2 0 � x � 1,

and boundary conditions

u(0,t) = u(1,t) = 0, 0 � t � 1,

the inhomogeneous term is

f (x,t)=

(
8t2−2β

Γ(3−2β )
+

8t2−β

Γ(3−β )
− 4t1−β

Γ(2−β )

)
x2 (1− x)2

+(2t−1)2

⎛
⎝2
(
x2−γ +(1−x)2−γ

)
Γ(3− γ)

−
12
(
x3−γ +(1−x)3−γ

)
Γ(4− γ)

+
24
(
x4−γ +(1−x)4−γ

)
Γ(4− γ)

⎞
⎠ .

The exact solution of Eq (6.7) is u(x,t) =
(
4t2−4t +1

)
x2 (1− x)2 .

Suppose 2β = 1.6 , we choose α = 0.2 and using FRDTM and Theorem 2 and Theo-
rem 3 we get

Γ(o.2k+2.6)
Γ(0.2k+1)

Uk+8 (x)+
Γ(0.2k+1.8)
Γ(0.2k+1)

Uk+4 (x)+
(C
0 Dγ

x +C
x Dγ

1

)
Uk (x) = Fk (x) , (6.8)
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while

Fk (x) =x2 (1− x)2
(

8δ (k−2)
Γ(3−2α)

+
8δ (k−6)
Γ(3−α)

− 4δ (k−1)
Γ(2−α)

)
+(4δ (k−10)−4δ (k−5)+ δ (k))⎛
⎝2
(
x2−γ +(1− x)2−γ

)
Γ(3− γ)

−
12
(
x3−γ +(1− x)3−γ

)
Γ(4− γ)

+
24
(
x4−γ +(1− x)4−γ

)
Γ(5− γ)

⎞
⎠ .

Where the FRDTM of initial conditions are

U0 (x) = x2 (1− x)2 , U1 (x) = U2 (x) = U3 (x) = U4 (x) = 0, and

U5 (x) = −4 x2 (1− x)2 , U6 (x) = U7 (x) = 0 (6.9)

From (6.8) and (6.9) we will get

U8 (x) = U9 (x) = 0, U10 (x) = 4 x2 (1− x)2 and Uk (x) = 0 f or k � 11. (6.10)

Using inverse transformation we will have

u(x, t) =
∞

∑
k=0

Uk (x) t0.2k = x2 (1− x)2
(
1−4t +4t2

)
= x2 (1− x)2 (1−2t)2 . (6.11)

Zhao et al. [2] used fractional difference and finite element methods in spatial direction
to obtain numerical solution for Eq (6.7). Contrary, with our method the exact solution
is achieved for this equation which demonstrate that this method is effective and reliable
for fractional telegraph equation with Riesz space-fractional derivative.

EXAMPLE 3. Consider the following Riesz space fractional telegraph equation

∂ 2u(x,t)
∂ t2

+4
∂u(x,t)

∂ t
+4u(x,t)− ∂ γu(x,t)

∂ |x|γ = f (x,t) , (6.12)

where initial and boundary conditions are

u(0,t) = u(1,t) = 0, 0 � t � T,

u(x,0) = 0,
∂u(x,0)

∂ t
= x2 (1− x)2 ex, 0 � x � 1,

and the inhomogeneous term is

f (x,y)=x2 (1− x)2 ex [3sin t +4cost]

+
sin t

2cos γπ
2

∞

∑
n=0

1
n!

{
Γ(n+5)

Γ(n+5− γ)

(
xn+4−γ +(1− x)n+4−γ

)

+2
Γ(n+4)

Γ(n+4−γ)

(
xn+3−γ +(1−x)n+3−γ

)
+

Γ(n+3)
Γ(n+3−γ)

(
xn+2−γ +(1−x)n+2−γ

)}
.

Under these assumptions, the exact solution is given by u(x,t)= x2 (1− x)2 ex sin t.
Figures 1, 2 demonstrate the surface area of exact and numerical solutions of Example
3 and Table 2 represents the absolute errors with applying this method for different
values of N at t = 1.
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Figure 1: The exact solution surface of Example 3

Figure 2: The numerical solution surface of Example 3 for N = 5

Table 2: The absolute errors |u(x,t)−uN (x,t)| by FRDTM of Example 3 at t = 1
x N = 1 N = 3 N = 5 N = 7
0 0 0 0 0

0.2 4.9568e−3 2.5444e−4 6.1185e−6 8.5401e−8
0.4 1.3622e−2 6.9926e−4 1.6814e−5 2.3466e−7
0.6 1.6638e−2 8.5407e−4 2.0537e−5 2.8661e−7
0.8 9.0320e−3 4.6363e−4 1.1148e−5 2.3466e−7
1 0 0 0 0
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7. Conclusion

Riesz derivative operator appears in some partial differential equations such as
telegraph equation, wave equation, diffusion equation, advection-dispersion equation
and other partial differential equations. These types of equations previouslywere solved
by FRDTM without considering Riesz derivative operator. In this paper we have devel-
oped FRDTM for solving telegraph equation with Riesz space fractional derivatives. It
is remarkable that when the telegraph equation has fractional order with Riesz operator
then improved FRDTM is used, and in the case we have integer order telegraph equation
with Riesz operator then improved RDTM will be used. Compared to the other numer-
ical methods, the acquired results in both cases demonstrated that this method required
less amount of computational work; moreover it was efficient and powerful technique.
Providing convergent series solution with fast convergence rate was the main advantage
of the proposed method, which the numerical examples revealed these facts.
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