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ON UNBOUNDED OSCILLATION OF FOURTH

ORDER FUNCTIONAL DIFFERENCE EQUATIONS
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Abstract. In this work, an illustrative discussion have been made on unbounded oscillation prop-
erties of a class of fourth order neutral functional difference equations of the form:

Δ2(r(n)Δ2(y(n)+ p(n)y(n− τ)))+g(n)G(y(n−σ))−h(n)H(y(n−α)) = 0

under the assumptions
∞

∑
n=0

n
r(n)

= ∞,
∞

∑
n=0

n
r(n)

< ∞.

New oscillation criteria have been established for different ranges of p(n) with |p(n)| < ∞ .

1. Introduction

In [16] and [17], the author has discussed the oscillatory and asymptotic behaviour
of solutions of

�2(r(n)�2(y(n)+ p(n)y(n− τ)))+q(n)G(y(n−σ))= 0 (1.1)

and

�2(r(n)�2(y(n)+ p(n)y(n− τ)))+q(n)G(y(n−σ))= f (n) (1.2)

under the key assumptions

(A0)
∞

∑
n=0

n
r(n)

< ∞,

(A00)
∞

∑
n=0

n
r(n)

= ∞ ,
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where � is the forward difference operator defined by �y(n) = y(n+1)− y(n),r, p,q
and f are real valued discrete functions defined on N(n0)= {n0,n0+1, ...},n0 � 0 such
that r(n) > 0,q(n) > 0 for n � n0 , G ∈C(R,R) is nondecreasing such that uG(u) > 0
for u �= 0 and τ,σ are positive constants. Of course, we have the usual question about
the works [16] and [17] that under what condition(s), (1.1) is oscillatory? It has been
seen that (1.2) is oscillatory under suitable choice of the forcing function f (n) for all
large n .

Tripathy has provided an affirmative answer to the above question in his works
[18] and [19] with the same assumptions (A0) and (A00) . However, nothing is known
about an all solution oscillatory problem for (1.1) when we assume that q+(n) =
max{q(n),0} and q−(n) = max{−q(n),0} for all large n . Under this fact, (1.1) takes
the form:

�2(r(n)�2(y(n)+ p(n)y(n− τ)))+q+(n)G(y(n−σ))−q−(n)G(y(n−σ)) = 0.

The objective of this work is to investigate sufficient conditions for an all solution os-
cillatory problem for a class of nonlinear neutral difference equations with positive and
negative coefficients of the form:

�2(r(n)�2(y(n)+ p(n)y(n− τ)))+g(n)G(y(n−σ))−h(n)H(y(n−α))= 0 (1.3)

under the assumptions (A0) and (A00) , where α > 0 is a constant, g(n) > 0, h(n) > 0
are defined on N(n0) , and H ∈ C(R,R) is bounded with the property uH(u) > 0 for
u �= 0.

Indeed, (1.3) is oscillatory, a new challenge in the literature and this work is a
continuous effort with respect to author’s earlier works [18] and [19] for different ranges
of p(n) . With our observation, this work deals with sufficient conditions for oscillation
of all unbounded solutions of (1.3). Hence or otherwise our observation may be true
while we look into the work [13] in which Rath et al. have studied

�m(yn + pnyτ(n))+qnG(yσ(n))−unH(yα(n)) = fn (1.4)

and established conditions under which all solutions of (1.4) either oscillates or con-
verges to zero as n → ∞ . If fn ≡ 0, τ(n) = n− τ , σ(n) = n−σ , α(n) = n−α and
m = 4, then we may notice that all solutions of (1.3) oscillates or converges to zero with
r(n) = 1. But, it is interesting to study (1.3) for the problem all solutions either oscil-
lates or converges to zero for any r(n) > 0. Needlessly to say that the attempt would
be a success, if the state of art is the works of [16] and [17]. For more references, we
can look into the works [6], [9], [10], [12], [14], [15]. More appropriately, one can
go through the works [8] and [11] and as a whole it follows from [16] and [17] when
T = Z .

The study of qualitative behaviour of solutions of functional difference equations
of first, second and higher order is a major area of research and it is fast growing due to
the development of Time scales and the time scale calculus (see for e.g [3], [4]). Most of
the higher order works dealt with the existence of positive solutions and the asymptotic
behaviour of solutions of the functional equations. However, much attention has not
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been given to oscillation results. Hence, in this work an effort has been made to study
the oscillatory behaviour of unbounded solutions of (1.3) via discrete Taylor’s theorem
[1] and the motivation for this work has come from the works [1], [18] and [19]. For
our discussion, we use following hypotheses for G in the sequel:

(A1 ) G(u)
u � β > 0, u �= 0,u ∈ R ,

(A2 ) G(uv) � G(u)G(v) f or u, v ∈ R and u, v > 0,

(A3 ) G(−u) = −G(u) f or u ∈ R ,

(A4 ) there exists λ > 0 such that G(u)+G(v) � λG(u+v) for u,v∈ R and u,v > 0.

DEFINITION 1. By a solution of (1.3) on N(n0) we mean, a real valued function
y(n) defined on N(−ρ) = {−ρ ,−ρ +1, ...} which satisfies (1.3) for n � n0 � 0, where
ρ = max{τ,σ} . If

y(n) = φn, n = −ρ ,−ρ +1, ...,0,1,2, ... (1.5)

are given, then (1.3) admits a unique solution satisfying the initial conditions (1.5). A
solution y(n) of (1.3) is said to be oscillatory if for every integer N > 0, there exists an
n � N such that y(n)y(n+1) � 0. Otherwise, it is called non-oscillatory. We say that
(1.3) is oscillatory when all its solutions are oscillatory.

2. Preparatory results

For our use in the sequel, we define the quasi-difference operators as follows:

L1u(n) = �L0u(n) = �u(n) , L2u(n) = r(n)�L1u(n) , L3u(n) = �L2u(n) and
L4u(n) = �L3u(n) .

LEMMA 1. ([16]) Let (A00) hold. Let u be a real valued function on [0,∞) such
that L4u(n) � 0 for large n. If u(n) > 0 ultimately, then one of Cases (a) and (b) holds
for large n, and if u(n) < 0 ultimately, then one of Cases (b)-(e) holds for large n,
where

(a) L1u(n) > 0, L2u(n) > 0 and L3u(n) > 0 ,

(b) L1u(n) > 0, L2u(n) < 0 and L3u(n) > 0 ,

(c) L1u(n) < 0, L2u(n) < 0 and L3u(n) > 0 ,

(d) L1u(n) < 0, L2u(n) < 0 and L3u(n) < 0 ,

(e) L1u(n) < 0, L2u(n) > 0 and L3u(n) > 0 .

LEMMA 2. ([17]) Let (A0) hold. Let u be a real valued function on [0,∞) such
that L4u(n) � 0 for large n. If u(n) > 0 ultimately, then one of Cases (a)- (d) holds for
large n, and if u(n) < 0 ultimately, then one of Cases (b)-(f) holds for large n, where
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(a) L1u(n) > 0, L2u(n) > 0 and L3u(n) > 0 ,

(b) L1u(n) > 0, L2u(n) < 0 and L3u(n) > 0 ,

(c) L1u(n) > 0, L2u(n) < 0 and L3u(n) < 0 ,

(d) L1u(n) < 0, L2u(n) > 0 and L3u(n) > 0 ,

(e) L1u(n) < 0, L2u(n) < 0 and L3u(n) > 0 ,

(f) L1u(n) < 0, L2u(n) < 0 and L3u(n) < 0 .

THEOREM 1. [2](Krasnoselskii’s Fixed Point Theorem)
Let X be a Banach space and S be a bounded closed subset of X . Consider two map T1

and T2 of S into X such that T1x+T2y∈ S for every pair x,y∈ S . If T1 is a contraction
and T2 is completely continuous, then the equation T1x+T2x = x has a solution in S .

3. Unbounded oscillation criteria

Before stating our main results, we have the following notations:

D[k,m] =
k−2

∑
l=m

(k− l−1)(l−m)
r(l)

, E[k,m] =
k−1

∑
l=m

(k− l−1)(l +1−m)
r(l)

,

F [k,m] =
k−1

∑
l=m

(l +1−m)(l−m)
r(l)

.

THEOREM 2. Let 0 � p(n) � d < ∞ . Assume that (A00) and (A1)− (A4) hold.
If

(A5 )
∞

∑
s=s∗

(s+1)
r(s)

∞

∑
θ=s

(θ +1)h(θ ) < ∞ ,

(A6 ) limsupk→∞

k

∑
j=k−σ

Q( j)G(D[ j−σ ,k−σ ]) >
1+G(d)

λ β
, d > 0

and

(A7 ) limsupk→∞

k

∑
j=k−σ

Q( j)G(E[ j−σ ,k−σ ]) >
1+G(d)

λ β
, d > 0

hold, then every unbounded solution of (1.3) oscillates, where Q(n) = min{g(n), g(n−
τ)}, n � τ .



Differ. Equ. Appl. 12, No. 3 (2020), 259–275. 263

Proof. Let y(n) be an unbounded nonoscillatory solution of (1.3) such that y(n) >
0,y(n− τ) > 0,y(n−σ) > 0 and y(n−α) > 0 for n � n0 > ρ . For (1.3), we set

z(n) = y(n)+ p(n)y(n− τ),

t(n) =
∞

∑
s=n−1

(s−n+1)
r(s)

∞

∑
θ=s−1

(θ − s+1)h(θ )H(y(θ −α)),

w(n) = z(n)− t(n) = y(n)+ p(n)y(n− τ)− t(n)

for every large n > 1. Then (1.3) takes the form

L4w(n) = −q(n)G(y(n−σ)) � 0 (3.1)

for n � n0 . Hence, we can find n1 > n0 such that Liw(n), i = 0,1,2,3 are eventually of
one sign for n � n1 . In view of Lemma 1, we have to consider two cases viz. w(n) > 0
and w(n) > 0 for n � n1 . Let the former hold. Since w(n) = z(n)− t(n) > 0, then
w(n) � z(n) for n � n2 > n1 . Ultimately, any one of two Cases(a) and (b) of Lemma
1 holds for n � n2 .
Case (a) For l � m+1 > n2 +1,

L2w(l)−L2w(m) =
l−1

∑
s=m

L3w(s) � (l−m)L3w(l−1),

that is, L2w(l) � (l −m)L3w(l − 1) implies that �2w(l) � (l−m)
r(l) L3w(l − 1) . Using

discrete Taylor’s formula, w(k) can be written as

w(k) = w(n2)+ (k−n2)�w(n2)+
k−2

∑
l=n2

(k− l−1)�2w(l)

�
k−2

∑
l=n2

(k− l−1)�2w(l),

for k � n2 +2. Consequently,

w(k) �
k−2

∑
l=n2

(k− l−1)
(l−m)

r(l)
L3w(l−1)

� L3w(k−3)
k−2

∑
l=m

(k− l−1)
(l−m)

r(l)

= L3w(k−3)D[k,m]

for k � m+2 � n2 +2 and hence for j−σ � k−σ +2 � n2 +2, it follows that

w( j−σ) � L3w( j−σ −3)D[ j−σ ,k−σ ]
� L3w( j−σ)D[ j−σ ,k−σ ]. (3.2)
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Combining (3.1) along with

G(d)L4w(n− τ) = −G(d)g(n− τ)G(y(n− τ−σ))

and then using (A2) and (A4) , we get

0 � L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(z( j−σ))
� L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(w( j−σ))
� L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(D[ j−σ ,k−σ ])G(L3w( j−σ))

due to (3.2). As a result,

λ
k

∑
j=k−σ

Q( j)G(D[ j−σ ,k−σ ])G(L3w( j−σ)) � −
k

∑
j=k−σ

[L4w( j)+G(d)L4w( j− τ)].

Since L3w(n) is nonincreasing, then the last inequality becomes

λG(L3z(k−σ))
k

∑
j=k−σ

Q( j)G(D[ j−σ ,k−σ ]) � L3w(k−σ)+G(d)L3w(k− τ −σ)

� (1+G(d))L3w(k−σ),

that is,

k

∑
j=k−τ

Q( j)G(D[ j−σ ,k−σ ]) � (1+G(d))
λ

L3z(k−σ)
G(L3z(k−σ))

� (1+G(d))
λ β

due to (A1) , a contradiction to (A6) .
Case (b) For k−1 � m � n2 , it is easy to verify that

−w(k) = −w(m)− (k−m)�w(k)+
k−1

∑
l=m

(l +1−m)�2w(l)

�
k−1

∑
l=m

(l +1−m)�2w(l). (3.3)

Proceeding as in the proof of Case(a) , we obtain

−�2w(l) � (k− l−1)
r(l)

L3w(k−2), (3.4)

for k � l +2 > n2 . Due to (3.4), (3.3) becomes

w(k) �
k−1

∑
l=m

(l +1−m)
(k− l−1)

r(l)
L3w(k−2)

= L3w(k−2)E[k,m]
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and hence for j−σ � k−σ +2 � n2 +2,

w( j−σ) � L3w( j−σ −2)E[ j−σ ,k−σ ]
� L3w( j−σ)E[ j−σ ,k−σ ].

The rest of the proof follows from Case(a) to meet a contradiction at (A7) . Therefore,
the latter holds and z(n)− t(n) < 0 implies that

y(n) � z(n) = y(n)+ p(n)y(n− τ) < t(n) f or t � n1.

Because t(n) > 0 in nonincreasing, then y(n) is bounded which contradicts to our
hypothesis.

Finally, we suppose that y(n) < 0 for n � n0 . Hence putting x(n) = −y(n) in
(1.3), we obtain x(n) > 0 and

�2(r(n)�2(x(n)+ p(n)x(n− τ)))+g(n)G(x(n−σ))−h(n)H(x(n−α))= 0 (3.5)

due to (A3) . Proceeding as above, we can show that every unbounded solution of (3.5)
oscillates. This completes the proof of the theorem. �

THEOREM 3. Let −1 � p(n) � 0 . If (A00),(A1)− (A3),(A5) ,

(A8 ) limsupk→∞

k

∑
j=k−σ

g( j)G(D[ j−σ ,k−σ ]) >
1
β

and

(A9 ) limsupk→∞

k

∑
j=k−σ

g( j)G(E[ j−σ ,k−σ ]) >
1
β

hold, then every unbounded solution of (1.3) oscillates.

Proof. Suppose on the contrary that y(n) is an unbounded non-oscillatory of (1.3)
such that y(n) > 0, y(n− τ) > 0, y(n−σ) > 0 and y(n−α) > 0 for n � n0 > ρ . The
case y(n) < 0, for n � n0 > ρ can similarly be dealt with. Proceeding as in Theorem
2, we get (3.1) for n � n1 > n0 . Consequently, we can find n2 > n1 such that Liw(n) ,
i = 0,1,2,3 are eventually of one sign on for n � n2 . Let w(n) > 0 for n � n2 . Then
w(n) � y(n) for n � n2 and hence (1.3) takes the form

L4w(n)+g(n)G(w(n−σ)) � 0,n � n2. (3.6)

Therefore, we consider any one of two Cases(a) and (b) of Lemma 1 for n � n2 . Using
the argument of Case(a) as in Theorem 2, we obtain (3.2) and hence (3.6) becomes

−L4w( j) � g( j)G(L3w( j−σ))G(D[ j−σ ,k−σ ]) (3.7)
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due to (A2) . Summing (3.7) from k−σ to k , we find

k

∑
k−σ

g( j)G(L3w( j−σ))G(D[ j−σ ,k−σ ]) � L3w(k−σ),

that is,

G(L3w(k−σ))
k

∑
k−σ

g( j)G(D[ j−σ ,k−σ ]) � L3w(k−σ).

As a result,
k

∑
k−σ

g( j)G(D[ j−σ ,k−σ ]) � L3w(k−σ)
G(L3w(k−σ))

� 1
β

gives a contradiction to (A8) . Case(b) follows from Theorem 2.
Next, we consider w(n) < 0 for n � n2 . Then z(n) < t(n) for n � n2 implies

that z(n) is bounded and hence w(n) is bounded for n � n2 . Since w(n) is monotonic,
then limn→∞ w(n) exists. On the other hand, y(n) is unbounded and therefore, may be
y(n) > y(n− τ) or y(n) < y(n− τ) for n � n2 . If the former holds, then

w(n) = y(n)+ p(n)y(n− τ)− t(n)> (1+ p(n))y(n− τ)− t(n)→ ∞ as n → ∞

a contradiction. Hence, the latter holds. We may notice that

y(n) < y(n− τ) < y(n−2τ) < y(n−3τ) < · · · < y(n2) < ∞,

implies that y(n) is bounded, a contradiction. Hence, the theorem is proved. �

THEOREM 4. Let −∞ < p(n) � −1 . Assume that all conditions of Theorem 3
hold along with

(A10 )
∞

∑
n=0

g(n) = ∞ .

Then every unbounded solution of (1.3) oscillates.

Proof. We proceed as in the proof of Theorem 3 and the case w(n) > 0 is similar.
If w(n) < 0 for n � n2 , then z(n) < t(n) for n � n2 implies that z(n) is bounded and
hence w(n) is bounded for n � n2 . Because w(n) is monotonic, limn→∞ w(n) exists.
Here, we consider the Cases(b)− (e) of Lemma 1.

Cases (b), (c), (e) Since y(n) is unbounded, then we may find two possibilities
either y(n) < y(n− τ) or y(n) > y(n− τ) for n � n2 . If the former holds, then

w(n) = y(n)+ p(n)y(n− τ)− t(n)< (1+ p(n))y(n− τ)− t(n)→−∞ as n → ∞,

a contradiction. Hence, the latter holds and thus

y(n) > y(n− τ) > y(n−2τ) > y(n−3τ) > ... > y(n2),
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that is, liminfn→∞ y(n) > 0. So, there exists an n3 > n2 and η > 0 such that y(n−σ) >
η for n � n3 . Now, summing (3.1) from n3 to ∞ , we get a contradiction to (H10) .

In Case (d), it is immediate to see that limn→∞ w(n) = −∞ which is a contradic-
tion. Hence, the proof of the theorem is complete. �

THEOREM 5. Let 0 � p(n) � d < ∞ . Assume that (A0) and (A1)− (A7) hold.
Furthermore, if

(A11 ) limsupm→∞

m−σ−1

∑
j=m−σ−τ

Q( j)G(F [ j−σ ,m−σ ]) >
1+G(d)

λ β
, d > 0

and

(A12 ) limsupk→∞

k

∑
j=k−σ

Q( j)G(F [k−σ , j−σ ]) >
1+G(d)

λ β
, d > 0

hold, then every unbounded solution of (1.3) oscillates, where Q(n) is defined in The-
orem 2.

Proof. On the contrary, we proceed as in Theorem 2 to consider two possibilities
viz., w(n) > 0 and w(n) < 0 for n � n1 . Let w(n) > 0 for n � n1 . In view of Lemma
2, any one of Cases(a)− (d) holds for n � n2 > n1 . Case(a) and Case(b) are same
as in Theorem 2.
Case (c) For k � l � m+1 > n2 +1,

L2w(l)−L2w(m) =
l−1

∑
s=m

L3w(s) � (l−m)L3w(m),

that is, L2w(l) � (l−m)L3w(m) implies that �2w(l) � (l−m)
r(l) L3w(m) . Consequently,

(3.3) becomes

w(k) � −
k−1

∑
l=m

(l +1−m)
(l−m)
r(l)

L3w(m)

= −L3w(m)F [k,m]

and hence for j−σ � m−σ � n2 ,

w( j−σ) � −L3w(m−σ)F[ j−σ ,m−σ ]. (3.8)

As in Case(a) , since

0 � L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(w( j−σ)), (3.9)

then by (3.8) it follows that

0 � L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(−L3w(m−σ))G(F [ j−σ ,m−σ ]).
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Taking sum to the above inequality from m−σ − τ to m−σ − 1 and then using the
fact that L3w(n) is nonincreasing, we obtain

λG(−L3w(m−σ))
m−σ−1

∑
j=m−σ−τ

Q( j)G(F [ j−σ ,m−σ ])

�−L3w(m−σ)−G(d)L4w(m−σ − τ),

that is,

m−σ−1

∑
j=m−σ−τ

Q( j)G(F [ j−σ ,m−σ ]) � −L3w(m−σ)−G(d)L4w(m−σ − τ)
λG(−L3w(m−σ))

� 1+G(d)
λ β

gives a contradiction to (A11) .
Case (d) As in Case(a) , we have that �2w(l) � (l−m)

r(l) L3w(l − 1) for l � m + 1 >

n2 +1. From the discrete Taylor’s formula

w(m) = w(k)− (k−m)�w(k)+
k−1

∑
l=m

(l +1−m)�2w(l)

it follows that

w(m) �
k−1

∑
l=m

(l +1−m)�2w(l) �
k−1

∑
l=m

(l +1−m)(l−m)
r(l)

L3w(l−1)

� L3w(k−2)
k−1

∑
l=m

(l +1−m)(l−m)
r(l)

= L3w(k−2)F[k,m] � L3w(k)F [k,m].

Therefore, for k−σ � j−σ > n2

w( j−σ) � L3w(k−σ)F [k−σ , j−σ ]

and hence (3.9) takes the form

0 � L4w( j)+G(d)L4w( j− τ)+ λQ( j)G(L3w(k−σ))G(F [k−σ , j−σ ]).

Summing the last inequality from k−σ to k , we get

λG(L3w(k−σ))
k

∑
j=k−σ

Q( j)G(F [k−σ , j−σ ]) � L3w(k−σ)+G(d)L3w(k−σ − τ),

which is equivalent to

k

∑
j=k−σ

Q( j)G(F [k−σ , j−σ ]) � (1+G(d))L3w(k−σ)
λG(L3w(k−σ))

� (1+G(d))
λ β

,

a contradiction to (A12) . The rest the proof follows from Theorem 2. Hence, the
theorem is proved. �
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THEOREM 6. Let −1 � p(n) � 0 . Assume that (A0),(A1)− (A3),(A5),(A8) and
(A9) hold. If

(A13 ) limsupm→∞

m−σ−1

∑
j=m−σ−τ

g( j)G(F [ j−σ ,m−σ ]) >
1
β

and

(A14 ) limsupk→∞

k

∑
j=k−σ

g( j)G(F [k−σ , j−σ ]) >
1
β

hold, then (1.3) is oscillatory.

Proof. The proof of the theorem follows from the proofs of Theorem 5 and Theo-
rem 3 and hence the details are omitted. �

THEOREM 7. Let −∞ < p(n) � −1 . Assume that all conditions of Theorem 6
hold along with (A10) . Then every unbounded solution of (1.3) oscillates.

Proof. The proof of the theorem follows from the proofs of Theorem 6 and Theo-
rem 4 except Case(c) of Lemma 2 and hence the details are omitted. In Case(c) , it is
immediate to see that limn→∞ L1w(n) = −∞ which is a contradiction. �

THEOREM 8. Let 0 � p(n) � d < 1 . Suppose that G,H are Lipschitzian on in-
tervals of the form [a,b] , 0 < a,b < ∞ . If

∞

∑
n=0

(n+1)
r(n)

∞

∑
s=n

(s+1)[g(s)+h(s)] < ∞,

then (1.3) admits a positive bounded solution.

Proof. It is possible to choose a positive integer N1 such that

∞

∑
n=N1

(n+1)
r(n)

∞

∑
s=n

(s+1)g(s) <
1−d
4L

and
∞

∑
n=N1

(n+1)
r(n)

∞

∑
s=n

(s+1)h(s) <
1−d
4L

,

where L = max{L1,L2,G(1),H(1)} , and L1,L2 are Lipschitz constants of G , H on[
(1−d)

4 ,1
]
. Let X = lN1∞ be the Banach space of all discrete valued functions x(n) ,

n � N1 with the sup norm defined by ‖x‖ = sup{|x| : n � N1} . Define

S =
{

x ∈ X :
(1−d)

4
� x(n) � 1,n � N1

}
.



270 A. K. TRIPATHY

Hence, S is a closed, convex and bounded set when the metric is induced by the norm
on X . For x ∈ S , we define two maps:

(Γ1y)(n) =

⎧⎨
⎩

Γ1y(N1), N1 −ρ � n � N1,
∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)h(s)H(y(s−α)), n > N1

and

(Γ2y)(n)=

⎧⎨
⎩

Γ2y(N1), N1 −ρ � n � N1,

−p(n)y(n−τ)+ (1+d)
2 −

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j+1)g(s)G(y(s−σ)), n>N1.

Indeed,

(Γ1y)(n)+ (Γ2y)(n)

=− p(n)y(n− τ)+
(1+d)

2
−

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)g(s)G(y(s−σ))

+
∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)h(s)H(y(s−α))

<
(1+d)

2
+

(1−d)
4

=
(3+d)

4
< 1

and

(Γ1y)(n)+ (Γ2y)(n) > −d +
(1+d)

2
− (1−d)

4
=

(1−d)
4

implies that Γ1y+ Γ2y ∈ S for n � N1 . For y1,y2 ∈ S ,

|(Γ1y1)(n)− (Γ1y2)(n)| � L2

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)h(s)|y1(s−α))− y2(s−α)|

� L2

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)h(s)‖y1− y2‖ <
(1−d)

4

shows that Γ1 is a contraction mapping on S .
In order to show that Γ2 is completely continuous, we need to show that Γ2y is

continuous and relatively compact. Let yk ∈ S be such that yk(n) → y(n) as k → ∞ , of
course y = y(n) ∈ S . For n � N1 , we have

|(Γ2yk)(n)− (Γ2y)(n)| �L1

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)g(s)|yk(s−σ)− y(s−σ)|

+d|yk(n− τ)− y(n− τ)|.

Since |yk(n− σ)− y(n− σ)| → 0 as k → ∞ , then applying Lebesgue’s dominated
convergence theorem [2, Lemma 5.3.4] we have that limk→∞ |(Γ2yk)(n)− (Γ2y)(n)| →



Differ. Equ. Appl. 12, No. 3 (2020), 259–275. 271

0. Therefore, Γ2y is continuous. To show that Γ2y is relatively compact, we show
that the family of functions {Γ2y : y ∈ S} is uniformly bounded and equicontinuous for
n � N1 . Indeed, Γ2y is uniformly bounded. For N3 > N2 > N1 and y ∈ S , it follows
that

|(Γ2y)(N3)− (Γ2y)(N2)| � L1

N3

∑
j=N2

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)g(s)|y(s−σ)|< (1−d)
4

.

Therefore, we can find a δ > 0 such that

|Γ2y(N3)−Γ2y(N2)| < ε when ever 0 < N3−N2 < δ ,

and this relation continues to hold for every N2,N3 > N1 . Hence, {Γ2y : y ∈ S} is
uniformly bounded and equicontinuous for n� N1 and hence Γ2y is relatively compact.
By Krasnoselskii’s fixed point theorem, Γ1 + Γ2 has a unique fixed point y ∈ S such
that Γ1y+ Γ2y = y , that is,

y(n) =− p(n)y(n− τ)+
(1+d)

2
−

∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)g(s)G(y(s−σ))

+
∞

∑
j=n

( j−n+1)
r( j)

∞

∑
s= j

(s− j +1)h(s)H(y(s−α)).

It is easy to show that y(n) is a positive bounded solution of (1.3). This completes the
proof of the theorem. �

REMARK 1. Similar to Theorem 8, we can find similar type of results in other
ranges of p(n) .

4. Discussion and examples

In this work, an attempt has been made to establish the sufficient conditions for un-
bounded oscillation of (1.3) but, the problem is still incomplete and the asking problem
is: when the sufficient conditions will be the necessary conditions or can we find the if
and only if results for (1.3) (may be some other methods, if so)? It would be interesting
to exercise the present work for the nonlinear difference equations of the form:

�2(r(n)�2(y(n)+ p(n)y(n− τ)))+
m

∑
i=1

(−1)i+1gi(n)Gi(y(n−σi)) = 0

under the assumptions (A0) and (A00) . We conclude this section with the following
illustrative examples:

EXAMPLE 1. Consider

�4(y(n)+ p(n)y(n−2))+g(n)y(n−1)−h(n)
y(n−1)

1+ y2(n−1)
= 0, n � 4, (4.1)
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where β = 1, λ = 1, p(n) = 1
n−2 � d < 1, h(n) = 1

(n−1)(n+1)3 , g(n) = 16(n+3)
(n−1) +

1
(n−1)(1+n2)(n+1)3 and Q(n) = 16(n+1)

(n−3) + 1
(n−3)(5−4n+n2)(n−1)3 for n � 4. Indeed, (A5) is

∞

∑
s=2

(s+1)
∞

∑
θ=s

1
(θ −1)(θ +1)2 < ∞.

Now, D[ j−1,k−1] =
j−3

∑
l=k−1

( j− l−2)(l− k+1) = D( j) (say). Then

�D( j) =
j−2

∑
l=k−1

( j− l−1)(l− k+1)−
j−3

∑
l=k−1

( j− l−2)(l− k+1) �
j−3

∑
l=k

(l− k+1) > 0

implies that D( j) is positive and nondecreasing and hence we can find a constant C1 > 0

such that D( j) � C1 . Similarly, if E[ j−1,k−1] =
j−2

∑
l=k−1

( j− l−2)(l− k +2) = E( j)

(say), then

�E( j) =
j−1

∑
l=k−1

( j− l−1)(l−k+2)−
j−2

∑
l=k−1

( j− l−2)(l−k+2) �
j−2

∑
l=k−1

(l−k+2) > 0

and thus, we can find a constant C2 > 0 such that E( j) �C2 . Therefore, (A6) becomes

k

∑
j=k−1

Q( j)D[ j−1,k−1]) � C1

k

∑
j=k−1

[
16( j+1)
( j−3)

+
1

( j−3)(5−4 j+ j2)( j−1)3

]
=16C1.

[
(k)

(k−4)
+

(k+1)
(k−3)

+
1

16(k−4)(10−6k+k2)(k−2)3 +
1

16(k−3)(5−4k+k2)(k−1)3

]
,

that is,

limsup
k→∞

k

∑
j=k−1

Q( j)D[ j−1,k−]) � limsup
k→∞

[
C1

(k−4)(10−6k+ k2)(k−2)3

]

+16C1 liminf
k→∞

[
(k)

(k−4)
+

(k+1)
(k−3)

+
1

16(k−3)(5−4k+ k2)(k−1)3

]

�32C1 > 1+d if and only if C1 >
1+d
32

,

and (A7) becomes

limsup
k→∞

k

∑
j=k−1

Q( j)E[ j−1,k−]) � 32C2 > 1+d if and only if C2 >
1+d
32

.

As a result, all conditions of Theorem 2 are verified and so, (4.1) is oscillatory. In
particular, y(n) = n(−1)n is such an unbounded oscillatory solution of (4.1).
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EXAMPLE 2. Consider

�2(en�2(y(n)+ p(n)y(n−2)))+g(n)y(n−1)−h(n)
y(n−2)

1+ y2(n−2)
= 0, n � 3, (4.2)

where β = 1, p(n) = −1 < − e
en � 0, r(n) = en , h(n) = e2 (e4+e2n)

(n+1)e3n and g(n) = e(e+

1)2(e2 +1)2en +4e(e−1 +1)2e−n− e
(n+1)e3n . Indeed, (A5) is

e2
∞

∑
s=0

(s+1)
es

∞

∑
θ=s

(e4 + e2θ )
e3θ < ∞.

Now, D[ j−1,k−1] =
j−3

∑
l=k−1

( j− l−2)(l− k+1)
el

= D( j) (say). Then

�D( j) =
j−2

∑
l=k−1

( j− l−1)(l− k+1)
el −

j−3

∑
l=k−1

( j− l−2)(l− k+1)
el

�
j−3

∑
l=k

(l− k+1)
el > 0

implies that D( j) is positive and nondecreasing and hence we can find a constant C1 > 0

such that D( j) �C1 . If E[ j−1,k−1] =
j−2

∑
l=k−1

( j− l−2)(l− k+2)
el = E( j) (say), then

�E( j) =
j−1

∑
l=k−1

( j− l−1)(l− k+2)
el −

j−2

∑
l=k−1

( j− l−2)(l− k+2)
el

�
j−2

∑
l=k−1

(l− k+2)
el > 0

and thus, we can find a constant C2 > 0 such that E( j) �C2 . Similarly, if F [ j−1,m−
1] =

j−2

∑
l=m−1

(l−m+2)(l−m+1)
el = F( j) (say), then

�F( j) =
( j−m+1)( j−m)

el > 0

and thus, we can find a constant C3 > 0 such that F( j) �C3 . Therefore, (A8) becomes

k

∑
j=k−1

g( j)D[ j−1,k−1] � C1

k

∑
j=k−1

[
e(e+1)2(e2+1)2e j+4e(e−1+1)2e− j− e

( j+1)e3 j

]
,
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that is,

limsup
k→∞

k

∑
j=k−1

g( j)D[ j−1,k−1]

�C1 limsup
k→∞

k

∑
j=k−1

[
e(e+1)2(e2 +1)2e j +4e(e−1 +1)2e− j − e

( j +1)e3 j

]

>1 for everyC1 > 0.

Similarly, it is easy to verify the conditions (A9) , (A13) and (A14) for every C2 , C3 ,
C4 > 0. As a result, all conditions of Theorem 6 are verified and so, (4.2) is oscillatory.
In particular, y(n) = (−e)n is such an unbounded oscillatory solution of (4.2).
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