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EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLOCAL

PROBLEM WITH STRONG SINGULARITY AND LINEAR TERM

AI-JUN HOU AND JIA-FENG LIAO ∗

(Communicated by M. Feng)

Abstract. We consider a class of nonlocal problem with strong singularity and linear term. Com-
bining with the variational method and Nehari manifold, a necessary and sufficient condition that
shows the existence of positive solution is obtained.

1. Introduction

In this paper, we consider the following nonlocal problem with strong singularity
and linear term⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−

[
a+b

(∫
Ω
|∇u|2dx

)m]
Δu =

f (x)
uγ +g(x)u, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂R
N(N � 3) is a smooth bounded domain, a,b � 0 with a+b > 0, and m >

0, γ > 1, f ∈ L1(Ω) is nonzero and nonnegative, g ∈ L∞(Ω) is nonnegative.
When a � 0 and b > 0, problem (1.1) is always called the singular Kirchhoff-type

problem. Kirchhoff-type problems are often referred to as being nonlocal because of the
presence of the term (

∫
Ω |∇u|2dx)mΔu which implies that the equation in problem (1.1)

is no longer a pointwise identity. When m = 1, problem (1.1) reduces to the stationary
version of Kirchhoff equation which was presented by Kirchhoff [8] in 1883. After the
work by Lions [16], people have paid much attention to Kirchhoff-type equations and
a lot of classical results have been obtained.

When a = 1,b = 0, problem (1.1) degenerates to classical singular elliptic equa-
tion: ⎧⎪⎪⎨

⎪⎪⎩
−Δu =

f (x)
uγ +g(x)uq, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)
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where Ω ⊂ R
N(N � 3) is a smooth bounded domain, q > 0, f and g are nonnegative

functions with some certain conditions. Many results have been obtained the existence,
uniqueness and multiplicity of positive solutions for problem (1.2) with different γ -
values, for examples, [1], [3]-[7], [9]-[15], [18]-[21], [24]-[26]. Particularly, [3]-[7],
[9]-[15], [19], [20], [24]-[26] considered the case of 0 < γ < 1; [7] considered the
case of γ = 1. While the case of problem (1.2) with γ > 1 and g(x) ≡ 0 was first
considered by Lazer and Mckenna [9], they obtained a unique H1

0 -solution if and only
if γ < 3 for f ∈ Cα(Ω), f > 0, but no solution when γ � 3. Sun [18] obtained at
least one H1

0 -solution of problem (1.2) with γ > 1,0 < q < 1 by f and γ satisfying the
condition: ∫

Ω
f (x)|u0|1−γdx < ∞, u0 ∈ H1

0 (Ω), (1.3)

which was optimal for H1
0 -solution of strongly singular problems. Subsequently, Sun

and Zhang [21] proved that problem (1.2) with γ > 1,g(x) ≡ 0 has a unique H1
0 -

solution. Then considered that the compatible condition of (1.3) in [18] was also valid
and revealed the 3’s role of [9], that is, they provided an extension of the classical
Lazer-Mckenna obstruction.

Recently, [22] considered the existence of a H1
0 -solution to the strong singular

Kirchhoff-type equation:

⎧⎪⎪⎨
⎪⎪⎩
−

[
a+b

(∫
Ω
|∇u|2dx

)]
Δu =

f (x)
uγ +g(x)uq, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.4)

where Ω ⊂ R
3 and γ > 1,0 < q < 1,a,b > 0. They proved that the necessary and

sufficient condition for the existence of positive solution of problem (1.4), was also
satisfied with the condition of (1.3). [10]-[14] and [17] studied the case of 0 < γ < 1,
and [23] considered the case of γ = 1.

Inspired by [18], [21] and [22], we study problem (1.1) and prove that it has a
unique H1

0 -solution, and generalize the nonlocal term (
∫

Ω |∇u|2dx)mΔu for all m > 0.
For all u ∈ H1

0 (Ω), the energy functional corresponding to problem (1.1) is given
by

I(u) =
a
2
‖u‖2 +

b
2m+2

‖u‖2m+2− 1
1− γ

∫
Ω

f (x)|u|1−γdx− 1
2

∫
Ω

g(x)|u|2dx,

where H1
0 (Ω) is a Sobolev space equipped with the norm ‖u‖ = (

∫
Ω |∇u|2dx)

1
2 . Since

γ > 1, it should be noted that the energy functional I is not well defined on H1
0 (Ω). Note

that u is called a weak solution of problem (1.1) if u ∈ H1
0 (Ω) such that

(
a+b‖u‖2m)∫

Ω
(∇u,∇ϕ)dx−

∫
Ω

f (x)
uγ ϕdx−

∫
Ω

g(x)uϕdx = 0,

for all ϕ ∈ H1
0 (Ω). Our main results can be described as follows.
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THEOREM 1. Assume that f ∈ L1(Ω) is positive, and g ∈ L∞(Ω) is nonnega-
tive, a,b � 0 with a + b > 0, and m > 0,γ > 1. Then problem (1.1) admits a solu-
tion u∗ ∈ H1

0 (Ω) if and only if there exists u0 ∈ H1
0 (Ω) satisfying (1.3).

REMARK 1. To our best knowledge, problem (1.1) has not been studied up to
now. By comparing with [22], we obtain the same result for the case of q = 1 and
all m > 0. Moreover, we verify that special case of a = 0, b > 0 is also valid. It also
extends [18] to the case of q = 1.

2. Proof of Theorem 1

In order to obtain the solution of problem (1.1), we define the following two con-
strained sets:

N1 :=
{

u ∈ H1
0 (Ω) : a‖u‖2 +b‖u‖2m+2−

∫
Ω

f (x)|u|1−γdx−
∫

Ω
g(x)|u|2dx � 0

}
,

N2 :=
{

u ∈ H1
0 (Ω) : a‖u‖2 +b‖u‖2m+2−

∫
Ω

f (x)|u|1−γdx−
∫

Ω
g(x)|u|2dx = 0

}
.

Before proving Theorem 1, we give the following useful lemmas.

LEMMA 1. If γ > 1 and (1.3) holds, then N1 and N2 are nonempty.

Proof. According to (1.3), for any t > 0 and u ∈ H1
0 (Ω) with

∫
Ω

f (x)|u|1−γdx < +∞,

we define the function Ψ ∈C(R+,R) by

Ψ(t) := a‖u‖2 +bt2m‖u‖2m+2− t−γ−1
∫

Ω
f (x)|u|1−γdx,∀t > 0.

We get,

Ψ
′
(t) := 2mbt2m−1‖u‖2m+2 +(γ +1)t−γ−2

∫
Ω

f (x)|u|1−γdx > 0,

Ψ is increasing on t > 0, with lim
t→+∞

Ψ(t) = +∞ and lim
t→0+

Ψ(t) = −∞. Consequently,

there exists a unique t+ = t+(u) > 0 such that

Ψ(t+) =
∫

Ω
g(x)|u|2dx and Ψ

′
(t+) > 0.

Moreover,

dI(tu)
dt

= at‖u‖2 +bt2m+1‖u‖2m+2− t−γ
∫

Ω
f (x)|u|1−γdx− t

∫
Ω

g(x)|u|2dx
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= t

[
a‖u‖2 +bt2m‖u‖2m+2− t−γ−1

∫
Ω

f (x)|u|1−γdx−
∫

Ω
g(x)|u|2dx

]

= t

[
Ψ(t)−

∫
Ω

g(x)|u|2dx

]
,

obviously, I(tu) is decreasing on 0 < t < t+ and increasing on t > t+. For any t > 0,
one gets

I(tu) � I(t+(u)u), (2.1)

that is, I(t+(u)u) = min
t>0

I(tu). Then, we can easy obtain that t+(u)u ∈ N2. Therefore,

N2(⊂ N1) and N1 are not empty. This completes the proof of Lemma 1. �

LEMMA 2. N1 is an unbounded closed set in H1
0 (Ω).

Proof. Obviously, since tu∈N1 for all t > t+(u), N1 is unbounded in H1
0 (Ω). We

only need prove that N1 is closed. Assume that {un} ⊂ N1 such that un → u strongly
in H1

0 (Ω), we need prove u ∈ N1. Since {un} ⊂ N1, one has

a‖un‖2 +b‖un‖2m+2−
∫

Ω
f (x)|un|1−γdx−

∫
Ω

g(x)|un|2dx � 0.

Consequently, it follows from Fatou’s Lemma and un → u that

a‖u‖2 +b‖u‖2m+2−
∫

Ω
f (x)|u|1−γdx−

∫
Ω

g(x)|u|2dx � 0.

Therefore, u ∈ N1 . This completes the proof of Lemma 2. �

LEMMA 3. For any u ∈ N2 and ϕ ∈ H1
0 (Ω),ϕ > 0, there exists ε > 0 and a

continuous function t = t(s) > 0(s ∈ R) for every |s| < ε satisfies t(0) = 1,t(s)(u +
sϕ) ∈ N2,∀s ∈ R, |s| < ε.

Proof. For arbitrary u ∈ N2, we define F : R×R → R by

F(t,s) =a
∫

Ω
|∇(u+ sϕ)|2dx+bt2m

[∫
Ω
|∇(u+ sϕ)|2dx

]m+1

− t−γ−1
∫

Ω
f (x)|u+ sϕ |1−γdx−

∫
Ω

g(x)|u+ sϕ |2dx,

then,

Ft(t,s) = 2mbt2m−1
[∫

Ω
|∇(u+ sϕ)|2dx

]m+1

+(γ +1)t−γ−2
∫

Ω
f (x)|u+ sϕ |1−γdx.

Since u ∈ N2, we know F(1,0) = 0 and

Ft(1,0) = 2mb‖u‖2m+2 +(γ +1)
∫

Ω
f (x)|u|1−γdx > 0, (since u 
= 0),
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applying implicit function theorem to function F at (1,0) point, there is one avail-
able ε > 0 and a continuous function t = t(s) > 0,s ∈ R such that t(0) = 1,t(s)(u+
sϕ) ∈ N2 for |s| < ε. This completes the proof of Lemma 3. �

Now, we give the proof of Theorem 1.

Proof of Theorem 1. Obviously, the necessity is true. Now, we only need prove
the sufficiency. Since N1 is a closed set in H1

0 (Ω) by Lemma 2, we can apply the
Ekeland variational principle to the minimizing problem inf

u∈N1
I(u), there exists a se-

quence {un} ⊂ N1 satisfying the following properties

(i) I(un) < infu∈N1 I(u)+ 1
n ,

(ii) I(un) � I(v)+ 1
n‖un− v‖, ∀v ∈ N1 .

Since I(u) = I(|u|), we can assume from the beginning that un � 0 in Ω. According
to un ∈ N1, one has ∫

Ω
f (x)|un|1−γdx < ∞,

which implies that un(x) > 0 a.e. in Ω . Moreover, I(u) is coercive on N1 and there-
fore {un} is bounded in H1

0 (Ω). Consequently, there exist a subsequence (still denoted
by {un}) and u∗ ∈ H1

0 (Ω) with u∗ � 0, one gets

⎧⎪⎨
⎪⎩

un ⇀ u∗, weakly in H1
0 (Ω),

un → u∗, strongly in L2(Ω),
un(x) → u∗(x), a.e. in Ω,

as n → +∞. Since un ∈ N1, by Fatou’s Lemma, we obtain
∫

Ω
f (x)u1−γ

∗ dx < ∞,

which implies that u∗ > 0 a.e. in Ω. We shall prove that u∗ ∈ N2 such that I(u∗) =
inf

u∈N1
I(u) . Now, we divide the following two cases to prove it.

Case one. Assume that {un} ⊂ N1\N2 for all n large enough.
Let ϕ ∈ H1

0 (Ω) with ϕ � 0, since un ∈ N1\N2 and γ > 1, for any t � 0, one
obtains

a‖un‖2 +b‖un‖2m+2−
∫

Ω
g(x)u2

ndx >

∫
Ω

f (x)u1−γ
n dx

�
∫

Ω
f (x)(un + tϕ)1−γdx.

Consequently, by the continuity, choosing t > 0 sufficiently small such that

a‖un + tϕ‖2 +b‖un + tϕ‖2m+2−
∫

Ω
g(x)(un + tϕ)2dx >

∫
Ω

f (x)(un + tϕ)1−γdx,
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which implies that un+tϕ ∈N1 for t > 0 small enough. Thus, according to (i) and (ii),
we have

‖tϕ‖
n

+
a
2
(‖un + tϕ‖2−‖un‖2)+

b
2m+2

(‖un + tϕ‖2m+2−‖un‖2m+2)

− 1
2

∫
Ω

g(x)[(un + tϕ)2−u2
n]dx � 1

1− γ

∫
Ω

f (x)[(un + tϕ)1−γ −u1−γ
n ]dx.

Consequently, dividing the above inequality by t > 0 and passing to the infimum limit
as t → 0, it follows from Fatou’s Lemma that

‖ϕ‖
n

+
(
a+b‖un‖2m)∫

Ω
(∇un,∇ϕ)dx−

∫
Ω

g(x)unϕdx

�
∫

Ω
liminf

t→0

f (x)
1− γ

(un + tϕ)1−γ −u1−γ
n

t
dx (2.2)

=
∫

Ω
f (x)u−γ

n ϕdx,(since un(x) > 0 a.e. in Ω).

Consequently, letting n → +∞, by Fatou’s Lemma again, it follows from (2.2) that
∫

Ω
f (x)u−γ

∗ ϕdx < ∞,

for every ϕ ∈ H1
0 (Ω) with ϕ � 0. Moreover, choosing ϕ = u∗ in the above inequality,

one has
∫

Ω f (x)u1−γ
∗ dx < ∞. According to the argument of Lemma 2.1, there exists

a unique positive constant t+(u∗) such that I(t+(u∗)u∗) = min
t>0

I(tu∗). Then, by the

weakly lower semi-continuity of norm and Fatou’s Lemma, we obtain

inf
u∈N1

I(u) = lim
n→∞

I(un)

= liminf
n→∞

[
a
2
‖un‖2 +

b
2m+2

‖un‖2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
n dx

− 1
2

∫
Ω

g(x)u2
ndx

]

= liminf
n→∞

[
a
2
‖un‖2 +

b
2m+2

‖un‖2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
n dx

]

− 1
2

∫
Ω

g(x)u2
∗dx

� liminf
n→∞

a
2
‖un‖2 + liminf

n→∞

b
2m+2

‖un‖2m+2

+ liminf
n→∞

[
1

γ −1

∫
Ω

f (x)u1−γ
n dx

]
− 1

2

∫
Ω

g(x)u2
∗dx

� a
2
‖u∗‖2 +

b
2m+2

‖u∗‖2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
∗ dx− 1

2

∫
Ω

g(x)u2
∗dx

= I(u∗)
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� I(t+(u∗)u∗)
� inf

u∈N2
I(u)

� inf
u∈N1

I(u),

combining with I(tu∗) � I(t+(u∗)u∗), we obtain t+(u∗) = 1. Thus, one gets

u∗ ∈ N2, inf
u∈N1

I(u) = I(u∗). (2.3)

Since ‖un‖ is bounded, we may assume that ‖un‖ → A. It follows from the weakly
lower semi-continuity of the norm that ‖u∗‖� liminf

n→∞
‖un‖= lim

n→∞
‖un‖= A. If ‖u∗‖ =

A, which leads to un → u∗ strongly in H1
0 (Ω). Otherwise, ‖u∗‖ < A, we have

I(u∗) = inf
N1

I

= lim
n→∞

I(un)

= lim
n→∞

[
a
2
‖un‖2 +

b
2m+2

‖un‖2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
n dx− 1

2

∫
Ω

g(x)u2
ndx

]

=
a
2
A2 +

b
2m+2

A2m+2 + lim
n→∞

1
γ −1

∫
Ω

f (x)u1−γ
n dx− 1

2

∫
Ω

g(x)u2
∗dx

=
a
2
A2 +

b
2m+2

A2m+2 + liminf
n→∞

1
γ −1

∫
Ω

f (x)u1−γ
n dx− 1

2

∫
Ω

g(x)u2
∗dx

� a
2
A2 +

b
2m+2

A2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
∗ dx− 1

2

∫
Ω

g(x)u2
∗dx

� a
2
‖u∗‖2 +

b
2m+2

‖u∗‖2m+2 +
1

γ −1

∫
Ω

f (x)u1−γ
∗ dx− 1

2

∫
Ω

g(x)u2
∗dx

= I(u∗)

a contradiction. Therefore, one has ‖un‖ → ‖u∗‖. Combining with un ⇀ u∗, we ob-
tain that un → u∗ in H1

0 (Ω). Moreover, for every ϕ ∈ H1
0 (Ω) with ϕ � 0, it follows

from (2.2) and Fatou’s Lemma that

(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇ϕ)dx−

∫
Ω

g(x)u∗ϕdx �
∫

Ω
f (x)u−γ

∗ ϕdx. (2.4)

Case two. There exists a subsequence {un} ⊂ N2 , still denoted by {un}.
Let ϕ ∈ H1

0 (Ω) with ϕ � 0. Since γ > 1, for any t > 0, one has
∫

Ω
f (x)(un + tϕ)1−γdx �

∫
Ω

f (x)u1−γ
n dx < ∞.

By Lemma 3, choosing u = un ∈N2 and ϕ ∈H1
0 (Ω) with ϕ � 0, and s > 0 sufficiently

small, we can obtain a sequence of continuous functions tn = tn(s) such that tn(0) =
1 and tn(s)(un + sϕ) ∈ N2. For tn(s)(un + sϕ) ∈ N2 and un ∈ N2, we obtain

0 =at2n(s)‖un + sϕ‖2 +bt2m+2
n (s)‖un + sϕ‖2m+2− t1−γ

n (s)
∫

Ω
f (x)(un + sϕ)1−γdx
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− t2n(s)
∫

Ω
g(x)(un + sϕ)2dx,

and

0 = a‖un‖2 +b‖un‖2m+2−
∫

Ω
f (x)u1−γ

n dx−
∫

Ω
g(x)u2

ndx.

Therefore, one has

0 =a[t2n(s)−1]‖un + sϕ‖2 +a(‖un + sϕ‖2−‖un‖2)

+b[t2m+2
n (s)−1]‖un + sϕ‖2m+2 +b(‖un + sϕ‖2m+2−‖un‖2m+2)

− [t1−γ
n (s)−1]

∫
Ω

f (x)(un + sϕ)1−γdx−
∫

Ω
f (x)[(un + sϕ)1−γ −u1−γ

n ]dx

− [t2n(s)−1]
∫

Ω
g(x)(un + sϕ)2dx−

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx,

and dividing the above equality by s, one gets

0 =
{

a[tn(s)+1]‖un + sϕ‖2 +b
t2m+2
n (s)−1
tn(s)−1

‖un + sϕ‖2m+2

− t1−γ
n (s)−1
tn(s)−1

∫
Ω

f (x)(un + sϕ)1−γdx

− [tn(s)+1]
∫

Ω
g(x)(un + sϕ)2dx

}
tn(s)−1

s
+

a
s
(‖un + sϕ‖2−‖un‖2)

+
b
s
(‖un + sϕ‖2m+2−‖un‖2m+2)− 1

s

∫
Ω

f (x)[(un + sϕ)1−γ −u1−γ
n ]dx

− 1
s

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx.

Let

An(s) =
tn(s)−1

s
,

and letting s → 0+, it follows that

0 � An(s)
{

2a‖un‖2 +(2m+2)b‖un‖2m+2 +(γ −1)
∫

Ω
f (x)u1−γ

n dx

−2
∫

Ω
g(x)u2

ndx

}
+

[
2a+(2m+2)b‖un‖2m]∫

Ω
(∇un,∇ϕ)dx

−2
∫

Ω
g(x)unϕdx

= An(s)
{

2mb‖un‖2m+2 +(γ +1)
∫

Ω
f (x)u1−γ

n dx

}

+
[
2a+(2m+2)b‖un‖2m]∫

Ω
(∇un,∇ϕ)dx−2

∫
Ω

g(x)unϕdx.
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Since {un} ⊂ N2(⊂ N1) is bounded in H1
0 (Ω), consequently, by Lemma 2, one has

An(s) � C1

(
limsup
s→0+

An(s) � C1

)
, (2.5)

for suitable constant C1 > 0.
Next, by the subadditivity of the norm, we get

‖un− tn(s)(un + sϕ)‖ � |1− tn(s)|‖un‖+ stn(s)‖ϕ‖.
Then, it follows from (ii) that

|1− tn(s)|
s

‖un‖
n

+ tn(s)
‖ϕ‖
n

� I(un)− I[tn(s)(un + sϕ)]
s

� 1
1− γ

{
a(1+ γ)

2
[tn(s)+1]‖un + sϕ‖2 +

b(3+ γ)
2m+2

t2m+2
n (s)−1
tn(s)−1

‖un + sϕ‖2m+2

− 1+ γ
2

[tn(s)+1]
∫

Ω
g(x)(un + sϕ)2dx

}
tn(s)−1

s
(2.6)

+
a(1+ γ)
2s(1− γ)

(‖un + sϕ‖2−‖un‖2)

+
b(3+ γ)

(2m+2)s(1− γ)
(‖un + sϕ‖2m+2−‖un‖2m+2)

− 1+ γ
2s(1− γ)

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx.

Let

K1,n(s) =
a(1+ γ)

2
[tn(s)+1]‖un + sϕ‖2

+
b(3+ γ)
2m+2

t2m+2
n (s)−1
tn(s)−1

‖un + sϕ‖2m+2

− 1+ γ
2

[tn(s)+1]
∫

Ω
g(x)(un + sϕ)2dx,

K2,n(s) =
a(1+ γ)
2s(1− γ)

(‖un + sϕ‖2−‖un‖2)

+
b(3+ γ)

(2m+2)s(1− γ)
(‖un + sϕ‖2m+2−‖un‖2m+2)

− 1+ γ
2s(1− γ)

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx,

then letting s → 0+, we obtain

lim
s→0+

K1,n(s) =a(1+ γ)‖un‖2 +b(3+ γ)‖un‖2m+2



286 A.-J. HOU AND J.-F. LIAO

− (1+ γ)
∫

Ω
g(x)u2

ndx,

=2b‖un‖2m+2 +(1+ γ)
∫

Ω
f (x)|un|1−γdx

=K1,n > 0,

lim
s→0+

K2,n(s) =
(

a
1+ γ
1− γ

+b
3+ γ
1− γ

‖un‖2m+2
)∫

Ω
(∇un,∇ϕ)dx

− 1+ γ
1− γ

∫
Ω

g(x)unϕdx

=K2,n.

Consequently, it follows from (2.6) that

|An(s)| ‖un‖
n

+ tn(s)
‖ϕ‖
n

� 1
1− γ

K1,n(s)An(s)+K2,n(s).

If An(s) � 0, we get

An(s) �
K2,n(s)− tn(s)

‖ϕ‖
n

1
γ−1K1,n(s)+ ‖un‖

n

,

if An(s) < 0, we get

An(s) �
K2,n(s)− tn(s)

‖ϕ‖
n

1
γ−1K1,n(s)− ‖un‖

n

,

thus,

An(s) �
K2,n(s)− tn(s)

‖ϕ‖
n

1
γ−1K1,n(s)− ‖un‖

n

.

From the boundness of {un}, there exists a constant C2 > 0 such that |K1,n|�C2, also
exists a constant C3 > 0 such that |K2,n| � C3, and An(s) for all n large, we obtain

liminf
s→0+

An(s) � K2,n(s)
1

γ−1K1,n(s)− ‖un‖
n

� K2,n(s)
1

γ−1C2− ‖un‖
n

� K2,n(s)
1

γ−1C2
� −C3

1
γ−1C2

, (2.7)

that is liminf
s→0+

An(s) � C4. Finally, according to the uniformly boundness of An(s) fol-

lows from (2.5) and (2.7), when n sufficiently large, it follows that there exists a con-
stant C5 > 0 such that

limsup
s→0+

|An(s)| � C5. (2.8)

Now, we prove that (2.3) and (2.4) are true in Case two. By the subadditivity of norm
again and (ii), we have

1
n

[ |tn(s)−1|
s

‖un‖+ tn(s)‖ϕ‖
]
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�1
n
‖tn(s)(un + sϕ)−un‖1

s

� I(un)− I[tn(s)(un + sϕ)]
s

�
{
− a

2
[tn(s)+1]‖un + sϕ‖2− b

2m+2
t2m+2
n (s)−1
tn(s)−1

‖un + sϕ‖2m+2

+
1

1− γ
t1−γ
n (s)−1
tn(s)−1

∫
Ω

f (x)(un + sϕ)1−γdx (2.9)

+
1
2
[tn(s)+1]

∫
Ω

g(x)(un + sϕ)2dx

}
An(s)− a

2s
(‖un + sϕ‖2−‖un‖2)

− b
(2m+2)s

(‖un + sϕ‖2m+2−‖un‖2m+2)

+
1

s(1− γ)

∫
Ω

f (x)[(un + sϕ)1−γ −u1−γ
n ]dx+

1
2s

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx.

We denote

K3,n(s) =
a
2
[tn(s)+1]‖un + sϕ‖2 +

b
2m+2

t2m+2
n (s)−1
tn(s)−1

‖un + sϕ‖2m+2

− 1
1− γ

t1−γ
n (s)−1
tn(s)−1

∫
Ω

f (x)(un + sϕ)1−γdx

− 1
2
[tn(s)+1]

∫
Ω

g(x)(un + sϕ)2dx,

K4,n(s) =− a
2s

(‖un + sϕ‖2−‖un‖2)− b
(2m+2)s

(‖un + sϕ‖2m+2−‖un‖2m+2)

+
1
2s

∫
Ω

g(x)[(un + sϕ)2−u2
n]dx.

Consequently, letting s → 0+, one obtains

lim
s→0+

K3,n(s) = a‖un‖2 +b‖un‖2m+2−
∫

Ω
f (x)|un|1−γdx−

∫
Ω

g(x)|un|2dx = 0,

lim
s→0+

K4,n(s) = −(
a+b‖un‖2m)∫

Ω
(∇un,∇ϕ)dx+

∫
Ω

g(x)unϕdx.

Then, it follows from (2.9) that

1
1−γ

∫
Ω

f (x)
(un+sϕ)1−γ−u1−γ

n

s
dx � K3,n(s)An(s)−K4,n(s)+

An(s)‖un‖+tn(s)‖ϕ‖
n

.

(2.10)
Since (un + sϕ)1−γ −u1−γ

n � 0, for every x ∈ Ω, thanks to Fatou’s Lemma, one has

∫
Ω

f (x)u−γ
n ϕdx � liminf

s→0+

1
1− γ

∫
Ω

f (x)
(un + sϕ)1−γ −u1−γ

n

s
dx. (2.11)
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For n sufficiently large, by (2.10) and (2.11), one gets
∫

Ω
f (x)u−γ

n ϕdx �
(
a+b‖un‖2m)∫

Ω
(∇un,∇ϕ)dx

−
∫

Ω
g(x)unϕdx+

An(s)‖un‖+ tn(s)‖ϕ‖
n

,

which implies that

liminf
n→∞

∫
Ω

f (x)u−γ
n ϕdx �

(
a+b liminf

n→∞
‖un‖2m

)∫
Ω
(∇u∗,∇ϕ)dx−

∫
Ω

g(x)u∗ϕdx.

By using Fatou’s Lemma again, one obtains
∫

Ω
f (x)u−γ

∗ ϕdx �
(
a+b liminf

n→∞
‖un‖2m

)∫
Ω
(∇u∗,∇ϕ)dx−

∫
Ω

g(x)u∗ϕdx. (2.12)

On the one hand, choosing ϕ = u∗ in (2.12), one has

(
a+b liminf

n→∞
‖un‖2m

)
‖u∗‖2 �

∫
Ω

g(x)u2
∗dx+

∫
Ω

f (x)u1−γ
∗ dx. (2.13)

On the other hand, since un ∈ N2 and un → u∗ in L2(Ω), we obtain

lim
n→∞

(a‖un‖2 +b‖un‖2m+2) =
∫

Ω
g(x)u2

∗dx+
∫

Ω
f (x)u1−γ

∗ dx.

Further, by the weak lower semi-continuity of the norm, we get

(
a+b liminf

n→∞
‖un‖2m

)
‖u∗‖2 �

(
a+b limsup

n→∞
‖un‖2m

)
limsup

n→∞
‖un‖2

=
∫

Ω
g(x)u2

∗dx+
∫

Ω
f (x)u1−γ

∗ dx. (2.14)

By (2.13) and (2.14), one has

lim
n→∞

inf‖un‖ = lim
n→∞

sup‖un‖ = ‖u∗‖. (2.15)

Combining with un ⇀ u∗ and (2.15), one gets un → u∗ in H1
0 (Ω). Thus, we can easy

obtain that (2.3) holds. Moreover, by (2.12), one has (2.4) is true.
Finally, we are ready to prove that u∗ is a weak solution of problem (1.1), that is,

we only need prove that (2.4) holds for any ϕ ∈H1
0 (Ω). For any ϕ ∈H1

0 (Ω) , since u∗ ∈
N2, we can replace ϕ with (u∗ + tϕ)+ in (2.4) for t > 0 small enough, and dividing
by t in (2.4), one has

0 � 1
t

(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇(u∗ + tϕ)+)dx− 1

t

∫
Ω

f (x)u−γ
∗ (u∗ + tϕ)+dx

− 1
t

∫
Ω

g(x)u∗(u∗ + tϕ)+dx
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=
1
t

(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇(u∗ + tϕ))dx− 1

t

∫
Ω

f (x)u−γ
∗ (u∗ + tϕ)dx

− 1
t

∫
Ω

g(x)u∗(u∗ + tϕ)dx− 1
t

(
a+b‖u∗‖2m)∫

{x∈Ω|u∗+tϕ<0}
(∇u∗,∇(u∗ + tϕ))dx

+
1
t

∫
{x∈Ω|u∗+tϕ<0}

[ f (x)u−γ
∗ (u∗ + tϕ)+g(x)u∗(u∗ + tϕ)]dx

� 1
t

[
a‖u∗‖2 +b‖u∗‖2m+2−

∫
Ω

f (x)u1−γ
∗ dx−g(x)u2

∗dx

]

+
(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇ϕ)dx−

∫
Ω
[ f (x)u−γ

∗ ϕ +g(x)u∗ϕ ]dx

− (
a+b‖u∗‖2m)∫

{x∈Ω|u∗+tϕ<0}
(∇u∗,∇ϕ)dx

=
(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇ϕ)dx−

∫
Ω
[ f (x)u−γ

∗ ϕ +g(x)u∗ϕ ]dx

− (
a+b‖u∗‖2m)∫

{x∈Ω|u∗+tϕ<0}
(∇u∗,∇ϕ)dx,

where the last inequality is used u∗ ∈N2. Since meas {x ∈ Ω|u∗+ tϕ < 0}→ 0 as t →
0+ and the arbitrariness of ϕ ∈ H1

0 (Ω), that is, for every ϕ ∈ H1
0 (Ω),

(
a+b‖u∗‖2m)∫

Ω
(∇u∗,∇ϕ)dx−

∫
Ω

f (x)u−γ
∗ ϕdx−

∫
Ω

g(x)u∗ϕdx = 0.

Thus, u∗ is indeed a positive solution of problem (1.1). This completes the proof of
Theorem 1. �
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