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EXISTENCE AND UNIQUENESS FOR FRACTIONAL ORDER

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH HILFER DERIVATIVE
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(Communicated by P. Agarwal)

Abstract. We investigate fractional order delay and neutral differential equations. By using Ba-
nach fixed point theorem we establish existence and uniqueness of the solutions for fractional or-
der functional differential equations involving Hilfer fractional derivative in the weighted spaces.

1. Introduction

This paper is concerned with the existence and uniqueness of the solutions of frac-
tional order both delay and neutral differential equations. Recently, much attention has
been paid to existence of solutions for fractional order ordinary differential equations
[7, 9, 18, 19, 26, 30] and the references therein. In the books [3, 5, 12, 17, 21, 23, 24, 25]
fractional order differential equations have been investigated systematically. Moreover,
there are some works on the existence of solutions of fractional order delay or neu-
tral differential equations involving classical Riemann-Liouville derivative or Caputo
derivative with 0 < α < 1, [1, 8, 10, 11, 20, 22, 31].

Let n−1 < α < n, n ∈ N = {1,2, . . .}, 0 � β � 1. In this paper first we consider
initial value problem

(Dα ,β
a+ y)(x) = f (x,y(x),y(x− τ)), x ∈ [a,b], (1)

lim
x→a+

(D(n−k)I(n−α)(1−β )
a+ y)(x) = bk, bk ∈ R, (k = 1,2, . . . ,n), bn = 0, (2)

y(x) = φ(x), x ∈ [a− τ,a], lim
x→a−

φ(x) = φ(a) = 0, (3)

where Dα ,β
a+ is the composite Riemann-Liouville fractional derivative, which is also

called Hilfer fractional derivative operator, introduced by Hilfer in [14, 15], τ > 0 is a
real constant, φ is an initial function which will be specified later.

Later we also consider neutral type initial value problem

Dα ,β
a+ (y(x)−g(x,y(x− τ1))) = f (x,y(x),y(x− τ2)), x ∈ [a,b], (4)
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lim
x→a+

(D(n−k)I(n−α)(1−β )
a+ )(y(x)−g(x,y(x− τ1))) = bk, bk ∈ R,

(k = 1,2, . . . ,n), bn = 0, (5)

y(x) = ϕ(x), x ∈ [a− τ,a], lim
x→a−

ϕ(x) = ϕ(a) = 0, (6)

where τ1, τ2 > 0 are real constants, τ = max{τ1,τ2}.
Fractional order differential equations involving composite fractional derivative

operator have been deal with in [2, 6, 13, 16, 27, 28, 29] and the references therein.
In the literature there exist different generalizations of Riemann-Liouville fractional
derivative. Recently, it is established the fractional differential formulas involving the
Saigo-Meada fractional derivative operators [4]. Now, our aim is to prove existence
and uniqueness of the initial value problems (1)–(3) and (4)–(6). In Section 2, we
give some properties of Riemann-Liouville integral in the weighted spaces. In Section
3, first we introduce composite Riemann-Liouville fractional derivative, later we deal
with equation (1)–(3). Last section is devoted to equation (4)–(6).

2. Preliminaries

In this section we present some definitions and properties which will be used
later. Let Ω = [a,b] ⊂ R. We consider Cγ [a,b] weighted space of continuous func-
tions f given on (a,b] such that (x− a)γ f (x) ∈ C[a,b], 0 � γ < 1, and

∥∥ f
∥∥

Cγ
=∥∥(x− a)γ f (x)

∥∥
C, C0[a,b] = C[a,b],

∥∥ f
∥∥

C = max
x∈Ω

∣∣ f (x)∣∣. For n− 1 � η < n we also

consider the space Cη
n−η [a,b] = { f ∈Cn−η [a,b] : Dη

a+ f ∈Cn−η [a,b]}.
Riemann-Liouville fractional integrals and derivatives are defined as follows.

DEFINITION 1. The integral

(Iα
a+ f )(x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x > a, n−1 < α < n, n ∈ N, (7)

is called the left-sided Riemann-Liouville fractional integral of order α of the function
f , provided right-hand side exists.

DEFINITION 2. The expression

(Dα
a+ f )(x) = (D(n)In−α

a+ f )(x), n = [α]+1, (8)

is called the left-sided Riemann-Liouville fractional derivative of order α of f , pro-
vided the right-hand side exists, where [·] denotes the greatest integer function.

Riemann-Liouville fractional integrals and derivatives have following properties
[17, 25].
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LEMMA 1. [17, p. 76]
(i) Let α > 0 and 0 � γ < 1. If γ > α, then (Iα

a+ f )(x) in (7) is bounded from
Cγ [a,b] into Cγ−α [a,b].

(ii) Let α > 0 and 0 � γ < 1. If γ � α, then (Iα
a+ f )(x) in (7) is bounded from

Cγ [a,b] into C[a,b].

Following result gives the conditions for the existence of fractional derivative Dα
a+

in the space Cn
γ [a,b].

LEMMA 2. [17, p. 77] If α � 0, n = [α] + 1, and y(x) ∈ Cn
γ [a,b], 0 � γ < 1,

then the fractional derivative Dα
a+y in (8) exists on (a,b] and

(Dα
a+y)(x) =

n−1

∑
k=0

y(k)(a)
Γ(1+ k−α)

(x−a)k−α +
1

Γ(n−α)

x∫
a

(x− t)n−α−1y(n)(t)dt.

If 0 � α < 1, and y(x) ∈Cγ [a,b], then

(Dα
a+y)(x) =

1
Γ(1−α)

( y(a)
(x−a)α +

x∫
a

(x− t)−αy′(t)dt
)
.

The semigroup property of the fractional integral operators are given by the fol-
lowing result.

LEMMA 3. [17, p. 77] Let α > 0, β > 0, 0 � γ < 1. If f (x) ∈ Cγ [a,b], then

(Iα
a+Iβ

a+ f )(x) = (Iα+β
a+ f )(x) for x ∈ (a,b]. When f (x) ∈ C[a,b], the equality holds at

any point x ∈ [a,b].

In the following two results we see that fractional derivative operator is the left
inverse of the fractional integral operator. But fractional derivative operator is not the
right inverse of the integral operator.

LEMMA 4. [17, p. 77] Let α > 0, 0 � γ < 1. If f (x)∈Cγ [a,b], then (Dα
a+Iα

a+ f )(x)
= f (x) for x ∈ (a,b]. When f (x) ∈C[a,b], the equality holds at any point x ∈ [a,b].

LEMMA 5. [17, p. 77] Let α > β > 0, 0 � γ < 1. If f (x) ∈ Cγ [a,b], then

(Dβ
a+Iα

a+ f )(x) = (Iα−β
a+ f )(x) for x ∈ (a,b]. When f (x) ∈ C[a,b], the equality holds

at any point x ∈ [a,b].

Following result gives the composition of fractional integral operator with the frac-
tional derivative operator.

LEMMA 6. [17, p. 77] Let α > 0, 0 � γ < 1, n = [α] + 1 and fn−α(x) =
(In−α

a+ f )(x). If f (x) ∈Cγ [a,b] and fn−α (x) ∈Cn
γ [a,b], then

(Iα
a+Dα

a+ f )(x) = f (x)−
n

∑
j=1

f (n− j)
n−α (a+)

Γ(α − j +1)
(x−a)α− j, x ∈ (a,b],
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where f (n− j)
n−α (a+) = lim

x→a+
( f (n− j)

n−α )(x). If f (x) ∈ C[a,b] and fn−α(x) ∈ Cn[a,b], then

the equality holds at any point x ∈ [a,b].

Riemann-Liouville fractional integral and derivative of power functions have fol-
lowing properties.

PROPERTY 1. [17, p. 71] For x > a following properties hold.

(Iα
a+(t−a)β−1)(x) =

Γ(β )
Γ(α + β )

(x−a)α+β−1, α � 0, β > 0.

(Dα
a+(t−a)β−1)(x) =

Γ(β )
Γ(β −α)

(x−a)β−α−1, α � 0, β > 0.

(Dα
a+(t −a)α− j)(x) = 0, α > 0, j = 1,2, . . . , [α]+1.

We also need following lemma.

LEMMA 7. Let 0 � γ < 1 and f ∈Cγ [a,b]. Then

Iα
a+ f (a) := lim

x→a+
Iα
a+ f (x) = 0, 0 � γ < α.

Proof. From the definition of Riemann-Liouville fractional integral we have

(Iα
a+ f )(x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt

=
1

Γ(α)

x∫
a

(x− t)α−1(t−a)−γ(t −a)γ f (t)dt

�
∥∥(t −a)γ f (t)

∥∥
C

1
Γ(α)

x∫
a

(x− t)α−1(t−a)−γdt

=
∥∥(t −a)γ f (t)

∥∥
C(x−a)α−γ Γ(1− γ)

Γ(α − γ +1)
.

Since 0 � γ < 1, and 0 � γ < α , we get lim
x→a+

Iα
a+ f (x) = 0. �

For the proof of our main results we use following well known Banach fixed point
theorem.

THEOREM 1. [12, 229] Assume (U,d) to be a nonempty complete metric space,
let 0 � c < 1 , and let the mapping A :U →U satisfy the inequality (Au,Av) � cd(u,v)
for every u,v ∈ U . Then, A has a uniquely determined fixed point u∗. Furthermore,
for any u0 ∈U , the sequence (Aju0)∞

j=i converges to this fixed point u∗.
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3. Generalized Cauchy type problem with delay

In this section we investigate Cauchy type problem (1)–(3). First we present gener-
alized fractional derivative operator Dα ,β

a+ which is called Hilfer (composite) fractional
derivative operator.

DEFINITION 3. Hilfer fractional derivative Dα ,β
a+ of order α and type β with

respect to x is defined by

(Dα ,β
a+ f )(x) =

(
Iβ (n−α)
a+ D(n)(I(1−β )(n−α)

a+ f )
)
(x), n−1 < α < n, 0 � β � 1, (9)

whenever the right-hand side exists.
If 0 < α < 1, and 0 � β � 1, then we have following fractional derivative

(Dα ,β
a+ f )(x) =

(
Iβ (1−α)
a+

d
dx

(I(1−β )(1−α)
a+ f )

)
(x). (10)

Hilfer fractional derivative operator Dα ,β
a+ f allows one to interpolate between the

Riemann-Liouville and the Caputo derivatives.

REMARK 1. (i) If β = 0, then (9) gives the classical Riemann-Liouville fractional
derivative operator which is defined in (8).

(ii) If β = 1, then Caputo derivative operator, (Dα ,1
a+ f )(x) = (I(n−α)

a+ (Dn f ))(x), is
obtained from (9).

REMARK 2. The operator Dα ,β
a+ f which is defined in (9) can be written as

(Dα ,β
a+ f )(x) =

(
Iβ (n−α)
a+ Dγ

a+ f
)
(x),

where γ = α + βn−αβ . It is clear that n−1 < γ < n.

REMARK 3. If α = n ∈ N, then Hilfer derivative in (9) reduces to n. order usual
ordinary derivative operator. In this case the initial value problem (1)–(3) reduces to
following usual initial value problem of order n ∈ N.

(Dny)(x) = f (x,y(x),y(x− τ)), x ∈ [a,b],

lim
x→a+

y(n−k)(x) = bk, bk ∈ R, (k = 1,2, . . . ,n), bn = 0,

y(x) = φ(x), x ∈ [a− τ,a], lim
x→a−

φ(x) = φ(a) = 0.

REMARK 4. If 0 < α < 1, 0 � β � 1, then we investigate the following problem{ (Dα ,β
a+ y)(x) = f (x,y(x),y(x− τ)), x ∈ [a,b],

lim
x→a+

(I(1−α)(1−β )
a+ y)(x) = 0,

(11)

with the condition (3), where (Dα ,β
a+ y)(x) is defined in (10).
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Let G be an open set in R
2 and let f : (a,b]×G→ R be a function such that f ∈

Cn−γ [a,b], γ = α + βn−αβ , n = [α]+1, and the initial function φ ∈Cγ
n−γ [a− τ,a].

The following theorem yields the equivalence between the Cauchy type problem (1)–(3)
and the integral equation

y(x) =

{ φ(x), x ∈ [a− τ,a],

n
∑
j=1

b j
(x−a)γ− j

Γ(γ − j +1)
+

1
Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt, x > a.

(12)

THEOREM 2. Let n− 1 < α < n, 0 � β � 1. y ∈ Cγ
n−γ [a− τ,b] is a solution of

initial value problem (1)–(3) if and only if y is a solution of the integral equation (12).

Proof. Let y(x) ∈ Cγ
n−γ [a− τ,b] be a solution of (1)–(3). We will show that

y satisfies (12) for x > a. Since f ∈ Cn−γ [a,b], from Eq.(1) (Dα ,β
a+ y)(x) ∈ Cn−γ [a,b].

Since 0 < n− γ < 1 and n− γ < α, from Lemma 1(ii), Iα
a+ is bounded from Cn−γ [a,b]

into C[a,b]. Moreover, since y(x) ∈ Cγ
n−γ [a− τ,b], it follows that Dγ

a+y ∈ Cn−γ [a−
τ,b]. So, applying the operator Iα

a+ on both sides of Eq.(1), it follows from Remark 2
that

Iα
a+(Dα ,β

a+ y)(x) = Iα
a+

(
Iβ (n−α)
a+ Dγ

a+y
)
(x) = Iα

a+( f (t,y(t),y(t − τ)))(x). (13)

Since α + βn−β α = γ, applying Lemma 3 and Definition 1 to the equation (13), we
get

Iγ
a+Dγ

a+y(x) =
1

Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt. (14)

To apply Lemma 6, we should show that (In−γ
a+ y)(x)∈Cn

n−γ [a,b]. Since Dγ
a+y∈Cn−γ [a,b],

from (8) we have Dn(In−γ
a+ y)∈Cn−γ [a,b] . So, from the definition of the space Cn

n−γ [a,b],
we obtain that (In−γ

a+ y)(x) ∈Cn
n−γ [a,b]. Now, using Lemma 6, from (14), we get

y(x) =
n

∑
j=1

y(n− j)
n−γ (a+)

Γ(γ − j +1)
(x−a)γ− j +

1
Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt. (15)

Since y(n− j)
n−γ (a+) = lim

x→a+
(D(n− j)In−γ

a+ y)(x), from (2) and (15) we have integral equation

(12) for x > a.

Now, let y(x) ∈Cγ
n−γ [a− τ,b] satisfies integral equation (12). Applying the oper-

ator Dγ
a+ on both sides of (12) for x > a, it follows from Property 1, that

(Dγ
a+y)(x) = (Dγ

a+Iα
a+ f (t,y(t),y(t − τ)))(x). (16)
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Moreover from Definition 2, Lemma 3 and Lemma 4, we have

(Dγ
a+Iα

a+ f (t,y(t),y(t − τ)))(x) =
(
DnIn−γ

a+ Iα
a+ f (t,y(t),y(t − τ))

)
(x)

=
(
DnIn−γ+α

a+ f (t,y(t),y(t − τ))
)
(x)

= (DDn−1In−1
a+ I1−β (n−α) f (t,y(t),y(t − τ)))(x)

= (DI1−β (n−α)
a+ f (t,y(t),y(t − τ)))(x). (17)

So, by (16), (17) and Definition 2, we get

(Dγ
a+y)(x) = (DI1−β (n−α)

a+ f (t,y(t),y(t − τ)))(x)

= Dβ (n−α)
a+ f (t,y(t),y(t − τ)))(x) ∈Cn−γ [a,b]. (18)

Since Dβ (n−α)
a+ f = DI1−β (n−α)

a+ f ∈Cn−γ [a,b], it is clear that I1−β (n−α)
a+ f ∈C1

n−γ [a,b].

So, applying the operator Iβ (n−α)
a+ on both sides of (18), from Remark 2 and Lemma 6

we obtain that

(Dα ,β
a+ y)(x) = (Iβ (n−α)

a+ Dγ
a+y)(x)

= (Iβ (n−α)
a+ Dβ (n−α)

a+ f (t,y(t),y(t − τ)))(x)
= f (x,y(x),y(x− τ))

− I1−β (n−α)
a+ f (t,y(t),y(t − τ))(a+)

Γ(βn−β α)
(x−a)β (n−α)−1, x ∈ (a,b].

On the other hand, since f ∈ Cn−γ [a,b], 0 � n− γ < 1, and n− γ < 1− β (n−α),
using Lemma 7, we obtain from the last equality that

(Dα ,β
a+ y)(x) = f (x,y(x),y(x− τ)), x ∈ (a,b].

To show that the initial conditions (2) are hold, we apply the operator I(n−α)(1−β )
a+ = In−γ

a+

on both sides of (12) for x > a. So, we have

(In−γ
a+ y)(x) =

(
In−γ
a+

n

∑
j=1

b j
(t−a)γ− j

Γ(γ − j +1)

)
(x)+

(
In−γ
a+ Iα

a+ f (t,y(t),y(t − τ))
)
(x). (19)

Note that from Property 1, it is obtained that(
In−γ
a+

n

∑
j=1

b j
(t−a)γ− j

Γ(γ − j +1)

)
(x) =

n

∑
j=1

b j
(x−a)n− j

Γ(n− j +1)
. (20)

Moreover, from Lemma 3, it is clear that(
In−γ
a+ Iα

a+ f (t,y(t),y(t − τ))
)
(x) =

(
In−γ+α
a+ f (t,y(t),y(t − τ))

)
(x)

=
(
In−β (n−α)
a+ f (t,y(t),y(t − τ))

)
(x). (21)
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So, from (19), (20) and (21) we get

(In−γ
a+ y)(x) =

n

∑
j=1

b j
(x−a)n− j

Γ(n− j +1)
+

(
In−β (n−α)
a+ f (t,y(t),y(t − τ))

)
(x). (22)

Note that In−γ
a+ y∈Cn

n−γ [a,b]. So, applying the derivative operator D(n−k), k = 1,2, . . . ,n,
on both sides of the equality (22), it follows from Lemma 2 and Lemma 5 that

(D(n−k)In−γ
a+ y)(x) =

k

∑
j=1

b j

Γ(k− j +1)
(x−a)k− j + Ik−β (n−α)

a+ f (t,y(t),y(t−τ))(x). (23)

It is clear that 0 < n− γ < 1 and k−β (n−α) > n− γ, k = 1,2, . . . ,n. So by Lemma
7, we have that

lim
x→a+

Ik−β (n−α)
a+ f (t,y(t),y(t − τ))(x) = 0.

Then taking the limit on both sides of (23) as x → a+, we obtain

lim
x→a+

(D(n−k)In−γ
a+ y)(x) = bk, k = 1,2, . . . ,n. �

COROLLARY 1. Let 0 < α < 1, 0 � β � 1, f : (a,b]×G→ R be a function such
that f ∈C1−γ [a,b], γ = α +β −αβ , and φ ∈Cγ

1−γ [a−τ,a]. Then y(x)∈Cγ
1−γ [a−τ,b]

is a solution of (11),(3) if and only if y is a solution of the integral equation

y(x) =

{ φ(x), x ∈ [a− τ,a],

1
Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt, x > a.

Now, we establish the existence and uniqueness of the solution of Cauchy type
problem (1)–(3).

THEOREM 3. Let n−1 < α < n, n ∈ N, 0 � β � 1, γ = α + βn−αβ . Assume

that f : (a,b]×G → R be a function such that f ∈ Cβ (n−α)
n−γ [a,b] and satisfies the

Lipschitzian type condition∣∣ f (x,y1,z1)− f (x,y2,z2)
∣∣ � L

[∣∣y1− y2
∣∣+ ∣∣z1− z2

∣∣] (24)

for all x ∈ (a,b], (y1,z1), (y2,z2) ∈ G, where L > 0 is a constant.
Then there exists unique solution y for the Cauchy type problem (1)–(3) in the

space Cγ
n−γ [a− τ,h], h = min

{
b, h̃

}
, h̃ < a+

( 1
2L

Γ(α + γ −n+1)
Γ(γ −n+1)

)1/α
.

Proof. First we prove the existence of unique solution y(x) ∈Cn−γ [a− τ,h]. Ac-
cording to Theorem 2, it is sufficient to prove the existence of unique solution y(x) to
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the integral equation (12). Consider the operator T defined by

Ty(x) =

{ φ(x), x ∈ [a− τ,a],

y0(x)+
1

Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt, x > a,

(25)

where

y0(x) =
n

∑
j=1

b j
(x−a)γ− j

Γ(γ − j +1)
. (26)

It is clear that y0(x) ∈ Cn−γ [a,h]. Moreover, since f ∈ Cβ (n−α)
n−γ [a,b] , from Lemma 1,

Iα
a+ f ∈ Cn−γ [a,h]. That is, if y(x) ∈ Cn−γ [a− τ,h], then Ty(x) ∈ Cn−γ [a− τ,h]. Note
that Cn−γ [a,h] is a Banach space with the norm

∥∥y
∥∥

Cn−γ [a,h] =
∥∥(x−a)n−γy(x)

∥∥
C[a,h].

Now, we will show that the operator T is a contraction. From (25), (26) and (24)
for x > a we have∥∥Ty1−Ty2

∥∥
Cn−γ [a,h] =

∥∥Iα
a+ f (t,y1(t),y1(t− τ))− Iα

a+ f (t,y2(t),y2(t− τ))
∥∥

Cn−γ [a,h]

� max
x∈[a,h]

∣∣∣∣ (x−a)n−γ

Γ(α)

∣∣∣∣ x∫
a

(x− t)α−1
∣∣ f (t,y1(t),y1(t− τ))− f (t,y2(t),y2(t− τ))

∣∣dt

� L
Γ(α)

max
x∈[a,h]

(x−a)n−γ
x∫

a

(x− t)α−1(t −a)γ−n(t −a)n−γ

×
[∣∣y1(t)− y2(t)

∣∣+ ∣∣y1(t− τ)− y2(t− τ)
∣∣]dt

� 2L
Γ(α)

∥∥y1− y2
∥∥

Cn−γ [a−τ,h]
max
x∈[a,h]

(x−a)n−γ
x∫

a

(x− t)α−1(t −a)γ−ndt

� 2L(h−a)α Γ(γ −n+1)
Γ(α + γ −n+1)

∥∥y1− y2
∥∥

Cn−γ [a−τ,h]

� 2L(h̃−a)α Γ(γ −n+1)
Γ(α + γ −n+1)

∥∥y1− y2
∥∥

Cn−γ [a−τ,h]
.

Since

2L(h̃−a)α Γ(γ −n+1)
Γ(α + γ −n+1)

< 1,

the operator T is a contraction and by Banach fixed point theorem there exists a unique
solution y∗ ∈Cn−γ [a− τ,h] of the equation (12).

Now, we will show that such a solution is actually in Cγ
n−γ [a− τ,h]. First, recall

that the initial function φ ∈Cγ
n−γ [a− τ,a]. For x > a, from equation (12) we have

y∗(x) = y0(x)+ [Iα
a+ f (t,y(t),y(t − τ))](x), (27)
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where y0(x) defined in (26). Note that from Property 1, (Dγ
a+y0)(x) = 0. On the other

hand, from Lemma 1, Definition 2 and Lemma 3, we get

[Dγ
a+Iα

a+ f (t,y(t),y(t − τ))](x) =
[
Dβ (n−α)

a+ f (t,y(t),y(t − τ))
]
(x).

So, applying Dγ
a+ on both sides of (27) we obtain that

(Dγ
a+y∗)(x) =

[
Dβ (n−α)

a+ f (t,y(t),y(t − τ))
]
(x).

Since f ∈ Cβ (n−α)
n−γ [a,b], the right hand side of above equality is in Cn−γ [a,b], and so

y∗ ∈ Cγ
n−γ [a,b]. Therefore, the unique solution of the Cauchy type problem (1)–(3) is

in Cγ
n−γ [a− τ,h]. �

COROLLARY 2. Let 0 < α < 1, 0 � β � 1, γ = α + β −αβ , φ ∈ Cγ
1−γ [a−

τ,a]. Let f : (a,b]× G → R be a function such that f ∈ Cβ (1−α)
1−γ [a,b] and satis-

fies the Lipschitzian type condition (24). Then there exists unique solution y for the
Cauchy type problem (11),(3) in the space Cγ

1−γ [a− τ,h], where h = min{b, h̃}, h̃ <

a+
(

1
2L

Γ(α + γ)
Γ(γ)

)1/α
.

4. Neutral type Cauchy problem

In this section, we investigate initial value problem (4)–(6). Let G1, G2 be open
sets in R and R

2 , respectively, and let g : (a,b]×G1 →R, f : (a,b]×G2 →R be func-
tions such that g ∈Cγ

n−γ [a,b] and f ∈Cn−γ [a,b], γ = α + βn−αβ , n = [α]+1, and

the initial function ϕ ∈ Cγ
n−γ [a− τ,a]. The following theorem yields the equivalence

between the Cauchy type problem (4)–(6) and the integral equation

y(x) =

{ ϕ(x), x ∈ [a− τ,a],

g(x,y(x− τ1))+
n
∑
j=1

b j
(x−a)γ− j

Γ(γ − j +1)
+

1
Γ(α)

x∫
a

f (t,y(t),y(t − τ2))
(x− t)1−α dt, x > a.

(28)

THEOREM 4. Let n− 1 < α < n, 0 � β � 1. y ∈ Cγ
n−γ [a− τ,b] is a solution of

initial value problem (4)–(6) if and only if y is a solution of integral equation (28).

We skip the proof of Theorem 4 since it can be done by using the similar arguments
in Theorem 2.

REMARK 5. Let 0 < α < 1, and 0 � β � 1, then we have following Cauchy type
problem {Dα ,β

a+ (y(x)−g(x,y(x− τ1))) = f (x,y(x),y(x− τ2)), x ∈ [a,b],

lim
x→a+

(I(1−α)(1−β )
a+ )(y(x)−g(x,y(x− τ1))) = 0,

(29)
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with the condition (6).

COROLLARY 3. Let 0 < α < 1, 0 � β � 1, γ = α + β −αβ , g : (a,b]×G1 →
R, f : (a,b]×G2 → R be functions such that g ∈Cγ

1−γ [a,b], f ∈C1−γ [a,b], and ϕ ∈
Cγ

1−γ [a−τ,a]. If y(x) ∈Cγ
1−γ [a−τ,b], then y ∈Cγ

1−γ [a−τ,b] is a solution of equation
(29) with the conditions (6) if and only if y is a solution of the integral equation

y(x) =

{ ϕ(x), x ∈ [a− τ,a],

g(x,y(x− τ1))+
1

Γ(α)

x∫
a

f (t,y(t),y(t − τ2))
(x− t)1−α dt, x > a.

Now, we prove the existence and uniqueness of the solution of the initial value
problem (4)–(6).

THEOREM 5. Let n− 1 < α < n, n ∈ N, 0 � β � 1, γ = α + βn−αβ . Let
g : (a,b]×G1 → R, f : (a,b]×G2 → R be functions such that g ∈ Cγ

n−γ [a,b] , f ∈
Cβ (n−α)

n−γ [a,b], and satisfy the following conditions∣∣g(x,u1)−g(x,u2)
∣∣ � K

∣∣u1−u2
∣∣ (30)

for all x ∈ (a,b], u1,u2 ∈ G1, where 0 < K < 1 is a constant,∣∣ f (x,y1,z1)− f (x,y2,z2)
∣∣ � L

[∣∣y1− y2
∣∣+ ∣∣z1− z2

∣∣] (31)

for all x ∈ (a,b], (y1,z1), (y2,z2) ∈ G2, where L > 0 is a constant.
Then there exists unique solution y for the Cauchy type problem (4)–(6) in the

space Cγ
n−γ [a− τ,h], h = min

{
b, h̃

}
, h̃ < a+

(
1
2L

Γ(α + γ −n+1)
Γ(γ −n+1)

)1/α
.

Proof. First we prove the existence of unique solution y(x) ∈Cn−γ [a− τ,h]. Ac-
cording to Theorem 4, it is sufficient to prove the existence of unique solution y(x) to
the integral equation (28). Consider the operator N defined by

Ny(x) =

{ ϕ(x), x ∈ [a− τ,a],

g(x,y(x− τ1))+ y0(x)+
1

Γ(α)

x∫
a

f (t,y(t),y(t − τ))
(x− t)1−α dt, x > a,

(32)

where

y0(x) =
n

∑
j=1

b j
(x−a)γ− j

Γ(γ − j +1)
. (33)

Proof is similar to proof of Theorem 3. It is easy to see that if y(x) ∈ Cn−γ [a− τ,h],
then Ny(x) ∈Cn−γ [a− τ,h]. We will show that the operator N is a contraction. From
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(30)–(33) for x > a we have∥∥Ny1−Ny2
∥∥

Cn−γ [a,h]

�
∥∥g(x,y1(x− τ1))−g(x,y2(x− τ1))

∥∥
Cn−γ [a,h]

+
∥∥Iα

a+ f (t,y1(t),y1(t− τ2))− Iα
a+ f (t,y2(t),y2(t− τ2))

∥∥
Cn−γ [a,h]

� max
x∈[a,h]

∣∣(x−a)n−γ(g(x,y1(x− τ1))−g(x,y2(x− τ1)))
∣∣

+ max
x∈[a,h]

∣∣(x−a)n−γ(Iα
a+[ f (t,y1(t),y1(t − τ2))− f (t,y2(t),y2(t − τ2))])

∣∣
� K

∥∥y1− y2
∥∥

Cn−γ [a−τ,h]
+2L(h−a)α Γ(γ −n+1)

Γ(α + γ −n+1)

∥∥y1− y2
∥∥

Cn−γ [a−τ,h]

� max

{
K, 2L(h̃−a)α Γ(γ −n+1)

Γ(α + γ −n+1)

}∥∥y1− y2
∥∥

Cn−γ [a−τ,h]
.

Since

K < 1 and 2L(h̃−a)α Γ(γ −n+1)
Γ(α + γ −n+1)

< 1,

the operator N is a contraction and by Banach fixed point theorem there exists a unique
solution of the equation (28) in Cn−γ [a− τ,h] . In fact, such a solution is in Cγ

n−γ [a−
τ,h]. This property also can be seen by using the same argument of Theorem 3. �

COROLLARY 4. Let 0 < α < 1, 0 � β � 1, γ = α +β −αβ , ϕ ∈Cγ
1−γ [a−τ,a].

Let g : (a,b]×G1 → R, f : (a,b]×G2 → R be functions such that g ∈ Cγ
1−γ [a,b] ,

f ∈ Cβ (1−α)
1−γ [a,b], and satisfy the conditions (30) and (31), respectively. Then there

exists unique solution y for the Cauchy type problem (29),(6) in the space Cγ
1−γ [a−

τ,h], h = min
{
b, h̃

}
, h̃ < a+

(
1
2L

Γ(α + γ)
Γ(γ)

)1/α
.

CONCLUSION 1. In this paper, we obtained existence and uniqueness of the solu-
tions of functional delay differential equations with Hilfer fractional derivative which
is a generalization of Riemann-Liouville fractional derivative.
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