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Abstract. This article deals with some questions of existence and uniqueness of random solu-
tions for some coupled systems of random Hilfer and Hilfer–Hadamard fractional differential
equations with finite delay. We use some generalizations of classical random fixed point theo-
rems on generalized Banach spaces.

1. Introduction

The theory of fractional differential and integral equations has received much at-
tention from the authors, and has become an important field of investigation due to
existence applications in various areas of engineering, mathematics, physics and bio-
engineering, and other applied sciences [13, 25]. There has been considerable devel-
opment in fractional differential and integral equations in recent years; see the mono-
graphs of Abbas et al. [2, 4, 5], Samko et al. [23], Kilbas et al. [17] and Zhou et al.
[29], and the papers [3, 6, 10, 11, 13, 15, 19, 26, 28], and the references therein.

Functional differential equations with random effects play a fundamental role in
the theory of random dynamical systems [1, 6, 12, 20, 24]. Random operator theory is
often used in the case that the mathematical models used to describe phenomena in the
biological, physical, engineering and systems sciences contain certain parameters or co-
efficients that have specific interpretations, but whose values are unknown. Therefore,
it is more realistic to consider such equations as random operator equations, which, in
fact, are much more difficult to handle mathematically than deterministic equations.
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In this paper we discuss the existence of random solutions for the following system
of Hilfer fractional differential equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u(t,w),v(t,w)) = (φ1(t,w),φ2(t,w)); t ∈ [−h,0],

(Dα1,β1
0 u)(t,w) = f1(t,ut(w),vt (w),w); t ∈ I,

(Dα2,β2
0 v)(t,w) = f2(t,ut(w),vt (w),w); t ∈ I,

((I1−γ1
0 u)(0,w),(I1−γ2

0 v)(0,w)) = (Φ1(w),Φ2(w))

; w ∈ Ω, (1.1)

where (Ω,A ) is a measurable space, I := [0,T ], T > 0,αi ∈ (0,1), βi ∈ [0,1], γi = αi +
βi−αiβi, Φi : Ω → R

m, fi : I×Ch×Ch×Ω →R
m; i = 1,2, are given functions, Ch :=

C[−h,0], h > 0, φi(w) ∈Ch such that ((I1−γi
0 φi)(0,w) = Φi(w); i = 1,2. Furthermore,

ut : [−h,0]×Ω→Rm such that (ut(w))(s) := ut(s,w) = u(t +s,w); s∈ [−h,0], w∈ Ω,

I1−γi
0 is the left-sided mixed Riemann–Liouville integral of order 1− γi, and Dαi,βi

0 is
the generalized Riemann–Liouville derivative (Hilfer) operator of order αi and type
βi : i = 1,2.

Next, we consider the following coupled system of Hilfer–Hadamard fractional
differential equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u(t,w),v(t,w)) = (ψ1(t,w),ψ2(t,w)); t ∈ [1−h,1],

(HDα1,β1
1 u)(t,w) = g1(t,ut(w),vt(w),w); t ∈ [1,T ],

(HDα2,β2
1 v)(t,w) = g2(t,ut(w),vt (w),w); t ∈ [1,T ],

((HI1−γ1
0 u)(1,w),(HI1−γ2

0 v)(1,w)) = (Ψ1(w),Ψ2(w))

; w ∈ Ω, (1.2)

where T > 1, αi ∈ (0,1) , βi ∈ [0,1] , γi = αi + βi −αiβi , Ψi : Ω → Rm , gi : [1,T ]×
C1,h ×C1,h × Ω → Rm ; i = 1,2 are given functions, ψi ∈ C[1 − h,1], such that

((HI1−γi
0 ψi)(1,w) = Ψi(w) ; i = 1,2, HI1−γi

1 is the left-sided mixed Hadamard inte-

gral of order 1− γi, and HDαi,βi
1 is the Hilfer–Hadamard fractional derivative of order

αi and type βi ; i = 1,2.

2. Preliminaries

Let C be the Banach space of all continuous functions u from I into Rm with the
supremum (uniform) norm ‖ · ‖∞.

‖u‖∞ := sup
t∈I

‖u(t)‖.

Also C([−h,T ]) denotes the Banach space of all continuous functions from [−h,T ]
into Rm with the supremum norm ‖ · ‖C[−h,T].

As usual, AC(I) denotes the space of absolutely continuous functions from I into
Rm. By L1(I), we denote the space of Lebesgue-integrable functions v : I → Rm with
the norm

‖v‖1 =
∫ T

0
‖v(t)‖dt.

By Cγ (I) and C1
γ (I), we denote the weighted spaces of continuous functions defined
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by
Cγ (I) = {w : (0,T ] → R

m : t1−γw(t) ∈C},
with the norm

‖w‖Cγ := sup
t∈I

‖t1−γw(t)‖,

and

C1
γ (I) = {w ∈C :

dw
dt

∈Cγ},
with the norm

‖w‖C1
γ

:= ‖w‖∞ +‖w′‖Cγ .

Also, we denote by Cγi ; i = 1,2 the weighted spaces of continuous functions defined
by

Cγi = {u : [−h,T ] → R
m : u|(0,T ] ∈Cγi(I)},

with the norm
‖u‖Cγi

:= max{‖u‖C[−h,0],‖u‖Cγi
}; i = 1,2,

and by C := Cγ1 ×Cγ2 we denote the product weighted space with the norm

‖(u,v)‖C = ‖u‖Cγ1
+‖v‖Cγ2

.

Now, we give some results and properties of fractional calculus.

DEFINITION 1. [4, 17, 23] The left-sided mixed Riemann–Liouville integral of
order r > 0 of a function w ∈ L1(I) is defined by

(Ir
0w)(t) =

1
Γ(r)

∫ t

0
(t− s)r−1w(s)ds; for a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ ) =
∫ ∞

0
tξ−1e−t dt; ξ > 0.

Notice that for all r,r1,r2 > 0 and each w ∈C, we have Ir
0w ∈C, and

(Ir1
0 Ir2

0 w)(t) = (Ir1+r2
0 w)(t); for a.e. t ∈ I.

DEFINITION 2. [4, 17, 23] The Riemann–Liouville fractional derivative of order
r ∈ (0,1] of a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d
dt

I1−r
0 w

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−rw(s)ds; for a.e. t ∈ I.

Let r ∈ (0,1], γ ∈ [0,1) and w ∈C1−γ(I). Then the following expression leads to
the left inverse operator as follows.

(Dr
0I

r
0w)(t) = w(t); for all t ∈ (0,T ].
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Moreover, if I1−r
0 w ∈C1

1−γ(I), then the following composition is proved in [23]

(Ir
0D

r
0w)(t) = w(t)− (I1−r

0 w)(0+)
Γ(r)

tr−1; for all t ∈ (0,T ].

DEFINITION 3. [4, 17, 23] The Caputo fractional derivative of order r ∈ (0,1] of
a function w ∈ AC(I) is defined by

(cDr
0w)(t) =

(
I1−r
0

d
dt

w

)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
w(s)ds; for a.e. t ∈ I.

In [13], Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [15, 26]).

DEFINITION 4. (Hilfer derivative). Let α ∈ (0,1) , β ∈ [0,1], w ∈ L1(I), and let

I(1−α)(1−β )
0 w ∈ AC(I). The Hilfer fractional derivative of order α and type β of w is
defined as

(Dα ,β
0 w)(t) =

(
Iβ (1−α)
0

d
dt

I(1−α)(1−β )
0 w

)
(t); for a.e. t ∈ I. (2.1)

PROPERTIES. Let α ∈ (0,1) , β ∈ [0,1] , γ = α + β −αβ , and w ∈ L1(I).
1. The operator (Dα ,β

0 w)(t) can be written as

(Dα ,β
0 w)(t) =

(
Iβ (1−α)
0

d
dt

I1−γ
0 w

)
(t) =

(
Iβ (1−α)
0 Dγ

0w
)

(t); for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0,1], γ � α, γ > β , 1− γ < 1−β (1−α).

2. The generalization (2.1) for β = 0, coincides with the Riemann–Liouville derivative
and for β = 1 with the Caputo derivative.

Dα ,0
0 = Dα

0 , and Dα ,1
0 = cDα

0 .

3. If Dβ (1−α)
0 w exists and is in L1(I), then

(Dα ,β
0 Iα

0 w)(t) = (Iβ (1−α)
0 Dβ (1−α)

0 w)(t); for a.e. t ∈ I.

Furthermore, if w ∈Cγ(I) and I1−β (1−α)
0 w ∈C1

γ (I), then

(Dα ,β
0 Iα

0 w)(t) = w(t); for a.e. t ∈ I.

4. If Dγ
0w exists and is in L1(I), then

(Iα
0 Dα ,β

0 w)(t) = (Iγ
0Dγ

0w)(t) = w(t)− I1−γ
0 (0+)

Γ(γ)
tγ−1; for a.e. t ∈ I.
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LEMMA 1. Let h ∈Cγ (I). Then the Cauchy problem⎧⎨
⎩

(Dα ,β
0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ ,

has the following unique solution

u(t) =
φ

Γ(γ)
tγ−1 +(Iα

0 h)(t).

Let βRm be the σ -algebra of Borel subsets of R
m. A mapping v : Ω → R

m is said
to be measurable if for any B ∈ βRm , one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A .

To define integrals of sample paths of a random process, it is necessary to define a
jointly measurable map.

DEFINITION 5. A mapping T : Ω×Rm → Rm is called jointly measurable if for
any B ∈ βRm , one has

T−1(B) = {(w,v) ∈ Ω×E : T (w,v) ∈ B} ⊂ A ×βRm ,

where A ×βRm is the direct product of the σ -algebras A and βRm , those defined in
Ω and Rm , respectively.

DEFINITION 6. A function T : Ω × Rm → Rm is called jointly measurable if
T (·,u) is measurable for all u ∈ Rm and T (w, ·) is continuous for all w ∈ Ω.

A mapping T : Ω×Rm → Rm is called a random operator if T (w,u) is measur-
able in w for all u ∈ Rm and it expressed as T (w)u = T (w,u). In this case we also
say that T (w) is a random operator on R

m. A random operator T (w) on E is called
continuous (resp. compact, totally bounded and completely continuous) if T (w,u) is
continuous (resp. compact, totally bounded and completely continuous) in u for all
w ∈ Ω. The details of completely continuous random operators in Banach spaces and
their properties appear in Itoh [14].

DEFINITION 7. [9] Let P(Y ) be the family of all nonempty subsets of Y and
C be a mapping from Ω into P(Y ). A mapping T : {(w,y) : w ∈ Ω, y ∈C(w)} → Y
is called random operator with stochastic domain C if C is measurable (i.e., for all
closed A ⊂ Y, {w ∈ Ω,C(w)∩A �= /0} is measurable) and for all open D ⊂ Y and all
y ∈ Y, {w ∈ Ω : y ∈C(w),T (w,y) ∈ D} is measurable. T will be called continuous if
every T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called
random (stochastic) fixed point of T if for P-almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w) and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

DEFINITION 8. A function f : I×C1×C2×Ω → Rm is called random Carathéo-
dory if the following conditions are satisfied:
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(i) The map (t,w) → f (t,u,v,w) is jointly measurable for all (u,v) ∈C1 ×C2, and

(ii) The map (u,v) → f (t,u,v,w) is continuous for all t ∈ I and w ∈ Ω.

Let x,y ∈ Rm with x = (x1,x2, . . . ,xm) , y = (y1,y2, . . . ,ym). . By x � y we mean
xi � yi ; i = 1, . . . ,m. Also |x| = (|x1|, |x2|, . . . , |xm|), max(x,y) = (max(x1,y1), . . . ,
max(xm,ym)), and Rm

+ = {x∈ Rm : xi ∈ R+, i = 1, . . . ,m}. If c ∈ R, then x � c means
xi � c , i = 1, . . . ,m.

DEFINITION 9. Let X be a nonempty set. By a vector-valued metric on X we
mean a map d : X ×X → Rm with the following properties:

(i) d(x,y) � 0 for all x,y ∈ X , and if d(x,y) = 0, then x = y;

(ii) d(x,y) = d(y,x) for all x,y ∈ X ;

(iii) d(x,z) � d(x,y)+d(y,z) for all x,y,z ∈ X .

We call the pair (X ,d) a generalized metric space with

d(x,y) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

d1(x,y)
d2(x,y)

·
·
·

dm(x,y)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Notice that d is a generalized metric space on X if and only if di; i = 1, . . . ,m,
are metrics on X . For r = (r1, . . . ,rm) ∈ Rm and x0 ∈ X , we will denote by

Br(x0) := {x ∈ X : d(x0,x) < r} = {x ∈ X : di(x0,x) < ri; i = 1, . . . ,m}
the open ball centered at x0 with radius r , and

Br(x0) := {x ∈ X : d(x0,x) � r} = {x ∈ X : di(x0,x) � ri; i = 1, . . . ,m}
the closed ball centered at x0 with radius r. We mention that for generalized metric
spaces, the notations of open, closed, compact, convex sets, convergence, and Cauchy
sequence are similar to those in usual metric spaces.

DEFINITION 10. [7, 27] A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius ρ(M) is strictly less than 1. In other words, this
means that all the eigenvalues of M are in the open unit disc, i.e. |λ | < 1, for every
λ ∈ C with det(M−λ I) = 0, where I denotes the unit matrix of Mm×m(R).

EXAMPLE 1. The matrix A ∈ M2×2(R) defined by

A =
(

a b
c d

)
,

converges to zero in the following cases:
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(1) b = c = 0, a,d > 0 and max{a,d} < 1.

(2) c = 0, a,d > 0, a+d < 1 and −1 < b < 0.

(3) a+b = c+d = 0, a > 1, c > 0 and |a− c|< 1.

In the sequel we will make use of the following random fixed point theorems:

THEOREM 1. [12, 20, 24] Let (Ω,F ) be a measurable space, X be a real sepa-
rable generalized Banach space and F : Ω×X → X be a continuous random operator,
and let M(w) ∈ Mn×n(R+) be a random variable matric such that for every w ∈ Ω,
the matrix M(w) converges to 0 and

d(F(w,x1),F(w,x2)) � M(w)d(x1,x2); f or each x1,x2 ∈ X and w ∈ Ω,

then there exists a random variable x : Ω → X which is the unique random fixed point
of F.

THEOREM 2. [12, 20, 24] Let (Ω,F ) be a measurable space, X be a real sepa-
rable generalized Banach space and F : Ω×X → X be a completely continuous ran-
dom operator, Then, either

(i) the random equation F(w,x) = x has a random solution, i.e., there is a measur-
able function x : Ω → X such that F(w,x(w)) = x(w) for all w ∈ Ω, or

(ii) the set M = {x : Ω → X is measurable : λ (w)F(w,x) = x} is unbounded for
some measurable function λ : Ω → X with 0 < λ (w) < 1 on Ω.

Also, we will use the following Gronwall’s lemma:

LEMMA 2. [12] Let u : I → [0,∞) be a real function and u(·) is a nonnegative,
locally integrable function on I. Assume that there existe constants c > 0 and r < 1
such that

u(t) � v(t)+ c
∫ t

0

u(s)
(t− s)r ds.

Then, there exists a constant K := K(r) such that

u(t) � v(t)+ cK
∫ t

0

v(s)
(t− s)r ds,

for every t ∈ I.

3. Coupled Hilfer random fractional differential systems

In this section, we are concerned with the existence and uniqueness of random
solutions of the problem (1.1).

DEFINITION 11. By a solution of the problem (1.1) we mean a coupled measur-
able functions (u,v) ∈ Cγ1 ×Cγ2 which satisfies the equations (1.1) on I.



344 S. ABBAS, N. AL ARIFI, M. BENCHOHRA AND J. HENDERSON

The following hypotheses will be used in the sequel.

(H1) The functions fi; i = 1,2 are random Carathéodory.

(H2) There exist measurable functions pi,qi : Ω → (0,∞); i = 1,2 such that

‖ fi(t,u1,v1,w)− fi(t,u2,v2,w)‖ � pi(w)‖u1 −u2‖Ch +qi(w)‖v1− v2‖Ch ;

for a.e. t ∈ I , w ∈ Ω , and each ui,vi ∈Ch , i = 1,2.

(H3) There exist measurable functions ai,bi : Ω → (0,∞) ; i = 1,2 such that

‖ fi(t,u,v,w)‖� ai(w)‖u‖Ch +bi(w)‖v‖Ch ; for a.e. t ∈ I, w∈Ω, and each u,v∈Ch.

First, we prove an existence and uniqueness result for the problem (1.1) by using
Banach’s random fixed point theorem type in generalized Banach spaces.

THEOREM 3. Assume that the hypotheses (H1) and (H2) hold. If for every w ∈
Ω, the matrix

M(w) :=

⎛
⎜⎝

Tα1

Γ(1+α1)
p1(w) Tα1

Γ(1+α1)
q1(w)

Tα2
Γ(1+α2)

p2(w) Tα2
Γ(1+α2)

q2(w)

⎞
⎟⎠

converges to 0, then the system (1.1) has a unique random solution.

Proof. Define the operators Ni : C ×Ω → Cγi ; i = 1,2 by

(Ni(u,v))(t,w) =

{
φi(t,w); t ∈ [−h,0],
Φi(w)
Γ(γi)

tγi−1 +
∫ t
0(t − s)αi−1 fi(s,us(w),vs(w),w)

Γ(αi)
ds; t ∈ I.

(3.1)

Consider the operator N : C ×Ω → C defined by

(N(u,v))(t,w) = ((N1(u,v))(t,w),(N2(u,v))(t,w)). (3.2)

Clearly, the fixed points of the operator N are random solutions of the system (1.1).

Let us show that N is a random operator on C . Since fi; i = 1,2 are random
Carathéodory functions, then w→ fi(t,ut(w),vt (w),w) are measurable maps, and hence
the maps

w → (Ni(u,v))(t,w); i = 1,2,

are measurable. As a result, N is a random operator on C ×Ω into C .

We show that N satisfies all conditions of Theorem 1.
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For any w ∈ Ω and each (u1,v1),(u2,v2) ∈ C and t ∈ I, we have

‖t1−γ1(N1(u1,v1))(t,w)− t1−γ1(N1(u2,v2))(t,w)‖

� t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s,u1s(w),v1s(w),w)− f1(s,u2s(w),v2s(w),w)‖ds

� t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)‖u1s(w)− v1s(w)‖C

+q1(w)‖u2s(w)− v2s(w)‖C)ds

� 1
Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)s1−γ1‖u1s(w)− v1s(w)‖C

+q1(w)s1−γ1‖u2s(w)− v2s(w)‖C)ds

�
p1(w)‖u1(·,w)− v1(·,w)‖Cγ1

+q1(w)‖u2(·,w)− v2(·,w)‖Cγ2

Γ(α1)

∫ t

0
(t − s)α1−1ds

� Tα1

Γ(1+ α1)
(p1(w)‖u1(·,w)− v1(·,w)‖Cγ1

+q1(w)‖u2(·,w)− v2(·,w)‖Cγ2
).

Then,

‖(N1(u1,v1))(·,w)− (N1(u2,v2))(·,w)‖Cγ1

� T α1

Γ(1+ α1)
(p1(w)‖u1(·,w)− v1(·,w)‖Cγ1

+q1(w)‖u2(·,w)− v2(·,w)‖Cγ2
).

Also, for any w ∈ Ω and each (u1,v1),(u2,v2) ∈ C and t ∈ I, we get

‖(N2(u1,v1))(·,w)− (N2(u2,v2))(·,w)‖Cγ2

� Tα2

Γ(1+ α2)
(p2(w)‖u1(·,w)− v1(·,w)‖Cγ1

+q2(w)‖u2(·,w)− v2(·,w)‖Cγ2
).

Thus,

d((N(u1,v1))(·,w),(N(u2,v2))(·,w)) � M(w)d((u1(·,w),v1(·,w)),(u2(·,w),v2(·,w))),

where

d((u1(·,w),v1(·,w)),(u2(·,w),v2(·,w))) =

⎛
⎝‖u1(·,w)− v1(·,w)‖Cγ1

‖u2(·,w)− v2(·,w)‖Cγ2

⎞
⎠ .

Since for every w ∈ Ω, the matrix M(w) converges to zero, then Theorem 1 implies
that system (1.1) has a unique random solution. �

Now, we prove an existence result for the system (1.1) by using the random non-
linear alternative of Leray–Schauder type in generalized Banach space.

THEOREM 4. Assume that the hypotheses (H1) and (H3) hold. Then the system
(1.1) has at least one random solution.

Proof. We show that the operator N : C ×Ω → C defined in (3.2) satisfies all
conditions of Theorem 2. The proof will be given in four steps.
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Step 1. N(·, ·,w) is continuous.

Let (un,vn)n be a sequence such that (un,vn) → (u,v) ∈ C as n → ∞. For any
w ∈ Ω and each t ∈ I, we have

‖t1−γ1(N1(un,vn))(t,w)− t1−γ1(N1(u,v))(t,w)‖

� t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s,uns(w),vns(w),w)− f1(s,us(w),vs(w),w)‖ds

� 1
Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1‖ f1(s,uns(w),vns(w),w)− f1(s,us(w),vs(w),w)‖ds

� T α1

Γ(1+ α1)
‖ f1(·,un(·,w),vn(·,w),w)− f1(·,u(·,w),v(·,w),w)‖Cγ1

.

Since f1 is Carathéodory, we have

‖(N1(un,vn))(·,w)− (N1(u,v))(·,w)‖Cγ1
→ 0 as n → ∞.

Also, for any w ∈ Ω and each t ∈ I, we get

‖t1−γ2(N2(un,vn))(t,w)− t1−γ2(N2(u,v))(t,w)‖
� T α2

Γ(1+ α2)
‖ f2(·,un(·,w),vn(·,w),w)− f2(·,u(·,w),v(·,w),w)‖Cγ2

,

and since f2 is Carathéodory, we obtain

‖(N2(un,vn))(·,w)− (N2(u,v))(·,w)‖Cγ2
→ 0 as n → ∞.

Hence N(·, ·,w) is continuous.

Step 2. N(·, ·,w) maps bounded sets into bounded sets in C .

For any w ∈ Ω, we set R > ‖φi(w)‖C; i = 1,2 and define the ball

BR(w) := {(μ ,ν) ∈ C : ‖μ‖Cγ1
� R(w),‖ν‖Cγ2

� R(w)}.
For any w ∈ Ω and each (u,v) ∈ BR(w) and t ∈ I, we have

‖t1−γi(Ni(u,v))(t,w)‖ � ‖φi(w)‖
Γ(γi)

+
t1−γi

Γ(αi)

∫ t

0
(t − s)αi−1‖ fi(s,us(w),vs(w),w)‖ds

� ‖φi(w)‖
Γ(γi)

+
1

Γ(αi)

∫ t

0
(t − s)αi−1s1−γi(ai(w)‖us(w)‖C

+bi(w)‖vs(w)‖C)ds

� ‖φi(w)‖
Γ(γi)

+
R(w)
Γ(αi)

∫ t

0
(t − s)αi−1s1−γi(ai(w)+bi(w))ds

� ‖φi(w)‖
Γ(γi)

+
(ai(w)+bi(w))R(w)T αi

Γ(1+ αi)
:= �i(w); i = 1,2.

Thus,

‖(Ni(u,v))(·,w)‖Cγi
� �i(w).
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Hence,

‖(N(u,v))(·,w)‖C � (�1(w), �2(w) := �(w).

Step 3. N(·, ·,w) maps bounded sets into equicontinuous sets in C .

Let BR be the ball defined in Step 2. For each t1,t2 ∈ I with t1 � t2 and any
(u,v) ∈ BR(w) and w ∈ Ω, we have

‖t1−γ1
1 (N1(u,v))(t1,w)− t1−γ1

2 (N1(u,v))(t2,w)‖

� t1−γ1
2

Γ(α1)

∫ t2

t−1
(t2 − s)α1−1‖ f1(s,us(w),vs(w),w)‖ds

� Tα1

Γ(1+ α1)
(t2 − t1)α1(a1(w)‖u(·,w)‖Cγ1

+b1(w)‖v(·,w)‖Cγ2
)

� R(w)T α1(a1(w)+b1(w))
Γ(1+ α1)

(t2 − t1)α1

→ 0 as t1 → t2.

Also, we get

‖t1−γ2
1 (N2(u,v))(t1,w)− t1−γ2

2 (N2(u,v))(t2,w)‖

� R(w)T α12(a2(w)+b2(w))
Γ(1+ α2)

(t2 − t1)α2

→ 0 as t1 → t2.

As a consequence of Steps 1 to 3, with the Arzela–Ascoli theorem, we conclude that
N(·, ·,w) maps BR into a precompact set in C .

Step 4. The set E(w) consisting of (u(·,w),v(·,w)) ∈C such that (u(·,w),v(·,w))
= λ (w)(N((u,v))(·,w) for some measurable function λ : Ω → (0,1) is bounded in C .

Let (u(·,w),v(·,w)) ∈ C such that (u(·,w),v(·,w)) = λ (w)(N((u,v))(·,w). Then
u(·,w) = λ (w)(N1((u,v))(·,w) and v(·,w) = λ (w)(N2((u,v))(·,w). Thus, for any w ∈
Ω and each t ∈ I, we have

‖t1−γ1u(t,w)‖ � ‖φ1(w)‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s,us(w),vs(w),w)‖ds

� ‖φ1(w)‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w)‖us(w)‖C +b1(w)‖vs(w)‖C)ds.

Also,

‖t1−γ2v(t,w)‖ � ‖φ2(w)‖
Γ(γ2)

+
1

Γ(α2)

∫ t

0
(t− s)α2−1s1−γ2(a2(w)‖us(w)‖C +b2(w)‖vs(w)‖C)ds.
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Hence, we get

‖t1−γ1u(t,w)‖+‖t1−γ2v(t,w)‖
� a(w)+b(w)c(w)

∫ t
0(t − s)α−1(s1−γ1‖us(w)‖C + s1−γ2‖vs(w)‖C)ds,

where

a(w) :=
‖φ1(w)‖

Γ(γ1)
+

‖φ2(w)‖
Γ(γ2)

, b(w) :=
1

Γ(α1)
+

1
Γ(α2)

,

c(w) := max{a1(w)+a2(w),b1(w)+b2(w)}, α := max{α1,α2}.
We consider the function τ defined by

τ(t,w) = sup{z(s,w) : −h � s � t}; t ∈ I, w ∈ Ω,

where

z(t,w) = ‖t1−γ1u(t,w)‖+‖t1−γ2v(t,w)‖.
Let t∗ ∈ [−h, t] be such that τ(t) = z(t∗).

If t∗ ∈ I, then by the previous inequality, for any w ∈ Ω and each t ∈ I, we have

τ(t,w) � a(w)+b(w)c(w)
∫ t

0
(t− s)α−1τ(s,w)ds.

And if t∗ ∈ [−h,0], then τ(t,w) � ‖T 1−γ1φ1(t,w)‖+‖T1−γ2φ2(t,w)‖ and the pre-
vious inequality holds.

Now, Lemma 2 implies that there exists ρ := ρ(α) > 0 such that

τ(t,w) � a(w)+a(w)b(w)c(w)ρ
∫ t

0
(t − s)α−1ds

� a(w)+a(w)b(w)c(w)ρTα

α
= L(w).

Since for every t ∈ I, and any w ∈ Ω; we have ‖ut(w)‖C � τ(t,w), then

‖(u(·,w),v(·,w))‖C � max{L(w),T 1−γ1‖φ1(w)‖C +T 1−γ2‖φ2(w)‖C} := M(w).

This shows that the set E(w) is bounded. As a consequence of Steps 1 to 4, together
with Theorem 2, we can conclude that N has at least one fixed point in BR(w) which is
a solution for the system (1.1). �

4. Coupled Hilfer–Hadamard random fractional differential systems

Now, we are concerned with the coupled system (1.2). As in Sections 2 and 3, set
C := C([1,T ]), and denote the weighted space of continuous functions defined by

Cγ,ln([1,T ]) = {w(t) : (ln t)1−γw(t) ∈C},
with the norm

‖w‖Cγ,ln := sup
t∈[1,T ]

|(ln t)1−rw(t)|.
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Also, by Cγ1,γ2,ln([1,T ]) :=Cγ1,ln([1,T ])×Cγ2,ln([1,T ]) we denote the product weighted
space with the norm

‖(u,v)‖Cγ1,γ2,ln([1−h,T ]) = ‖u‖Cγ1,ln +‖v‖Cγ2,ln .

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [17] for a more detailed analysis.

DEFINITION 12. [17] (Hadamard fractional integral). The Hadamard fractional
integral of order q > 0 for a function g ∈ L1([1,T ]), is defined as

(HIq
1g)(x) =

1
Γ(q)

∫ x

1

(
ln

x
s

)q−1 g(s)
s

ds,

provided the integral exists.

EXAMPLE 2. Let 0 < q < 1. Let g(x) = lnx , x ∈ [0,e]. Then

(HIq
1g)(x) =

1
Γ(2+q)

(lnx)1+q; for a.e. x ∈ [0,e].

Set

δ = x
d
dx

, q > 0, n = [q]+1,

and
ACn

δ := {u : [1,T ] → E : δ n−1[u(x)] ∈ AC(I)}.
Analogous to the Riemann–Liouville fractional derivative, the Hadamard fractional
derivative is defined in terms of the Hadamard fractional integral in the following way:

DEFINITION 13. [17] (Hadamard fractional derivative). The Hadamard fractional
derivative of order q > 0 applied to the function w ∈ ACn

δ is defined as

(HDq
1w)(x) = δ n(HIn−q

1 w)(x).

In particular, if q ∈ (0,1], then

(HDq
1w)(x) = δ (HI1−q

1 w)(x).

EXAMPLE 3. Let 0 < q < 1. Let w(x) = lnx , x ∈ [0,e]. Then

(HDq
1w)(x) =

1
Γ(2−q)

(lnx)1−q, for a.e. x ∈ [0,e].

It has been proved (see e.g. Kilbas [[16], Theorem 4.8]) that in the space L1(I), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.

(HDq
1)(

HIq
1w)(x) = w(x).

From Theorem 2.3 of [17], we have

(HIq
1 )(HDq

1w)(x) = w(x)− (HI1−q
1 w)(1)
Γ(q)

(lnx)q−1.
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Analogous to the Hadamard fractional calculus, the Caputo–Hadamard fractional deriva-
tive is defined in the following way:

DEFINITION 14. (Caputo–Hadamard fractional derivative) The Caputo–Hadamard
fractional derivative of order q > 0 applied to the function w ∈ ACn

δ is defined as

(HcDq
1w)(x) = (HIn−q

1 δ nw)(x).

In particular, if q ∈ (0,1], then

(HcDq
1w)(x) = (HI1−q

1 δw)(x).

From the Hadamard fractional integral, the Hilfer–Hadamard fractional derivative (in-
troduced for the first time in [21]) is defined in the following way:

DEFINITION 15. (Hilfer–Hadamard fractional derivative). Let α ∈ (0,1), β ∈
[0,1], γ = α +β −αβ , w ∈ L1(I), and HI(1−α)(1−β )

1 w ∈ AC(I). The Hilfer–Hadamard
fractional derivative of order α and type β applied to the function w is defined as

(HDα ,β
1 w)(t) =

(
HIβ (1−α)

1 (HDγ
1w)

)
(t)

=
(

HIβ (1−α)
1 δ (HI1−γ

1 w)
)

(t); for a.e. t ∈ [1,T ].
(4.1)

This new fractional derivative (4.1) may be viewed as interpolating the Hadamard
fractional derivative and the Caputo–Hadamard fractional derivative. Indeed for β =
0 this derivative reduces to the Hadamard fractional derivative and when β = 1, we
recover the Caputo–Hadamard fractional derivative.

HDα ,0
1 = HDα

1 , and HDα ,1
1 = HcDα

1 .

From Theorem 21 in [22], we have the following lemma.

LEMMA 3. Let g : [1,T ]×E → E be such that g(·,u(·)) ∈ Cγ,ln([1,T ]) for any
u ∈ Cγ,ln([1,T ]). Then problem (1.2) is equivalent to the following Volterra integral
equation

u(t) =
φ0

Γ(γ)
(ln t)γ−1 +(HIα

1 g(·,u(·)))(t).

DEFINITION 16. By a random solution of the system (1.2) we mean a coupled
measurable functions (u,v)∈Cγ1,ln×Cγ2,ln which satisfies the equations (1.2) on [1,T ].

Now we give (without proof) similar existence and uniqueness results for the sys-
tem (1.2). Let us introduce the following hypotheses:

(H ′
1) The functions gi; i = 1,2 are random Carathéodory.

(H ′
2) There exist measurable functions pi,qi : Ω → (0,∞); i = 1,2 such that

‖gi(t,u1,v1)−gi(t,u2,v2)‖ � pi(w)‖u1−u2‖C1,h +qi(w)‖v1− v2‖C1,h ;

for a.e. t ∈ [1,T ] , and each ui,vi ∈C1,h , i = 1,2.
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(H ′
3) There exist measurable functions ai,bi : Ω → (0,∞); i = 1,2 such that

‖gi(t,u,v)‖� ai(w)‖u‖C1,h +bi(w)‖v‖C1,h ; for a.e. t ∈ [1,T ], and each u,v∈C1,h.

THEOREM 5. Assume that the hypotheses (H ′
1) and (H ′

2) hold. If for every w ∈
Ω, the matrix ⎛

⎜⎝
(lnT )α1

Γ(1+α1)
p1(w) (lnT )α1

Γ(1+α1)
q1(w)

(lnT )α2

Γ(1+α2)
p2(w) (lnT )α2

Γ(1+α2)
q2(w)

⎞
⎟⎠

converges to 0, then the problem (1.2) has a unique random solution.

THEOREM 6. Assume that the hypotheses (H ′
1) and (H ′

3) hold. Then the system
(1.2) has at at least one random solution.

5. An example

Let Ω = (−∞,0) be equipped with the usual σ -algebra consisting of Lebesgue
measurable subsets of (−∞,0). Consider the following random coupled system of Hil-
fer fractional differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(u(t,w),v(t,w)) = (t cosw,t sinw); t ∈ [−2,0],

(D
1
2 , 1

2
0 u)(t,w) = f (t,ut(w),vt (w),w); t ∈ [0,1],

(D
1
2 , 1

2
0 v)(t,w) = g(t,ut(w),vt (w),w); t ∈ [0,1],

((I
1
4
0 u)(0,w),(I

1
4
0 v)(0,w)) = (0,0),

;w ∈ Ω, (5.1)

where

f (t,ut(w),vt (w),w) =
t
−1
4 w2(ut(w)+ vt(w))sin t

(1+w2 +
√

t)(1+‖ut(w)‖C([−2,0]) +‖vt(w)‖C([−2,0]))
,

and

g(t,ut(w),vt (w),w) =
w2(ut(w)+ vt(w))cos t

(1+‖ut(w)‖C([−2,0]) +‖vt(w)‖C([−2,0]))
,

for t ∈ [0,1] and w ∈ Ω.
Set αi = βi = 1

2 ; i = 1,2, then γi = 3
4 ; i = 1,2. The hypothesis (H2) is satisfied

with

p1(w) = p2(w) = q1(w) = q2(w) =
w2

1+w2 .

Furthermore, for every w ∈ Ω, the matrix

w2
√

π(1+w2)

(
1 1
1 1

)
converges to 0. Hence, Theorem 3 implies that the system (5.1) has a unique random
solution defined on [−2,1].
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