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A VARIATIONAL METHOD FOR SOLVING QUASILINEAR ELLIPTIC

SYSTEMS INVOLVING SYMMETRIC MULTI–POLAR POTENTIALS
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Abstract. In this paper, a system of quasilinear elliptic equations is investigated, which involves
multiple critical Hardy-Sobolev exponents and symmetric multi-polar potentials. By employing
the variational methods and analytic techniques, the relevant best constants are studied and the
existence of (Zk ×SO(N−2))2 -invariant solutions to the system is established.
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