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Abstract. In this paper, a system of quasilinear elliptic equations is investigated, which involves
multiple critical Hardy-Sobolev exponents and symmetric multi-polar potentials. By employing
the variational methods and analytic techniques, the relevant best constants are studied and the
existence of (Zk ×SO(N−2))2 -invariant solutions to the system is established.

1. Introduction

In this paper, we study the following quasilinear elliptic system:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�pu−∑m
k′=1 λk′

|u|p−2u
|x−ak′ |p −∑m1

l=1 ∑
k(1)
l

i=1 λl
|u|pi−2u

|x−a(l)
i |si = ∑m

k′=1
αk′ηk′

p∗ uαk′ −1vβk′ +up∗−1,

−�pv−∑m
k′=1 μk′

|v|p−2v
|x−ak′ |p −∑m2

t=1 ∑
k(t)
2
j=1 μt

|v|p j−2v

|x−b(t)
j |s j

= ∑m
k′=1

βk′ηk′
p∗ uαk′ vβk′ −1 +vp∗−1,

u,v ∈ D1,p(RN), u,v > 0, in Ω,

u = v = 0, on ∂Ω,

(1)

where the parameters satisfy the following condition:
(H1) Ω ⊂ RN(N � 3) is a bounded domain with smooth boundary ∂Ω , ak ∈ Ω

are different points, 1 < p < N,1 � i � k(1)
l ,1 � j � k(2)

t , 0 < si,s j < p, αk′ ,βk′ > 1,

αk′ +βk′ = pk′ = p∗(sk′) := p(N−sk′ )
N−p are the critical Hardy-Sobolev exponents, for k′ =

1, . . . ,m,m � 2. Note that p∗(0) = Np
N−p is the critical Sobolev exponent, 0 < sk′ < p,

m1,m2,k
(1)
l ,k(2)

t ∈ N , m � min{m1,m2}, λ1 � λ2 � . . . � λm1 < λ , μ1 � μ2 � . . . �

μm2 < λ , a(l)
i ,b(t)

j ∈ R2×{0} ⊆ RN , a(l)
i = e

2π
√−1

k
(1)
l a(l)

i−1, b(t)
j = e

2π
√−1

k
(2)
t b(t)

j−1, a(l)
i 	= b(t)

j

for 1 � i � k(1)
l , 1 � j � k(2)

t , 1 � l � m1, 1 � t � m2, λ := (N−p
p )p, k(1)

l and k(2)
t

(1 � l � m1,1 � t � m2) are chosen to be the multiples of some integer k � 3, and the

space D1,p(RN) := D is the completion of C∞
0 (RN) with respect to

(∫
RN |∇ · |pdx

) 1
p
.
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Write RN = R2 ×RN−2 and consider the group (Zk ×SO(N−2))2 acting on the
space D×D as

(u(y,z),v(y,z)) −→ ( f (y,z),g(y,z)) =
(
u
(
e

2π
√−1
k y,T z

)
,v
(
e

2π
√−1
k y,T z

))
,

where (y,z) ∈ R2 ×RN−2, T is any rotation of RN−2. Let Ol and Gt be the regular
polygons centered at the origin, lying on the plane R2 ×{0} ⊂ RN and having the

vertices a(l)
i ,b(t)

j , 1 � l � m1, 1 � t � m2, 1 � i � k(1)
l , 1 � j � k(2)

t , a(l)
i 	= b(t)

j .

By (H1) , we can set the multiples and the radii of polygons Ol and Gt as

r(l)
l :=

k(1)
l

k
∈ N, r(2)

t :=
k(2)
t

k
∈ N, l = 1,2, . . . ,m1, t = 1,2, . . . ,m2,

Γl := |a(l)
1 | = |a(l)

2 | = . . . = |a(l)

k(1)
l

|, l = 1,2, . . . ,m1,

Λt := |b(t)
1 | = |a(t)

2 | = . . . = |a(t)

k(2)
t

|, t = 1,2, . . . ,m2.

The problem (1) is related to the following Hardy-Sobolev inequality [3]:

(∫
RN

|u|p∗(s)
|x−a|s dx

) p
p∗(s) � C

∫
RN

|∇u|pdx, ∀a ∈ R
N , u ∈C∞

0 (RN), (2)

where 0 � s � p and p∗(s) := p(N−s)
N−p . If s = p in (2), then p∗(s) = p and there follows

the following well-known Hardy inequality [3, 13]:

∫
RN

|u|p
|x−a|p dx � 1

λ

∫
RN

|∇u|pdx, ∀a ∈ R
N , u ∈C∞

0 (RN), (3)

where λ = (N−p
p )p is the best Hardy constant. Define the functional corresponding to

(1) on the product space D×D as follows:

I(u,v) =
1
p

∫
RN

(
|∇u|p + |∇v|p−

m

∑
k′=1

λk′
|u|p

|x−ak′ |p
−

m

∑
k′=1

μk′
|v|p

|x−ak′ |p
)
dx

−
m1

∑
l=1

k
(1)
l

∑
i=1

1
pi

∫
RN

λl
|u|pi

|x−a(l)
i |si

dx−
m2

∑
t=1

k(2)
t

∑
j=1

1
p j

∫
RN

μt
|v|p j

|x−b(t)
j |s j

dx

− 1
p∗

∫
RN

m

∑
k′=1

(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )dx.

A pair of functions (u,v) ∈ D×D is said to be a solution to (1) if u,v > 0 satisfies

〈I′(u,v),(ψ ,φ)〉 = 0, ∀(ψ ,φ) ∈ D×D,

where I′(u,v) is the Fréchet derivative of I at (u,v).
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Define the Rayleigh quotient related to (1) as

Ak = Ak(λ1, . . . ,λm1 ,μ1, . . . ,μm2)

:= inf
u,v∈Dk\{0}

Q(u,v)(∫
RN ∑m

k′=1(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )dx
) p

p∗
, (4)

where

Dk := D1,p
k (RN) =

{
u(y,z) ∈ D1,p(R2×R

N−2) | u
(
e

2π
√−1
k y,z

)
= u(y, |z|)

}
,

Q : Dk ×Dk −→ R is a quadratic form:

Q(u,v) :=
∫

RN

(
|∇u|p + |∇v|p−

m

∑
k′=1

λk′
|u|p

|x−ak′ |p
−

m

∑
k′=1

μk′
|v|p

|x−ak′ |p

−
m1

∑
l=1

k(1)
l

∑
i=1

λl
|u|pi

|x−a(l)
i |si

−
m2

∑
t=1

k
(2)
t

∑
j=1

μt
|v|p j

|x−b(t)
j |s j

)
dx.

Q(u,v) is said to be positive definite if there exists a positive constant ε depending on

λl,μt , a(l)
i ,b(t)

j , 1 � l � m1, 1 � t � m2, 1 � i � k(1)
l , 1 � j � k(2)

t , a(l)
i 	= b(t)

j , such
that

Q(u,v) � ε
∫

RN
(|∇u|p + |∇v|p)dx, ∀(u,v) ∈ Dk ×Dk.

By the Young and Sobolev inequalities, Ak is well defined if Q(u,v) is positive definite.
(H2) By (3), a sufficient condition for Q(u,v) to be positive definite is that

m

∑
k′=1

λ +
k′ +

m1

∑
l=1

k(1)
l λ +

l < λ ,
m

∑
k′=1

μ+
k′ +

m2

∑
t=1

k(2)
t μ+

t < λ ,

where c+ := max{c,0} for all c ∈ R.
To continue, the following best constants need to be defined for all λ ,μ ∈ (−∞,λ ),

η ∈ (0,∞), 1 < p < N, 0 � s < p, αk′ ,βk′ > 1, αk′ + βk′ = pk′ = p∗(sk′) := p(N−sk′ )
N−p

for k′ = 1, . . . ,m(m � 2), a ∈ RN ;

S(λ ,s) := inf
u∈D\{0}

R(u), Sk(λ ,s) := inf
u∈Dk\{0}

R(u), (5)

R(u) :=

∫
RN

(
|∇u|p−λ |u|p

|x−a|p
)

dx(∫
RN

|u|p∗(s)

|x−a|s dx
) p

p∗(s)
, (6)

S′(λ ,μ) := inf
u,v∈D\{0}

T (u,v), S
′(k)

(λ ,μ) := inf
u,v∈Dk\{0}

T (u,v), (7)
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T (u,v) :=

∫
RN

(
|∇u|p + |∇v|p− λ |u|p+μ|v|p

|x−a|p
)

dx(∫
RN ∑m

k′=1(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )dx
) p

p∗
. (8)

Where D1,p(RN) := D is the completion of C∞
0 (RN) with respect to the norm(∫

RN |∇ · |pdx
) 1

p
. It’s standard to show that Sk(λ ,s) is independent of any Ω ⊆ RN

with a ∈ R
N in the sense that if

Sk(λ ,s,Ω) := inf
u∈W1,p

0 (Ω)\{0}

∫
Ω

(
|∇u|p−λ |u|p

|x−a|p
)

dx(∫
Ω

|u|p∗(s)

|x−a|s dx
) p

p∗(s)
,

where the space W 1,p
0 (Ω) is the completion of C∞

0 (Ω) with respect to the norm(∫
Ω |∇ · |pdx

) 1
p
, then Sk(λ ,s,Ω) = Sk(λ ,s,RN) := Sk(λ ,s) . Furthermore, S(λ ,s) �

Sk(λ ,s), S′(λ ,μ) � S
′(k)

(λ ,μ).
In recent years, much attention has been paid to the semilinear elliptic problems

involving Hardy inequality or Hardy-Sobolev inequality, see [4, 5, 6, 7, 8, 9, 10, 16,
23, 24] and references therein. The quasilinear form singular problems were studied,
see [1, 12, 14, 17] and references in these publications. As an example, for all ak′ ∈
RN , 0 < λk′ < λ , 0 < sk′ < p, from [18] we are informed that the following limiting
problem: ⎧⎨

⎩−�pu−∑m
k′=1 λk′

|u|p−2u
|x−ak′ |p = ∑m

k′=1
|u|pk′−2u
|x−ak′ |sk′

, in RN \ {ak′},
u ∈ D1,p(RN), u > 0, in RN \ {ak′},

(9)

has radially symmetric ground states

V
λk′
σ (x−ak′) := σ

p−N
p Uλk′ ,s

(
x−ak′

σ

)
= σ

p−N
p Uλk′ ,s

( |x−ak′ |
σ

)
, ∀σ > 0, 0 � s < p,

(10)
that satisfy

∫
RN

(
|∇V

λk′
σ |p−λk′

|V λk′
σ |p

|x−ak′ |p
)

dx =
∫

RN

|V λk′
σ |p∗(s)

|x−ak′ |s
dx = (S(λ ,s))

N−s
p−s , ∀0 � s < p.

(11)
The function Uλk′ ,s(x−ak′) = Uλk′ ,s(|x−ak′ |) is the unique solution of (9) satisfying

Uλk′ ,s(1) =

(
(N − s)(λ −λk′)

N− p

) 1
p∗(s)−p

.

Throughout this paper we assume that
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(H3) there exists an e,1 � e � m, such that 0 < se < p2

N and

p− se

p(N− se)
(S(λe,se))

N−se
p−se min

{
p− sk′

p(N− sk′)
(S(λk′ ,sk′))

N−sk′
p−sk′ , k′ = 1,2, . . . ,m

}
.

It should be mentioned that the constant S′(λ ,λ ) was studied and its minimizers
were found in [15]. However, due to the complexity of singular elliptic systems, many
important topics remain open and it is necessary to investigate the singular systems like
(1) deeply. Inspired by [18], in this paper, we investigate the best constant Ak and
prove the existence of solutions to (1).

Now, for any 0 < ηk′ < +∞ , αk′ ,βk′ > 1 and αk′ +βk′ = p∗ (k′ = 1,2, . . . ,m), we
can define:

f (τ) :=
1+ τ p(

1+ ∑m
k′=1 ηk′τβk′ + τ p∗

) p
p∗

, τ > 0, (12)

f (τmin) := min
τ>0

f (τ) > 0, (13)

where τmin > 0 is the unique minimal point of f (τ) in (0,∞).
The main results of this paper are summarized in the following theorems. To the

best of our knowledge, the results are new.

THEOREM 1. Suppose that (H1), (H2) and (H3) hold and

Sk(λe,se) < k
p
n S(0,0),

m1

∑
l=1

λlk
(1)
l � 0,

m2

∑
t=1

μt k
(2)
t � 0,

S
′(k)

(λe,λe) � min
{

k
p
n S

′(k)
(λl,0),k

p
n S

′(k)
(0,μt)

}
.

Assume that one of the following conditions is satisfied:
(i) For −∞ < λe < λ −1,

m1

∑
l=1

λlk
(1)
l

|Γl|p +(τmin)p
m2

∑
t=1

μt k
(2)
t

|Λt |p > 0;

(ii) For λ −1 < λe < λ ,

m1

∑
l=1

λlk
(1)
l

|Γl|p(λ−λe)
1

p∗−p

+(τmin)p
m2

∑
t=1

μtk
(2)
t

|Λt |p(λ−λe)
1

p∗−p

> 0.

Then the infimum in (4) is achieved and the problem (1) has a (Zk × SO(N − 2))2 -
invariant solution.
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THEOREM 2. Suppose that (H1), (H2) and one of the following conditions is
satisfied:

(i) −∞ < λe < λ , λl,μt < 0, 1 � l � m1,1 � t � m2.
(ii) λk′ ,μk′ ,λl ,μt > 0, 1 � k′ � m, 1 � l � m1,1 � t � m2 and

m

∑
k′=1

λk′ +
m1

∑
l=1

λlk
(1)
l =

m

∑
k′=1

μk′ +
m2

∑
t=1

μtk
(2)
t < λ .

Then the infimum in (4) is not achieved.

REMARK 1. It can be verified that the conditions in Theorem 1 are all allowable.
For example, we can choose λe and k reasonably large, and Γm1 and Λm2 small, such
that all of the conditions in Theorem 1 are satisfied.

In the following, we sketch a example such that it premit’s us to obtain some results
of the behavior of the sequence of the eigenvalue:

EXAMPLE. Let (λk(Ω))k∈N be the sequence of the eigenvalues of the Laplace-
Dirichlet operator in a bounded open set Ω in RN (with the multiplicity convention).
Then, there exist two positive constants AΩ and BΩ, which depend only on Ω, such
that for all k � 1,

AΩk
2
N � λk(Ω) � BΩk

2
N .

Solution. The solution is quite technical but the idea is very simple. The idea
consists in the comparison of Ω with two regular polygons centered at the origin Ol :=
(− l

2 , l
2 )N and Gt := (− t

2 , t
2 )N , with 1 � l � m1,1 � t � m2 we can suppose that l � t,

Ol ⊂ Ω ⊂ Gt . We note that (λk(Ω))k∈N is a decreasing function of Ω, therefore,

λk(Ol) ⊂ λk(Ω) ⊂ λk(Gt).

Then the problem has been reduced to the evaluation of λk(Ol) and λk(Gt). Clearly

λk(Ol)= λk(O)
l2

and λk(Gt)= λk(G )
t2

, when O and G are two N -cubes
(
O = G = (0,1)N

)
.

By Proposition 8.5.3 in [2], the numbers λk(O)
π2 = λk(G )

π2 are precisely the positive in-

tegers of the form ∑N
i=1 p2

i with pi ∈ N \ {0}. Thus, one has to arrange the numbers

{∑N
i=1 p2

i : pi ∈ N∗} as an increasing sequence to obtain the sequence { λk(O)
π2 : k ∈ N∗}.

Now, it is convenient to introduce for any k > 0 the quantity νN(k) which is the cardi-
nal of all the elements p ∈ (N∗)N such that p = (p1, . . . , pN) with ∑N

i=1 p2
i � k. Then,

the key of the proof consists in showing the following estimate: νN(k) ∼ CNk
2
N for

some constant CN > 0. �
Most of the results of the previous sections have a natural extensionwhen replacing

the Dirichlet integral
∫

Ω |∇v|2dx by
∫

Ω |∇v|pdx with 1 < p < +∞ and the space H1
0 (Ω)

by the space W 1,p
0 (Ω). So doing, the Laplace operator Δ is replaced by the nonlinear

Laplacian Δp, which is defined by:

Δpv :=
N

∑
i=1

∂
∂xi

(
|∇v|p−2 ∂v

∂xi

)
= div(|∇v|p−2∇v).
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Note that when p = 2 one obtains Δ2 = Δ .
The last estimate in above example, extended by Garcia Azorero and Peral Alonso

in [11] such that got the similar result in the special case Ω = [0,1]N for p 	= 2.
This paper is organized as follows: A local Palais-Smale condition is verified in

Section 2, some preliminary results are established in Section 3, and Theorems 1 and
2 are proved in Sections 4 and 5 respectively. In the following argument, ||u||p =(∫

RN |∇u|pdx
) 1

p
denotes the norm of the space D and ||(u,v)||p =

(
||u||pp + ||v||pp

) 1
p

is the norm of the space D×D, O(ε(t)) denotes the quantity satisfying |O(ε(t))|
ε(t) � C,

o(ε(t)) means |o(ε(t))|
ε(t) → 0 as ε → 0 and o(1) stands for a generic infinitesimal value.

The quantity O1(ε(t)) means that there exist the constants C1,C2 > 0 such that C1ε(t) �
|O(ε(t))| � C2ε(t) as ε small. We always denote positive constants as C and omit dx
in integrals for convenience.

2. Palais-Smale condition

Define the functional Jk(u,v) on the space D×D :

Jk(u,v) =
1
p

∫
RN

(
|∇u|p + |∇v|p−

m

∑
k′=1

λk′
|u|p

|x−ak′ |p
−

m

∑
k′=1

μk′
|v|p

|x−ak′ |p
)
dx

−
m1

∑
l=1

k(1)
l

∑
i=1

1
pi

∫
RN

λl
|u|pi

|x−a(l)
i |si

dx−
m2

∑
t=1

k(2)
t

∑
j=1

1
p j

∫
RN

μt
|v|p j

|x−b(t)
j |s j

dx

−Ak

p∗

∫
RN

m

∑
k′=1

(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )dx.

By (H1),(H2) and (H3) we deduce that Jk is (Zk ×SO(N − 2))2 - invariant. Since
(Zk ×SO(N − 2))2 acts by isometry on D×D, the principle of symmetric criticality
[22] ensures that a critical point (ue,ve) of Jk restricted to Dk ×Dk is also a critical

point of Jk in Dk ×Dk, and therefore (ũ, ṽ) = A
1

p∗(s)−p
k (ue,ve) with 0 < s < p is a

solution to (1) if ue,ve > 0 in RN . Jk is said to satisfy the Palais-Smale condition at the
level c (in short (PS)c condition), if every sequence {(un,vn)} satisfying Jk(un,vn) →
c and J′k(un,vn) → 0 as n → ∞ has a convergent subsequence.

LEMMA 1. Assume that (H1),(H2) and (H3) hold. Then the functional Jk re-
stricted to Dk ×Dk satisfies the (PS)c condition for all c < c∗, where

c∗ :=
1
N

A
p−N

p
k

(
min{S′(k)

(λe,λe),S
′(k)

(λ̂ , μ̂), k
p
N S∗, k

p
N S∗∗, k

p
N S

′(k)
(0,0)}

)N
p
, (14)

λ̂ :=
m

∑
k′=1

λk′ +
m1

∑
l=1

k(1)
l λl, μ̂ :=

m

∑
k′=1

μk′ +
m2

∑
t=1

k(2)
t μt ,

S∗ := min{S′(k)
(λl,0), 1 � l � m1}, S∗∗ := min{S′(k)

(0,μt), 1 � t � m2}.
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Proof. Suppose that the sequence {(un,vn)} ⊂ Dk × Dk satisfies Jk(un,vn) →
c < c∗ and J′k(un,vn) → 0 in (Dk ×Dk)−1. Since Q(u,v) positive definite, we de-
duce that {(un,vn)} is bounded in D×D. Up to a subsequence if necessary, for some
(u,v) ∈ D×D, (un,vn) ⇀ (u,v) weakly in D×D and (un,vn) → (u,v) a.e. in RN .
By a variant of the concentration compactness principle [19], which is an application
of Lions results [20, 21], and up to a subsequence, there exists an at most countable

set ζ , xz ∈ RN \
{

0,a(l)
i ,b(t)

j ,1 � l � m1,1 � i � k(1)
l ,1 � t � m2,1 � j � k(2)

t

}
, real

numbers ρxz ,νxz ,z ∈ ζ and ρak′ ,νak′ ,γak′ ,ρa
(l)
i

,ν
a
(l)
i

,γ
a
(l)
i

, ρ̂
b
(t)
j
, ν̂

b
(t)
j

, γ̂
b
(t)
j

, 1 � k′ � m,

1 � l � m1, 1 � i � k(1)
l , 1 � t � m2, 1 � j � k(2)

t , such that the following conver-
gences hold in the sense of measures:

|∇un|p + |∇vn|p ⇀ dρ � |∇u|p + |∇v|p +
m

∑
k′=1

ρak′δak′ +
m1

∑
l=1

k(1)
l

∑
i=1

ρ
a(l)
i

δ
a(l)
i

+
m2

∑
t=1

k
(2)
t

∑
j=1

ρ̂
b
(t)
j

δ
b
(t)
j

+ ∑
z∈ζ

ρxzδxz , (15)

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ ) ⇀ dν

=
m

∑
k′=1

(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )+
m

∑
k′=1

νak′ δak′ +
m1

∑
l=1

k
(1)
l

∑
i=1

ν
a(l)
i

δ
a(l)
i

+
m2

∑
t=1

k
(2)
t

∑
j=1

ν̂
b
(t)
j

δ
b
(t)
j

+ ∑
z∈ζ

νxzδxz , (16)

|un|p + |vn|p
|x−ak′ |p

⇀ dγ̃ =
|u|p + |v|p
|x−ak′ |p

+ γ̃ak′δak′ , 1 � k′ � m, (17)

⎧⎪⎨
⎪⎩

λl |un|pi

|x−a
(l)
i |si

⇀ dγ
a
(l)
i

= λl |u|pi

|x−a
(l)
i |si

+ γ
a
(l)
i

δ
a
(l)
i

, 1 � l � m1,1 � i � k(1)
l ,0 < si < p,

μt |vn|p j

|x−b(t)
j |s j

⇀ dγ̂
b
(t)
j

= μt |v|p j

|x−b(t)
j |s j

+ γ̂
b
(t)
j

δ
b
(t)
j
, 1 � t � m2,1 � j � k(2)

t ,0 < s j < p,

(18)
where δx is the Dirac mass at x. To study the concentration at infinity, we set

ρ∞ = lim
R→∞

limsup
n→∞

∫
|x|>R

(|∇un|p + |∇vn|p),

γ∞ = lim
R→∞

limsup
n→∞

∫
|x|>R

λ̂ |un|p + μ̂|vn|p
|x|p ,

ν∞ = lim
R→∞

limsup
n→∞

∫
|x|>R

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ ).
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Since {(un,vn)} ⊂ Dk ×Dk is a.e. pointwise convergent to (u,v) and (u,v) is
invariant by (Zk × SO(N − 2))2 action and (u,v) ∈ Dk ×Dk. Furthermore, for any
ϕ ∈C0(RN) and any h ∈ Zk ×SO(N−2) we have

∫
RN

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ )ϕ

=
∫

RN

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ )(ϕoh−1).

As n → +∞, from (16) it follows that

m

∑
k′=1

νak′ ϕ(ak′)+
m1

∑
l=1

k
(1)
l

∑
i=1

ν
a(l)
i

ϕ(a(l)
i )+

m2

∑
t=1

k(2)
t

∑
j=1

ν̂
b(t)

j
ϕ(b(t)

j )+ ∑
z∈ζ

νxzϕ(xz)

=
m

∑
k′=1

νak′ ϕ(h−1(ak′))+
m1

∑
l=1

k
(1)
l

∑
i=1

ν
a
(l)
i

ϕ(h−1(a(l)
i ))

+
m2

∑
t=1

k(2)
t

∑
j=1

ν̂
b(t)

j
ϕ(h−1(b(t)

j ))+ ∑
z∈ζ

νxzϕ(h−1(xz)).

Choosing ϕ = ϕ(a(l)
i ) such that 0 � ϕ(a(l)

i ) � 1, ϕ(a(l)
i ) ≡ 1 in B ε

2
(a(l)

i ), ϕ(a(l)
i ) ≡

0 in R
N \ Bε(a

(l)
i ), we get that ν

a
(l)
i

= ν
h−1(a(l)

i )
as ε → 0. Since k(1)

l and k(2)
t are

multiples of k, and h ∈ Zk ×SO(N−2), for any l = 1,2, . . . ,m1, t = 1,2, . . . ,m2, we
have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
a
(l)
i

= ν
a
(l)
qi

, qi := mod(i,r(1)
l ), if mod(i,r(1)

l ) 	= 0, 2 � r(1)
l < i � k(1)

l ,

ν̂
b(t)

j
= ν̂

b(t)
q̂ j

, q̂ j := mod( j,r(2)
t ), if mod( j,r(2)

t ) 	= 0, 2 � r(2)
t < j � k(2)

t ,

ν
a(l)
i

= ν
a(l)

r
(1)
l

, if mod(i,r(1)
l ) = 0, 2 � r(1)

l < i � k(1)
l ,

ν
b
(t)
j

= ν
b
(t)

r
(2)
t

, if mod( j,r(2)
t ) = 0, 2 � r(2)

t < j � k(2)
t ,

ν
a(l)
i

= ν
a(l)
1

, 1 � i � k, if r(1)
l = 1,

ν̂
b
(t)
j

= ν̂
b
(t)
1

, 1 � j � k, if r(2)
t = 1,

(19)

where r(1)
l = k

(1)
l
k , r(2)

t = k(2)
t
k , l = 1,2, . . . ,m1, t = 1,2, . . . ,m2.

Fix z ∈ ζ and let ϕ = ϕxz such that 0 � ϕxz � 1, ϕxz ≡ 1 in B ε
2
(xz), ϕ(xz)≡ 0 in

RN \Bε(xz), As ε → 0, we get that either (i) νxz = 0, or (ii) for any h∈Zk×SO(N−2),
there exists i ∈ ζ such that h(xz) = xi.

When N � 4, SO(N − 2) is a continuous group, hence for any x /∈ R2 ×{0} ⊂
R

N the set {h(x)|h ∈ Zk ×SO(N−2)} is more than countable. Since ζ is at most
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countable, as (ii) holds we deduce that x ∈ R2×{0} ⊂RN . Furthermore, we can prove
that νxi = νxz if h(xz) = xi for some h ∈ Zk ×SO(N −2). Then there exists ν(p) such
that ν

y
(p)
r

= ν(p), r = 1,2, . . . ,k, and (16) can be rewritten as

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ ) ⇀ dν

=
m

∑
k′=1

(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )+
m

∑
k′=1

νak′ δak′ +
m1

∑
l=1

k
(1)
l

∑
i=1

ν
a(l)
i

δ
a(l)
i

+
m2

∑
t=1

k
(2)
t

∑
j=1

ν̂
b
(t)
j

δ
b
(t)
j

+ ∑
p∈P

k

∑
r=1

ν(p)δ
y
(p)
r

, (20)

where P is an at most countable set,{
y(p)
r | 1 � r � k, p ∈ P

}
⊂ {xz| z ∈ ζ} , y(p)

r = e
2π

√−1
k y(p)

r−1, 1 � r � k.

And there exists real numbers ρ
a(l)
i

, ρ̂
b(t)

j
and ρ

y(p)
r

, such that (15) can be rewritten as

|∇un|p + |∇vn|p ⇀ dρ � |∇u|p + |∇v|p +
m

∑
k′=1

ρak′ δak′ +
m1

∑
l=1

k
(1)
l

∑
i=1

ρ
a(l)
i

δ
a(l)
i

+
m2

∑
t=1

k
(2)
t

∑
j=1

ρ̂
b
(t)
j

δ
b
(t)
j

+ ∑
p∈P

k

∑
r=1

ρ
y
(p)
r

δ
y
(p)
r

. (21)

CLAIM 1. P is finite and for any p∈P, either ν p = 0 or ν(p) �
(

S
′(k)

(0,0)
Ak

)N
p

.

In fact, for all ε > 0 small enough, let ψ(p)
r be a smooth function in Dk such that

0 � ψ(p)
r � 1, ψ(p)

r = 1 in B ε
2
(y(p)

r ), ψ(p)
r = 0 in RN \Bε(y

(p)
r ) and |∇ψ(p)

r |� 4
ε . Then

〈J′k(un,vn),(unψ(p)
r ,vnψ(p)

r )〉
=
∫

RN

(
|∇un|p + |∇vn|p

)
ψ(p)

r −
∫

RN

m

∑
k′=1

(λk′ |un|p + μk′ |vn|p
|x−ak′ |p

)
ψ(p)

r dx

−
∫

RN

m1

∑
l=1

k(1)
l

∑
i=1

λl
|un|pi

|x−a(l)
i |si

ψ(p)
r dx−

∫
RN

m2

∑
t=1

k
(2)
t

∑
j=1

μt
|vn|p j

|x−b(t)
j |s j

ψ(p)
r dx

+
∫

RN

(
un|∇un|p−2∇un + vn|∇vn|p−2∇vn

)
∇ψ(p)

r dx

−Ak

∫
RN

m

∑
k′=1

(
|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′

)
ψ(p)

r dx.
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Note that xz ∈ RN \
{

0,a(l)
i ,b(t)

j : 1 � l � m1,1 � i � k(1)
l ,1 � t � m2,1 � j � k(2)

t

}
,

by (17)–(21) we have

lim
ε→0

lim
n→∞

∫
RN

(|∇un|p + |∇vn|p)ψ(p)
r = lim

ε→0

∫
RN

ψ(p)
r dρ � ρ

y
(p)
r

, (22)

lim
ε→0

lim
n→∞

∫
RN

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ )ψ(p)
r = lim

ε→0

∫
RN

ψ(p)
r dν = ν(p),

(23)

lim
ε→0

lim
n→∞

∫
RN

|un|p + |vn|p
|x−ak′ |p

ψ(p)
r = lim

ε→0
lim
n→∞

O1

(∫
RN

(|un|p + |vn|p)ψ(p)
r

)
= 0, (24)

lim
ε→0

lim
n→∞

∫
RN

|un|pi

|x−a(l)
i |si

ψ(p)
r = 0, 1 � l � m1,1 � i � k(1)

l , (25)

lim
ε→0

lim
n→∞

∫
RN

|vn|p j

|x−b(t)
j |s j

ψ(p)
r = 0, 1 � t � m2,1 � j � k(2)

t , (26)

and by the Hölder inequality with a constant C > 0, we conclude that

lim
ε→0

lim
n→∞

∣∣∣∫
RN

(
un|∇un|p−2∇un + vn|∇vn|p−2∇vn

)
∇ψ(p)

r

∣∣∣
� lim

ε→0
lim
n→∞

[(∫
RN

|un|p|∇ψ(p)
r |p

) 1
p
(∫

RN
|∇un|p

) p−1
p

+
(∫

RN
|vn|p|∇ψ(p)

r |p
) 1

p
(∫

RN
|∇vn|p

) p−1
p
]

� C lim
ε→0

[(∫
RN

|u|p|∇ψ(p)
r |p

) 1
p +
(∫

RN
|v|p|∇ψ(p)

r |p
) 1

p
]

� C lim
ε→0

[(∫
Bε (y(p)

r )
|∇ψ(p)

r |N
) 1

N
(∫

Bε (y(p)
r )

|u|p∗
) 1

p∗

+
(∫

Bε (y(p)
r )

|∇ψ(p)
r |N

) 1
N
(∫

Bε(y(p)
r )

|v|p∗
) 1

p∗
]

� C lim
ε→0

[(∫
Bε (y(p)

r )
|u|p∗

) 1
p∗ +

(∫
Bε (y(p)

r )
|v|p∗

) 1
p∗
]

= 0,

which implies that

lim
ε→0

lim
n→∞

∫
RN

(
un|∇un|p−2∇un + vn|∇vn|p−2∇vn

)
∇ψ(p)

r = 0. (27)

From (22)–(27) it follows that

0 = lim
ε→0

lim
n→∞

〈J′k(un,vn),(unψ(p)
r ,vnψ(p)

r )〉 � ρ
y
(p)
r

−Akν(p). (28)

By (7) and (8) it follows that

S
′(k)

(0,0)(ν(p))
p
p∗ � ρ

y
(p)
r

, ∀p ∈ P, r = 1,2, . . . ,k. (29)

Then (28) and (29) imply that Claim 1 holds.
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CLAIM 2. For k′ = 1,2, . . . ,m, either νak′ = 0 or νak′ �
(

S
′(k)

(λk′ ,λk′ )
Ak

)N−sk′
p−sk′

holds.

In fact, for all ε � 0, take φ k′
ε (x) ∈ Dk such that 0 � φ k′

ε (x) � 1, φ k′
ε (x) = 1 in

x ∈ B ε
2
(0), φ k′

ε (x) = 0 in RN \ (Bε(0)) , and |∇φ k′
ε | � 4

ε .

Similarly, for k′ = 1,2, . . . ,m, we have

0 = lim
ε→0

lim
n→∞

〈J′k(un,vn),(unφ k′
ε ,vnφ k′

ε )〉 � ρak′ −λk′γak′ −Akνak′ , (30)

S
′(k)

(λk′ ,λk′)(νak′ )
p
p∗ � ρak′ −λk′γak′ , for k′ = 1,2, . . . ,m. (31)

Then (30) and (31) imply that Claim 2 holds.

CLAIM 3. For each 1 � l � m1,1 � i � k(1)
l , either ν

a(l)
i

= 0 or ν
a(l)
i

�
(

S
′(k)

(λl ,0)
Ak

)N
p

holds.
In fact, for ε > 0 small enough, let φ

a
(l)
i

(x) be a smooth cut-off function in Dk

such that 0 � φ
a
(l)
i

(x) � 1, φ
a
(l)
i

(x) = 1 in B ε
2
(a(l)

i ), φ
a
(l)
i

(x) = 0 in R
N \Bε(a

(l)
i ), and

|∇φ
a
(l)
i
| � 4

ε . By (17)–(21) and arguing as in the proof of Claim 1, we have

0 = lim
ε→0

lim
n→∞

〈J′k(un,vn),(unφ
a(l)
i

,vnφ
a(l)
i

)〉 � (ρ
a(l)
i
− γ

a(l)
i

)−Akν
a(l)
i

. (32)

From (7) and (8) it follows that

S
′(k)

(λl,0)(ν
a(l)
i

)
p
p∗ � ρ

a(l)
i
− γ

a(l)
i

, 1 � i � k(1)
l . (33)

Then (32) and (33) imply that Claim 3 holds.

CLAIM 4. For each 1 � t � m2,1 � j � k(2)
t , either ν̂

b(t)
j

= 0 or ν̂
b(t)

j
�
(

S
′(k)

(0,μt)
Ak

) N
p

holds.
The proof of Claim 4 is similar to that of Claim 3 and is omitted.

CLAIM 5. Either ν∞ = 0 or ν∞ �
(

S
′(k)

(λ̂ ,μ̂)
Ak

)N
p

holds.

In fact, for all R > 0 large enough, let ψ(x) be a smooth function in Dk such that
0 � ψ(x) � 1, ψ(x) = 0 in BR(0), ψ(x) = 1 in RN \ (B2R(0)) and |∇ψ | � 2

R . By (7)
and (8) we have

∫
RN

(
|∇(unψ)|p + |∇(vnψ)|p− λ̂ |unψ |p + μ̂|vnψ |p

|x|p
)

dx

� S′(k)(λ̂ , μ̂)

(∫
RN

m

∑
k′=1

(
|unψ |p∗ + |vnψ |p∗ + ηk′ |unψ |αk′ |vnψ |βk′

)
dx

) p
p∗

. (34)
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For all 1 � l � m1,1 � i � k(1)
l ,1 � t � m2,1 � j � k(2)

t , arguing as in [18] we can
write

lim
R→∞

limsup
n→∞

∫
RN

|un∇ψ |p = lim
R→∞

limsup
n→∞

∫
RN

|un|p|∇ψ |p

= lim
R→∞

limsup
n→∞

∫
RN

|vn∇ψ |p

= lim
R→∞

limsup
n→∞

∫
RN

|vn|p|∇ψ |p = 0, (35)

lim
R→∞

limsup
n→∞

∫
RN

unψ∇un∇ψ = lim
R→∞

limsup
n→∞

∫
RN

vnψ∇vn∇ψ = 0, (36)

lim
R→∞

limsup
n→∞

∫
RN

⎛
⎝ λl|un|pψ
|x−a(l)

i |p
+

μt |vn|pψ
|x−b(t)

j |p

⎞
⎠

= lim
R→∞

limsup
n→∞

∫
RN

⎛
⎝ λl|un|p
|x−a(l)

i |p
+

μt |vn|p
|x−b(t)

j |p

⎞
⎠ψ

= lim
R→∞

limsup
n→∞

∫
RN

(λl|un|p + μt |vn|p)ψ
|x|p . (37)

From (34)–(37) we infer that

ρ∞ − γ∞ � S
′(k)

(λ̂ , μ̂)(ν∞)
p
p∗ . (38)

Note that limn→∞〈J′k(un,vn),(unψ ,vnψ)〉 = 0. By (34)–(37) we have

ρ∞ − γ∞ � Akν∞. (39)

Then (38) and (39) imply that Claim 5 holds.

Now we are ready to conclude. Note that

c = Jk(un,vn)− 1
p
〈J′k(un,vn),(un,vn)〉+o(1)

=
Ak

N

∫
RN

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ )+o(1)

=
Ak

N

(∫
RN

m

∑
k′=1

(|un|p∗ + |vn|p∗ + ηk′ |un|αk′ |vn|βk′ )+
m

∑
k′=1

νak′ + ν∞

+
m1

∑
l=1

k(1)
l

∑
i=1

ν
a(l)
i

+
m2

∑
t=1

k(2)
t

∑
j=1

ν̂
b(t)

j
+ k ∑

p∈P

ν(p)
)
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=
Ak

N

(∫
RN

m

∑
k′=1

(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )+
m

∑
k′=1

νak′ + ν∞

+k
m1

∑
l=1

r
(1)
l

∑
i=1

ν
a(l)
i

+ k
m2

∑
t=1

r(2)
t

∑
j=1

ν̂
b(t)

j
+ k ∑

p∈P

ν(p)
)
,

where (19) is used in the last step. From (14), (19), Claims 1-5 and the assumption
c < c∗, it follows that

νak′ = ν∞ = 0, for k′ = 1,2, . . . ,m, ν(p) = 0, ∀p ∈ P,

ν
a
(l)
i

= ν̂
b
(t)
j

= 0, 1 � l � m1, 1 � i � k(1)
l , 1 � t � m2, 1 � j � k(2)

t .

Then up to a subsequence, (un,vn) → (u,v) strongly in Dk ×Dk.

3. Minimizer of the best constant

LEMMA 2. (See [24]). Suppose that k ∈ N, N � 4, −∞ < λ < λ and Sk(λ ,s) <

k
p
n S(0,0). Then Sk(λ ,s) is achieved.

LEMMA 3. (See [15]). Suppose that (H1) holds, 0 � λ < λ , f (τmin) is defined
as in (12) and (13), and V λ

σ is defined as in (10). Then S′(λ ,λ ) = f (τmin)S(λ ,λ )
and has the minimizers

(
V λ

σ (x−a),τminV λ
σ (x−a)

)
. Furthermore, f (τmin) < 1 and

therefore S′(λ ,λ ) < S(λ ,λ ).

Now, Define the following constant:

Âk := inf
u∈Dk\{0}

∫
RN

(
|∇u|p−∑m

k′=1 λk′
|u|p

|x−ak′ |p −∑m1
l=1 ∑

k
(1)
l

i=1 λl
|u|pi

|x−a(l)
i |si

)
(
∫
RN |u|p∗)

p
p∗

. (40)

By Lemma 2 and arguing as in the proof of Lemma 3, we have the following results.

COROLLARY 1. Suppose that (H1) holds, −∞ < λ < λ and Sk(λ ,s) < k
p
n S(0,0)

and uλ (x) are the minimizers of Sk(λ ,s) obtained as in Lemma 2. Then S
′(k)

(λ ,λ ) =
f (τmin)Sk(λ ,s) and has the minimizers (uλ (x),τminuλ (x)).

COROLLARY 2. Suppose that (H1) holds, Ak is defined as in (4), m1 = m2,

k(1)
l = k(2)

l , a(l)
i = b(l)

i , 1 � l � m1, 1 � i � k(1)
l . Then

(i) Ak(λ1, . . . ,λm1 ,λ1, . . . ,λm1) = f (τmin)Âk.

(ii) Ak(λ1, . . . ,λm1 ,λ1, . . . ,λm1) < Âk.
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4. Proof of Theorem 1

LEMMA 4. (See [18]). Suppose 0 � λk′ < λ for k′ = 1,2, . . . ,m and for all
ak′ ∈ RN , 0 < sk′ < p and wλk′ ∈ D1,p(RN) is a solution to the equation

⎧⎨
⎩−�pu−∑m

k′=1 λk′
|u|p−2u
|x−ak′ |p = ∑m

k′=1
|u|pk′−2u
|x−ak′ |sk′

, in RN \ {ak′},
u ∈ D1,p(RN), u > 0, in RN \ {ak′}.

(41)

Set wλ
σ (x− a) = σ− N−p

p wλ ( x−a
σ ) (σ > 0,a ∈ RN). Then for any σ → 0+ there

exists some positive constant C such that

∫
RN

|wλe
σ (x−ae)|p
|x−ae|p dx �

⎧⎪⎨
⎪⎩

Cσ p, λe < λ −1,

Cσ p| lnσ |, λe = λ −1,

Cσ pδλe , λe < λ −1,

where δλ = (λ −λ )
1

p∗−p . Moreover, as σ → 0 there follows that

∫
RN

|wλe
σ (x−ae)|p
|x−ak′ |p

dx → 0, k′ = 1,2, . . . ,m, k′ 	= e.

LEMMA 5. Suppose that Sk(λe,se) < k
p
n S(0,0), (H1),(H2) hold and one of the

following condition is satisfied:
(i) For −∞ < λe < λ −1,

m1

∑
l=1

λlk
(1)
l

|Γl|p +(τmin)p
m2

∑
t=1

μt k
(2)
t

|Λt |p > 0;

(ii) For λ −1 < λe < λ ,

m1

∑
l=1

λlk
(1)
l

|Γl|pδλe
+(τmin)p

m2

∑
t=1

μtk
(2)
t

|Λt |pδλe
> 0.

Then Ak < S
′(k)

(λe,λe).

Proof. From Lemmas 2, 3 and Corollary 1, it follows that Sk(λe) is achieved by

some uλe ∈ Dk and S
′(k)

(λe,λe) is thus attained by (uλe,τminuλe) ∈ Dk ×Dk. By the
homogeneity of the Rayleigh quotient, we can assume that

∫
RN

(|uλe |p∗ + |τminu
λe |p∗ +

m

∑
k′=1

ηk′ |uλe |αk′ |τminu
λe|βk′ ) = 1.
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Set uλe
σ (x−ae) = σ

p−N
p uλe( x−ae

σ ) (σ > 0). Since uλe
σ = (Sk(λe,se))

1
p∗−p |uλe

σ | is a non-
negative solution to (42), the estimates of Lemma 4 can be applied as σ → 0. Then

Ak � Q(uλe
σ ,τminu

λe
σ )(∫

RN (|uλe
σ (x)|p∗ + |τminu

λe
σ (x)|p∗ + ∑m

k′=1 ηk′ |uλe
σ (x)|αk′ |τminu

λe
σ (x)|βk′ )dx

) p
p∗

= S
′(k)

(λe,λe)−
∫

RN

⎛
⎝m1

∑
l=1

k
(1)
l

∑
i=1

λl
|uλe

σ (x)|p
|x−a(l)

i |p
+

m2

∑
t=1

k(2)
t

∑
j=1

μt
|τminu

λe
σ (x)|p

|x−b(t)
j |p

⎞
⎠dx

� CS
′(k)

(λe,λe)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
∑m1

l=1
λlk

(1)
l

|Γl |p +(τmin)p ∑m2
t=1

μt k
(2)
t

|Λt |p
)

(1+o(1)), λe < λ −1,(
∑m1

l=1
λlk

(1)
l

|Γl |p +(τmin)p ∑m2
t=1

μt k
(2)
t

|Λt |p
)

(1+o(1)), λe = λ −1,(
∑m1

l=1
λlk

(1)
l

|Γl |pδλe
+(τmin)p ∑m2

t=1
μt k

(2)
t

|Λt |pδλe

)
(1+o(1)), λe < λ −1.

If either (i) or (ii) holds, we have Ak < S
′(k)

(λe,λe) by taking σ small enough.

Proof of Theorem 1. Note that Q(u,v) is positive definite and provides an equiva-
lent norm on Dk ×Dk. Let {(un,vn)} ⊂ Dk ×Dk be a minimizing sequence of Ak. By
the homogeneity of the quotient we may assume that

∫
RN

(|un|p∗ + |vn|p∗ +
m

∑
k′=1

ηk′ |un|αk′ |vn|βk′ ) = 1,

and by the Ekeland’s variational principle, we can assume that the sequence has the
Palais-Smale property for all (φ ,ψ) ∈ Dk ×Dk :

〈J′k(un,vn),(φ ,ψ)〉 = o(‖(φ ,ψ)‖), ∀(φ ,ψ) ∈ Dk ×Dk,

which implies that J′k(un,vn) → 0 and Jk(un,vn) → ( 1
p − 1

p∗ )Ak = 1
N Ak. Note that

S
′(k)

(λ ,μ) is decreasing with respect to λ and μ and the assumptions of Theorem
1 imply that λ̂ , μ̂ � λe. Then

S∗ = S
′(k)

(λm1 ,0),

S∗∗ = S
′(k)

(0,μm2),

S
′(k)

(λe,λe) � min{k p
N S∗,k

p
N S∗∗,S

′(k)
(λ̂ , μ̂)}. (42)

Since Sk(λe,se) < k
p
n S(0,0), from Lemma 3 and Corollary 1 it follows that

S
′(k)

(λe,λe) < k
p
N S′(0,0) � k

p
N S

′(k)
(0,0). (43)

By Lemma 5 we have

Ak < S
′(k)

(λe,λe). (44)
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From (42)–(44) it follows that

Ak < S
′(k)

(λe,λe) = min{S′(k)
(λe,λe), S

′(k)
(λ̂ , μ̂), k

p
N S∗, k

p
N S∗∗, k

p
N S

′(k)
(0,0)}.

Consequently,
1
N

Ak < c∗ =
1
N

A
p−N

p
k (S

′(k)
(λe,λe))

N
p .

By Lemma 1 we conclude that {(un,vn)} has a subsequence converging strongly to
some (ue,ve) ∈ Dk ×Dk such that Jk(ue,ve) = 1

N Ak. Thus (ue,ve) achieves the infi-
mum in (4). From the fact Jk(ue,ve) = Jk(|ue|, |ve|) it follows that (|ue|, |ve|) is also a

minimizer in (4) and therefore (u, v) = A
1

p∗−p
k (|ue|, |ve|) is a nonnegative solution to

(1). By the maximum principle [25], there are three possibilities: (i) u > 0,v > 0, (ii)

u > 0,v = 0, and (iii) u = 0,v > 0, ∀x ∈ Ω := RN \ {0,a(l)
i ,b(t)

j : 1 � l � m1,1 � i �
k(1)
l ,1 � t � m2,1 � j � k(2)

t }.
Assume that (u,0) with u > 0 in Ω is a solution to (1) and (ue,0) achieves the

infimum in (4). Then Ak is independent of μt ,b
(t)
j ,1 � t � m2,1 � j � k(2)

t , and we

can choose m1 = m2,k
(2)
t = k(1)

t ,μt = λt ,b
(t)
j = a(t)

j ,1 � t � m2,1 � j � k(2)
t . Then by

(40) we have

Ak(λ1, . . . ,λm1 ,λ1, . . . ,λm1) = Ak(λ1, . . . ,λm1 ,0, . . . ,0) � Âk. (45)

If ηk′ > 0 for k′ = 1, . . . ,m and N � 7, by Corollary 2, we have

Ak(λ1, . . . ,λm1 ,λ1, . . . ,λm1) < Âk,

which is a contradiction with (45). Therefore, (u,0) cannot be a solution to (1). Sim-
ilarly, (0,v) cannot be a solution to (1). Hence, there is only one possibility for the
solution (u,v) : u,v > 0 in Ω. �

5. Proof of Theorem 2

Proof of Theorem 2. We argue by contradiction.
(i) For all ε > 0, since D(RN \{0})∩Dk is dense in Dk, there exist u,v∈D(RN \

{0})∩Dk such that
∫
RN (|u|p∗ + |v|p∗ + ∑m

k′=1 ηk′ |u|αk′ |v|βk′ ) = 1, and

∫
RN

(
|∇u|p + |∇v|p−

m

∑
k′=1

λk′ |u|p + μk′ |v|p
|x−ak′ |p

)
dx � S

′(k)
(λe,λe)+ ε.

Let uσ (x)= σ− N−p
p u( x

σ ), vσ (x)= σ− N−p
p v( x

σ )(σ > 0). By the dominated-convergence

theorem, for all 1 � l � m1 , 1 � i � k(1)
l , 1 � t � m2 , 1 � j � k(2)

t , we get

lim
σ→0

∫
RN

|uσ (x)|p
|x−a(l)

i |p
= lim

σ→0

∫
RN

|uσ (x)|p
|x−b(t)

j |p
.
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Taking σ → 0, we have

Ak � Q(uσ ,vσ )(∫
RN (|uσ |p∗ + |vσ |p∗ + ∑m

k′=1 ηk′ |uσ |αk′ |vσ |βk′ )dx
) p

p∗

=
∫

RN

(
|∇u|p + |∇v|p−

m

∑
k′=1

λk′ |u|p + μk′ |v|p
|x−ak′ |p

)
dx+o(1)

� S
′(k)

(λe,λe)+ ε,

which implies

Ak � S
′(k)

(λe,λe). (46)

Assume that the infimum in (4) is attained by some (ue,ue) ∈ (Dk \ {0})2. Then
from (46) it follows that

Ak =
Q(ue,ve)(∫

RN ∑m
k′=1(|ue|p∗ + |ve|p∗ + ηk′ |ue|αk′ |ve|βk′ )dx

) p
p∗

.

Consequently,

m1

∑
l=1

k(1)
l

∑
i=1

λl

∫
RN

|u|p
|x−a(l)

i |p
dx+

m2

∑
t=1

k
(2)
t

∑
j=1

μt

∫
RN

|v|p
|x−b(t)

j |p
dx � 0,

which contradicts the assumption that λl, μt < 0, l = 1,2, . . . ,m1, t = 1,2, . . . ,m2.
Therefore the infimum in (4) cannot be achieved.

(ii) For all w ∈ D such that w � 0 a.e. in RN , let w�(x) be the Schwarz sym-
metrization of w:

w�(x) := inf{t > 0 : |{y ∈ R
N ,w(y) > t}| � wN |x|N}.

Then direct calculation shows that ( 1
|x−a| )

� = 1
x . Furthermore, we have [26]:

∫
RN

|w|p∗ =
∫

RN
|w�|p∗, (47)

∫
RN

|w|p
|x−a|p �

∫
RN

|w�|p
(( 1

|x−a|
)�)p

=
∫

RN

|w�|p
|x|p , (48)

∫
RN

|u|α |v|β �
∫

RN
|u�|α |v�|β , ∀u,v ∈ D, u,v � 0 a.e. in R

N and ∀α,β ∈ (1,+∞).

(49)
From the Pólya-Szegö inequality it follows that∫

RN
|∇w|p �

∫
RN

|∇w�|p. (50)
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The assumption (ii) of Theorem 2 implies that λ̂ = μ̂ > 0. Since λl,μt > 0, l =
1,2, . . . ,m1, t = 1,2, . . . ,m2, for all u,v ∈ Dk such that u,v > 0 a.e. in RN , by (47)–
(50) and ˜Ak, where ˜Ak is defined as follows, we have

˜Ak :=
Q(u,v)(∫

RN ∑m
k′=1(|u|p∗ + |v|p∗ + ηk′ |u|αk′ |v|βk′ )dx

) p
p∗

�
∫
RN

(
|∇u�|p + |∇v�|p− λ̂ (|u�|p+|v�|p)

|x|p
)

(∫
RN ∑m

k′=1(|u�|p∗ + |v�|p∗ + ηk′ |u�|αk′ |v�|βk′ )dx
) p

p∗

� S′(λ̂ , λ̂ ). (51)

Note that the Rayleigh quotient above remains unchanged when replacing u and v with
|u| and |v| respectively. Together with (51), we have

Ak = inf
u,v∈Dk ,u,v�0

Q(u,v)(∫
RN ∑m

k′=1(up∗ + vp∗ + ηk′u
αk′ vβk′ )dx

) p
p∗

� S′(λ̂ , λ̂ ). (52)

For all σ > 0,0 � λ < λ , consider the minimizers (V λ
σ (x),τminV λ

σ (x)) of S′(λ̂ , λ̂ )
obtained as in Lemma 3. Taking σ → ∞, we have [9]∫

RN

|V λ
σ (x)|p

|x+ ε|p =
∫

RN

|V λ
σ (x)|p
|x|p +o(1) =

∫
RN

|V λ
1 (x)|p
|x|p +o(1), ∀ε ∈ R

N \ {0}.

Set Wλ
σ (x) = τminV λ

σ (x). Since V λ
σ (x) ∈ Dk and 0 < λ̂ = μ̂ < λ , as σ → ∞ we have

Ak � Q(V λ̂
σ (x),W λ̂

σ (x))(∫
RN ∑m

k′=1(|V λ̂
σ (x)|p∗ + |W λ̂

σ (x)|p∗ + ηk′ |V λ̂
σ (x)|αk′ |W λ̂

σ (x)|βk′ )dx
) p

p∗

= S′(λ̂ , λ̂ )+o(1).

Therefore Ak � S′(λ̂ , λ̂ ), which together with (52) implies

Ak = S′(λ̂ , λ̂ ). (53)

Assume that the infimum in (4) is attained by some (ue,ue) ∈ (Dk \ {0})2. Since
(|ue|, |ve|) is also a minimizer of (4), arguing as in the proof of Theorem 1, we may
assume ue,ve > 0 in R

N . Then

Ak =
Q(ue,ve)(∫

RN ∑m
k′=1(|ue|p∗ + |ve|p∗ + ηk′ |ue|αk′ |ve|βk′ )dx

) p
p∗

�
∫
RN

(
|∇u�

e|p + |∇v�
e|p− λ̂ (|u�

e |p+|v�
e |p)

|x|p
)

(∫
RN ∑m

k′=1(|u�
e|p∗ + |v�

e|p∗ + ηk′ |u�
e |αk′ |v�

e|βk′ )dx
) p

p∗

� S′(λ̂ , λ̂ ). (54)
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From (47)–(50), (53) and (54) it follows that∫
RN

|∇ue|p =
∫

RN
|∇u�

e |p,
∫

RN
|∇ve|p =

∫
RN

|∇v�
e |p, (55)

∫
RN

|ue|p
|x−a(l)

i |p
=
∫

RN

|ue|p
|x|p =

∫
RN

|u�
e |p

|x|p dx, 1 � l � m1, 1 � i � k(1)
l , (56)

∫
RN

|ve|p
|x−b(t)

j |p
=
∫

RN

|ve|p
|x|p =

∫
RN

|v�
e |p

|x|p dx, 1 � t � m2, 1 � j � k(2)
t , (57)

∫
RN

m

∑
k′=1

(|ue|p∗ + |ve|p∗ + |ue|αk′ |ve|βk′ ) =
∫

RN

m

∑
k′=1

(|u�
e |p

∗
+ |v�

e|p
∗
+ |u�

e|αk′ |v�
e|βk′ ).

(58)

Note that (ũ, ṽ) = A
1

p∗−p
k (ue,ve) is a solution to (1). By the unique solution of standard

elliptic argument shows that [18]

Uλe,s(1) =

(
(N− s)(λ −λe)

N− p

) 1
p∗(s)−p

. (59)

By (53) and (55)–(58) we have

S′(λ̂ , λ̂ ) =

∫
RN

(
|∇ue|p + |∇ve|p− λ̂ (|ue|p+|ve|p)

|x|p
)

(∫
RN ∑m

k′=1(|ue|p∗ + |ve|p∗ + ηk′ |ue|αk′ |ve|βk′ )dx
) p

p∗
, (60)

which implies that (ue,ve) is also a minimizer of S′(λ̂ , λ̂ ) . Similarly,

Uλ̂ ,s(1) =

(
(N− s)(λ − λ̂)

N− p

) 1
p∗(s)−p

,

which contradicts (59) by the fact that λ̂ > λe. Therefore the infimum in (4) cannot be
achieved. �
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