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ON SINGULAR ELLIPTIC EQUATION WITH

SINGULAR NONLINEARITIES, HARDY–SOBOLEV
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(Communicated by P. Souplet)

Abstract. This article is devoted to the existence and multiplicity to the following singular ellip-
tic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights:⎧⎪⎨

⎪⎩
−Δu−μ u

|x|2 = |u|p−2u
|x|s +λ u

|x|α |u|−β , x ∈ Ω,

u > 0 x ∈ Ω,
u = 0 x ∈ ∂Ω.

where Ω is a smooth bounded domain in R
N (N � 3) , 0 ∈ Ω , λ > 0 , 0 � μ < μN :=

(N−2)2 /4 , p = 2∗ (s) = 2(N− s)/(N−2) with 0 < s < 2 is the critical Hardy-Sobolev crit-
ical exponent, 0 � α < N (p−1+β)/p , 0 < β < 1 and 2 < p � 2∗ := 2N/(N−2) is the
critical Sobolev exponent.

By using the Nehari manifold and mountain pass theorem, the existence of at least four
distinct solutions is obtained.

1. Introduction

The main purpose of this article is to investigate the existence of nontrivial nonneg-
ative solutions of the following problem (1.1) with Dirichlet boundary value conditions
≡

(1.1)

{
−Δu− μ u

|x|2 = |u|p−2u
|x|s + λ u

|x|α |u|−β , x ∈ Ω,

u = 0 x ∈ ∂Ω.

where Ω is a smooth bounded domain in R
N (N � 3) , 0 ∈ Ω , λ > 0, 0 � μ < μN :=

(N−2)2 /4, p = 2∗ (s) = 2(N− s)/(N−2) we have 2 < p � 2∗ := 2N/(N−2) when
0 � s < 2, with 2∗ (s) is the critical Hardy-Sobolev critical exponent and 2∗ is the
critical Sobolev exponent, 0 � α < N (p−1+ β )/p , 0 < β < 1.

In recent years, many auteurs have paid much attention to the following singular
elliptic problem,

(1.2)
{−Δu− μ |x|−2 u = h |u|p−2 u+ λ f (x,u) , in Ω

u = 0 ∂Ω,
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where Ω is a smooth bounded domain in R
N (N � 3) , 0 ∈ Ω, λ > 0, 0 � μ <

μN := (N−2)2 /4 and 2∗ = 2N/(N−2) is the critical Sobolev exponent for h ≡ 1,
see [1,5,6,7,10,13,15,18] and references therein, after the work of Brezis and Niren-
berg [4] . When μ = 0 and s = 0, problem (1.2) becomes the well-known Brezis and
Nirenberg problem, and is studied extensively in [18] . When μ �= 0, the problem has its
singularity at 0 and attracts much attention. Ding and Tang in [9] studied the existence
of positive solutions with N � 3, 0 � s < 2 and f (x,u) satisfying (AR) condition in the
case λ = 1. Kang in [14] showed the existence of positive solutions replacing f (x,u)
by |u|q−2 u with q > 2 for 0 � s < 2. The quasilinear form of (1.2) is discussed in
[12] . Some results are already available for (1.1) . Wang and Zhou [19] proved that
there exist at least two solutions for (1.1) with, 0 < μ � μN = (N−2)2 /4, Bouchekif
and Matallah [2] showed the existence of two solutions of (1.1) under certain condi-
tions on a weighted function h, when 0 < μ � μN , λ ∈ (0,Λ∗) with Λ∗ a positive
constant.

The novelty in this article is that the function f (x,u) := u
|x|α |u|−β with 0 < β < 1

presents a singular nonlinearity thing which will allow us to combine the perturbation
with the variational methods. It should be noted that the problem studied in this work
is not the fruit of the fertile imagination of a theorist, on the contrary, the problems
dealt with in applied mathematics have their origins in different fields we will cite as
example: heterogeneous chemical catalysis, kinetic chemical catalysis, heat induction
or electrical induction, non-Newtonian fluid theory, and viscous fluid theory. For further
discussion on this subject we refer the reader to [8] and [11] .

Before giving our main result, we state here some definitions, notation and known
results.

We denote by D1,2
0 = D1,2

0 (Ω\ {0}) and Hμ = H 1
0 (Ω\ {0}) , the closure of

C∞
0 (Ω\ {0}) with respect to the norms

‖u‖ =
(∫

Ω

(
|∇u|2

)
dx

)1/2

and

‖u‖μ =

(∫
Ω

(
|∇u|2 − μ

|u|2
|x|2

)
dx

)1/2

,

respectively, with μ < μN = ((N−2)/2)2 for N �= 2.
By weighted Hardy inequality, it is easy to see that the norm ‖u‖μ is equivalent to

‖u‖ . More explicitly, we obtain

(
1−

(√
μN

)−2

μ+

)1/2

‖u‖ � ‖u‖μ �
(

1−
(√

μN

)−2

μ−
)1/2

‖u‖ ,

with μ+ = max(μ ,0) and μ− = min(μ ,0) for all u ∈ Hμ .
We list here a few integral inequalities.
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The starting point for studying (1.1) , is the Hardy inequality with cylindrical
weights [10] . It states that

μN

∫
Ω
|x|−2 v2dx �

∫
Ω
|∇v|2 dx, for all v ∈ Hμ , (1.1)

Since our approach is variational, we define the functional J on Hμ by

J (u) := (1/2)‖u‖2
μ − (1/p)

∫
Ω
|x|−s |u|p dx− (λ/(2−β ))

∫
Ω
|x|−α |u|2−β dx, u ∈ Hμ

A point u ∈ Hμ is a weak solution of the equation (1.1) if it satisfies〈
J′ (u) ,ϕ

〉
:=

∫
Ω

(
∇u∇ϕ − μ |x|−2 uϕ

)
dx−

∫
Ω
|x|−s |u|p−2 uϕdx−λ

∫
Ω
|x|−α |u|−β uϕdx = 0,

for u ∈ Hμ and for all ϕ ∈ Hμ .
Here 〈., .〉 denotes the product in the duality H ′

μ , Hμ
(
H ′

μ dual of Hμ
)
.

Let

Sμ := inf
u∈Hμ\{0}

‖u‖2
μ(∫

Ω
|u|p
|x|s dx

)2/p

From [16] , Sμ is achieved.
In our work, we search the critical points as the minimizers of the energy functional

associated to the problem (1.1) on the constraint defined by the Nehari manifold, which
are solutions of our system.

Let λ∗ be positive number such that

λ∗ : =
(
Sμ
) p+β−2

(p−2)

(
p−2

(p−2+ β )A

)[(
β

(p−2+ β )

)] β
p−2

,

where A =
[

2π
N
2

Γ(N
2 ) . (p−2+β )

N(p−2+β )−α p

] p−2+β
p

R
N
p (p−1+β )−α
0 > 0, with 0 � α < N(p−2+β )

p .

Now we can state our main results.

THEOREM 1. Assume that N � 3 , 0 � s < 2 , −∞ < μ < μN , 0 � α < N(p−2+β )/p,
β ∈ (0,1) and λ verifying 0 < λ < λ∗, then the problem (1.1) has at least one positive
solution.

THEOREM 2. Under the assumptions of Theorem 1 , there exists λ∗∗ :=(
Sμ
) β−2

2
(

(p−2)(2−β )
(p−2+β )A

)
such that if λ satisfying 0 < λ < λ∗∗ , then (1.1) has at least

two positive solutions.

THEOREM 3. Under the assumptions of Theorem 2 then, there exists a positive
real λ ∗ such that, if λ satisfy 0 < λ < λ ∗ , then (1.1) has at least two positive solutions
and at least one pair of sign-changing solutions.
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This paper is organized as follows. In Section 2, we give some preliminaries.
Section 3 and 4 are devoted to the proofs of Theorems 1 and 2. In the last Section, we
prove the Theorem 3.

2. Preliminaries

DEFINITION 1. Let c ∈ R, E a Banach space and I ∈C1 (E,R) .
(i) (un)n is a Palais-Smale sequence at level c ( in short (PS)c ) in E for I if

I (un) = c+on (1) and I
′
(un) = on (1) ,

where on (1) tends to 0 as n goes at infinity.
(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence in E for I

has a convergent subsequence.

LEMMA 1. Let X Banach space, and J ∈ C1 (X ,R) verifying the Palais-Smale
condition. Suppose that J (0) = 0 and that:

i) there exist ρ > 0 , r > 0 such that if ‖u‖ = ρ , then J (u) � r;

ii) there exist (u0) ∈ X such that ‖u0‖ > ρ and J (u0) � 0;
let c = inf

γ∈Γ
max
t∈[0,1]

(J (γ (t))) where

Γ = {γ ∈C ([0,1] ;X) such that γ (0) = 0 and γ (1) = u0} ,

then c is critical value of J such that c � r .

2.1. Nehari manifold

It is well known that J is of class C1 in Hμ and the solutions of (1.1) are the
critical points of J which is not bounded below on Hμ . Consider the following Nehari
manifoldσ

M =
{
u ∈ Hμ \ {0} :

〈
J′ (u) ,u

〉
= 0

}
,

Thus, u ∈ M if and only if

‖u‖2
μ −

∫
Ω
|x|−s |u|p dx−λ

∫
Ω
|x|−α |u|2−β dx = 0. (2.1)

Note that M contains every nontrivial solution of the problem (1.1) . In order to obtain
the first positive solution, we give the following important lemmas.
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LEMMA 2. J is coercive and bounded from below on M .

Proof. Let R0 > 0 such that Ω ⊂ B(0,R0) =
{
x ∈ R

N : r = |x| < R0 ∈ (0,1)
}

. If
u ∈ M , then by (2.1) , p > 2,β ∈ (0,1) ,s � 0 and the Hölder inequality, we obtain

∫
Ω
|x|−s |u|p dx �

(
‖u‖p

μ
(
Sμ
)−p

2

) (2−β)
p

and

∫
Ω
|x|−α |u|2−β dx �

(∫
Ω

r−s |u|p dx

) (2−β)
p

(∫
Ω

r

(
s 2−β

p −α
)

p
p−2+β dx

) p−2+β
p

�
(
‖u‖p

μ
(
Sμ
)−p

2

) (2−β)
p

[
σN

∫ R0

0
r
N−1+

(
s 2−β

p −α
)

p
p−2+β dr

] p−2+β
p

,

where σN = 2π
N
2

Γ(N
2 ) is the area of the (N−1)-dimensional unit sphere

In the integral to avoid a singularity at zero we must take 0 � α < N (p−2+ β )/p
because p−2+ β > 0, so we get that

∫
Ω
|x|−α |u|2−β dx�

[
2π

N
2

Γ
(

N
2

) .
(p−2+ β )

N (p−2+ β )−α p

] p−2+β
p

R
N
p (p−1+β )−α
0 ‖u‖2−β

μ
(
Sμ
) β−2

2

(2.2)
and we deduce that

J (u) = ((p−2)/2p)‖u‖2
μ −λ ((p−2+ β )/p(2−β ))

∫
Ω
|x|−α |u|2−β dx (2.3)

� ((p−2)/2p)‖u‖2
μ −λ ((p−2+ β )/p(2−β ))A

(
Sμ
) β−2

2 ‖u‖2−β
μ , (2.4)

with A =
[

2π
N
2

Γ( N
2 ) . (p−2+β )

N(p−2+β )−α p

] p−2+β
p

R
N
p (p−1+β )−α
0 > 0 for 0 � α < N (p−2+ β )/p .

Thus, J is coercive and bounded from below on M . �

Define
φ (u) =

〈
J′ (u) ,u

〉
.

Then, for u ∈ M

〈
φ ′ (u) ,u

〉
= 2‖u‖2

μ − p
∫

Ω
|x|−s |u|p dx−λ (2−β )

∫
Ω
|x|−α |u|2−β dx

= β ‖u‖2
μ − (p−2+ β )

∫
Ω
|x|−s |u|p dx

= λ (p−2+ β )
∫

Ω
|x|−α |u|2−β dx− (p−2)‖u‖2

μ .
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Now, we split M in three parts:

M + =
{
u ∈ M :

〈
φ ′ (u) ,u

〉
> 0

}
M 0 =

{
u ∈ M :

〈
φ

′
(u) ,u

〉
= 0

}
M− =

{
u ∈ M :

〈
φ ′ (u) ,u

〉
< 0

}
.

We have the following results.

LEMMA 3. Suppose that u0 is a local minimizer for J on M . Then, if u0 /∈M 0 ,
u0 is a critical point of J .

Proof. If u0 is a local minimizer for J on M , then u0 is a solution of the opti-
mization problem

min
{u/ φ(u)=0}

J (u) .

Hence, there exists a Lagrange multipliers θ ∈ R such that

J′ (u0) = θφ ′ (u0) in H ′

Thus, 〈
J′ (u0) ,u0

〉
= θ

〈
φ ′ (u0) ,u0

〉
.

But 〈φ ′ (u0) ,u0〉 �= 0, since u0 /∈ M 0 . Hence θ = 0. This completes the proof. �

LEMMA 4. There exists a positive number λ0 such that for all λ , verifying

0 < λ < λ∗,

we have M 0 = /0 .

Proof. Let us reason by contradiction.
Suppose M 0 �= /0 such that 0 < λ < λ∗ . Then, by (2.5) and for u∈M 0 , we have

β ‖u‖2
μ − (p−2+ β )

∫
Ω
|x|−s |u|p dx = 0

λ (p−2+ β )
∫

Ω
|x|−α |u|2−β dx− (p−2)‖u‖2

μ = 0

Moreover, by the Hölder inequality and the Sobolev embedding theorem, we obtain

‖u‖μ �
(
Sμ
)p/2(p−2) [β/(p−2+ β )]1/(p−2) (2.5)

and

‖u‖μ �
[

λ
(

p−2+ β
p−2

)
A

]1/β
. (2.6)
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with A =
[

2π
N
2

Γ( N
2 ) . (p−2+β )

N(p−2+β )−α p

] p−2+β
p

R
N
p (p−1+β )−α
0 .

From (2.5) and (2.6) , we obtain λ � λ∗ , which contradicts the fact that λ <
λ∗ . �

Thus M = M +∪M− . Define

c := inf
u∈M

J (u) , c+ := inf
u∈M +

J (u) and c− := inf
u∈M− J (u) .

For the sequel, we need the following Lemma.

LEMMA 5. (i) For all λ such that 0 < λ < λ∗ , one has c � c+ < 0 .
(ii) There exists λ∗∗ > 0 such that for all λ such that 0 < λ < λ∗∗ , one has

c− > C0 = C0
(
λ ,Sμ ,β

)
Proof. (i) Let u ∈ M + . By (2.5) , we have(

β
p−2+ β

)
‖u‖2

μ >

∫
Ω
|x|−s |u|p dx

and so

J (u) = [(−β )/2(2−β )]‖u‖2
μ +[(p−2+ β )/p(2−β )]

∫
Ω
|x|−s |u|p dx

<

( −β
2−β

)(
p−2
2p

)
‖u‖2

μ < 0,

since β ∈ (0,1) and p > 2.
We conclude that c � c+ < 0.
(ii) Let u ∈ M− . By (2.5) , we get(

β
p−2+ β

)
‖u‖2

μ <

∫
Ω
|x|−s |u|p dx.

Moreover, by Sobolev embedding theorem, we have∫
Ω
|x|−s |u|p dx �

(
Sμ
)−p/2‖u‖p

μ .

This implies

‖u‖μ >
(
Sμ
) p

2(p−2)

[
β

p−2+ β

] 1
(p−2)

, for all u ∈ M−. (2.7)

By (2.3) , we get

J (u) � ‖u‖2
μ

(
(p−2)

2p

)
−λ

(
(p−2+ β )
p(2−β )

)
A‖u‖2−β

μ
(
Sμ
) β−2

2

�
(

(p−2)
2p

)[
β

p−2+ β

] 2
(p−2) (

Sμ
) p

(p−2) −λ

(
(p−2+ β )2

pβ (2−β )Sμ

)
A



404 M. EL MOKHTAR OULD EL MOKHTAR AND Z. I. ALMUHIAMEED

Thus, for all λ such that

0 < λ < λ∗∗ =

(
(p−2)

2p(p−2+ β )2 A

)(
β

p−2+ β

) 2
p−2

S
2−(p−1)
(p−2)

μ ,

we have J (u) � C0 . �

PROPOSITION 1. (see [3]) (i) For all λ such that 0 < λ < λ∗ , there exists a
(PS)c+ sequence in M + .

(ii) For all λ such that 0 < λ < λ∗∗ , there exists a a (PS)c− sequence in M− .
and for each u ∈ H , we write

tM := tmax (u) =

[
β ‖u‖2

μ

(p−2+ β )
∫

Ω |x|−s |u|p dx

]1/(p−2)

> 0.

LEMMA 6. [3] Let λ be a real parameter such that 0 < λ < λ∗ . For each u∈H ,
there exist unique t+ and t− such that 0 < t+ < tM < t−,

(t+u) ∈ M + , (t−u) ∈ M−

J
(
t+u

)
= infJ (tu) for 0 � t � tM,

and
J
(
t−u

)
= supJ (tu) for t � 0.

Proof. With minor modifications, we refer to [3] . �

3. Proof of Theorems 1

Now, taking as a starting point the work of Tarantello [17] , we establish the exis-
tence of a local minimum for J on M + .

PROPOSITION 2. For all λ such that 0 < λ < λ∗ , the functional J has a mini-
mizer u+

0 ∈ M + and it satisfies:
(i) J

(
u+

0

)
= c = c+,

(ii)
(
u+

0

)
is a nontrivial solution of (1.1) .

Proof. If 0 < λ < λ∗ , then by Proposition 1 (i) there exists a (un)n − (PS)c+

sequence in BR ⊂ M + , thus it bounded by Lemma 2. Then, there exists u+
0 ∈ H and

we can extract a subsequence which will denoted by (un)n such that

un ⇀ u+
0 weakly in H (3.1)

un ⇀ u+
0 weakly in Lp (Ω, |x|−s)

un → u+
0 a.e in Ω
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By 2.2 and 3.1, we have

lim
n−→∞

∫
Ω
|x|−α |un|2−β dx =

∫
Ω
|x|−α ∣∣u+

0

∣∣2−β
dx+o(1)

Thus, by (3.1) , u+
0 is a weak nontrivial solution of (1.1) . Now, we show that un

converges to u+
0 strongly in H . Suppose otherwise. By the lower semi-continuity of

the norm, then either
∥∥u+

0

∥∥
μ < liminf

n−→∞
‖un‖μ and we obtain

c � J
(
u+

0

)
= ((p−2)/2p)

∥∥u+
0

∥∥2
μ −λ [(p−2+ β )/p(2−β )]

∫
Ω
|x|−α ∣∣u+

0

∣∣2−β
dx

< liminf
n−→∞

J (un) = c.

We get a contradiction. Therefore, un converge to u+
0 strongly in H . Moreover, we

have u+
0 ∈ M + . If not, then by Lemma 6, there are two numbers t+0 and t−0 , uniquely

defined so that
(
t+0 u+

0

)∈M− and
(
t−u+

0

)∈M + . In particular, we have t−0 < t+0 = 1.
Since

d
dt

J
(
tu+

0

)
�t=t+0

= 0

and
d2

dt2
J
(
tu+

0

)
�t=t+0

> 0,

there exists t−0 < t− � t+0 such that J
(
t−0 u+

0

)
< J

(
t+u+

0

)
. By Lemma 6, we get

J
(
t−0 u+

0

)
< J

(
t−u+

0

)
< J

(
t+0 u+

0

)
= J

(
u+

0

)
,

which contradicts the fact that J
(
u+

0

)
= c+ . Since J

(
u+

0

)
= J

(∣∣u+
0

∣∣) and
∣∣u+

0

∣∣∈M + ,
then by Lemma 3, we may assume that u+

0 is a nontrivial nonnegative solution of
(1.1) . By the Harnack inequality, we conclude that u+

0 > 0, see for example [19] . �

4. Proof of Theorem 2

Next, we establish the existence of a local minimum for J on M− . For this, we
require the following Lemma.

LEMMA 7. For all λ such that 0 < λ < λ∗∗ , the functional J has a minimizer u−0
in M− and it satisfies:

(i) J
(
u−0

)
= c− > 0,

(ii) u−0 is a nontrivial solution of (1.1) in H .

Proof. If 0 < λ < λ∗∗ , then by Proposition 1 (ii) there exists a (un)n , (PS)c−
sequence in M− , thus it bounded by Lemma 2. Then, there exists u−0 ∈ H and we
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can extract a subsequence which will denoted by (un)n such that

un ⇀ u−0 weakly in H

un ⇀ u−0 weakly in Lp (Ω, |x|−s)
un → u−0 a.e in Ω

This implies ∫
Ω
|x|−s |un|p dx →

∫
Ω
|x|−s ∣∣u−0 ∣∣p dx,as n goes to ∞.

Moreover, by (2.5) we obtain(
β

p−2+ β

)
‖un‖2

μ <

∫
Ω
|x|−s |un|p dx, (4.1)

By (2.5) and (4.1) there exists a positive number

C1 :=
(

β
p−2+ β

) p
p−2 (

Sμ
) p

p−2 ,

such that ∫
Ω
|x|−s |un|p dx > C1. (4.2)

This implies that ∫
Ω
|x|−s ∣∣u−0 ∣∣p dx � C1.

Now, we prove that (un)n converges to u−0 strongly in H . Suppose otherwise. Then,
either

∥∥u−0
∥∥

μ < liminf
n−→∞

‖un‖μ . By Lemma 6 there is a unique t−0 such that
(
t−0 u−0

) ∈
M− . Since

un ∈ M−, J (un) � J (tun) , for all t � 0,

we have
J
(
t−0 u−0

)
< lim

n−→∞
J
(
t−0 un

)
� lim

n−→∞
J (un) = c−,

and this is a contradiction. Hence,

(un)n → u−0 strongly in H .

Thus,
J (un) converges to J

(
u−0

)
= c− as n tends to + ∞.

Since J
(
u−0

)
= J

(∣∣u−0 ∣∣) and u−0 ∈ M− , then by (4.2) and Lemma 3, we may assume
that u−0 is a nontrivial nonnegative solution of (1.1) . By the maximum principle, we
conclude that u−0 > 0. �

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, we
obtain that (1.1) has two positive solutions u+

0 ∈ M + and u−0 ∈ M− . Since M + ∩
M− = /0 , this implies that u+

0 and u−0 are distinct.
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5. Proof of Theorem 3

In this section, we consider the following Nehari submanifold of M

Mρ =
{

u ∈ H \ {0} :
〈
J′ (u) ,u

〉
= 0 and ‖u‖μ � ρ > 0

}
.

Thus, u ∈ Mρ if and only if

‖u‖2
μ −

∫
Ω
|x|−s |u|p dx−λ

∫
Ω
|x|−α |u|2−β dx = 0 and ‖u‖μ � ρ > 0.

Firstly, we need the following Lemmas

LEMMA 8. Under the hypothesis of theorem 3 , there exist, Λ1 > 0 such that Mρ
is nonempty for any λ ∈ (0,Λ1) .

Proof. Fix u0 ∈ H \ {0} and let

g(t) =
〈
J′ (tu0) ,tu0

〉
= t2 ‖u0‖2

μ,− t p
∫

Ω
|x|−s |u0|p dx− t2−β λ

∫
Ω
|x|−α |u0|2−β dx.

Clearly g(0) = 0 and g(t) −→−∞ as t −→ +∞ . Moreover, we have

g(1) = ‖u0‖2
μ −

∫
Ω
|x|−s |u0|p dx−λ

∫
Ω
|x|−α |u0|2−β dx

� ‖u0‖2−β
μ

[
‖u0‖β

μ −
(
Sμ
)−p/2‖u0‖(p−2+β )

μ −λA
(
Sμ
)(β−2)/2

]
.

for t � 0 put ϕ (t) = tβ −(
Sμ
)−p/2

t p−2+β then we obtain max
t�0

ϕ (t) = ϕ (t1) > 0 since

p > 2 with t1 =
(

β
p−2+β

) p
p−2 (

Sμ
) p

2(p−2) . Thus, we obtain

g(1) � ‖u0‖2−β
μ

[
ϕ (t1)−λA

(
Sμ
)(β−2)/2

]
> 0,

if λ <

(
(Sμ)(2−β)/2

A

)
ϕ (t1) := Λ1 .

Then, there exists t0 > 0 such that g(t0) = 0. Thus, (t0u0) ∈ Mρ and Mρ is
nonempty. �

LEMMA 9. There exist δ , Λ∗∗ positive real numbers such that 〈φ ′ (u) ,u〉<−δ <
0 , for u ∈ Mρ and any λ verifying

0 < λ < min(Λ1,Λ2) .
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Proof. Let u ∈ Mρ , then by (2.1) , (2.5) and the Holder inequality, allows us to
write 〈

φ ′ (u) ,u
〉

= λ (p−1+ β )A
(
Sμ
)(β−2)/2 ‖u‖2−β

μ − (p−2)‖u‖2
μ

� ‖u‖2−β
μ

[
λ (p−2+ β )A

(
Sμ
)(β−2)/2− (p−2)‖u‖β

μ

]
� ‖u‖2−β

μ

[
λ (p−2+ β )A

(
Sμ
)(β−2)/2− (p−2)ρβ

]
,

Thus, if

0 < λ < Λ2 =

[
(p−2)ρβ

(p−2+ β )A

](
Sμ
)(β−2)/2 ,

and choosing λ ∗ := min(Λ1,Λ2) with Λ1 defined in Lemma 8, then we obtain that〈
φ ′ (u) ,u

〉
< 0, for any u ∈ Mρ . � (5.1)

LEMMA 10. Suppose 0 � s < 2, p > 2 , β ∈ (0,1) and 0 < λ < min(Λ1,Λ2,Λ3)
when

Λ3 =

⎡
⎣ p(p−2)(2−β )

2p(p−2+ β )A

(
2−β

2

) β
1+β

⎤
⎦(Sμ

)(2−p)/2
.

Then, there exist ε and η positive constants such that
i) we have

J (u) � η > 0 for ‖u‖μ = ε.

ii) there exists v ∈ Mρ when ‖v‖μ > ε , with ε = ‖u‖μ , such that J (v) � 0 .

Proof. We can suppose that the minima of J are realized by
(
u+

0

)
and u−0 . The

geometric conditions of the mountain pass theorem are satisfied. Indeed, we have

i) By (2.5) , (5.1) we get

J (u) = ((p−2)/2p)‖u‖2
μ −λ ((p−2+ β )/p(2−β ))

∫
Ω
|x|−α |u|2−β dx

� ((p−2)/2p)‖u‖2
μ −λ ((p−2+ β )/p(2−β ))A

(
Sμ
) β−2

2 ‖u‖2−β
μ , (5.2)

By exploiting the function φ (t) = at2 − bt2−β which achiev its maximum at the

point t1 =
(

2−β
2

) 2
β ( a

b

) 1
p−2 such that max

t�0
φ (t) = φ (t1) > 0 if

λ < Λ3 =

⎡
⎣ p(p−2)(2−β )

2p(p−2+ β )A

(
2−β

2

) β
1+β

⎤
⎦(Sμ

)(2−p)/2
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and the fact that 0 � s < 2, p > 2,β ∈ (0,1) then, we obtain that

J (u) � η > 0 when ε = ‖u‖μ small.

ii) Let t > 0, then we have for all ϕ ∈ Mρ

J (tϕ) :=
t2

2
‖ϕ‖2

μ −
(

t p

p

)∫
Ω
|x|−s |ϕ |p dx−λ

(
t2−β

2−β

)∫
Ω
|x|−α |ϕ |2−β dx.

Letting v = tϕ for t large enough, we obtain J (v) � 0.For t large enough we can
ensure ‖v‖μ > ε . �

Let Γ and c defined by

Γ :=
{

γ : [0,1] −→ Mr: γ (0) = u−0 and γ (1) = u+
0

}
and

c := inf
γ∈Π

max
t∈[0,1]

(J (γ (t))) .

Proof of Theorem 3 . If

0 < λ < λ ∗ := min(Λ1,Λ2,Λ3) ,

then, by the Lemmas 2 and Proposition 1 (ii) , J verifying the Palais -Smale condition
in Mρ . Moreover, from the Lemmas 3, 9 and 10, there exists uc such that

J (uc) = c and uc ∈ Mρ .

Thus uc is the third solution of our system such that uc �= u+
0 and uc �= u−0 . Since (1.1)

is odd with respect u , we obtain that −uc is also a solution of (1.1) . �

CONCLUSION 1. In our work, we have searched the critical points as the minimiz-
ers of the energy functional associated to the problem on the constraint defined by the
Nehari manifold M , which are solutions of our problem. Under some sufficient con-
ditions on coefficients of equation of (1.1) such that N � 3, 0 � s < 2, −∞ < μ < μN ,
0 � α < N (p−1+ β )/p , p > 2 β ∈ (0,1) , we split M in two disjoint subsets M +

and M− thus we consider the minimization problems on M + and M− respectively.
In the Sections 3 and 4 we have proved the existence of at least two nontrivial solutions
on Mρ for all 0 < λ < λ ∗ := min(Λ1,Λ2,Λ3) if N � 3, 0 � s < 2 and β ∈ (0,1) .
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