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Abstract. In this paper we are concerned with the study of a class of second-order quasilinear
parabolic equations involving Leray-Lions type operators with anisotropic growth conditions.
By an approximation argument, we estabilsh the existence of entropy solutions in the framework
of anisotropic parabolic Sobolev spaces when the initial condition and the data are assumed to be
merely integrable. In addition, we prove that entropy solutions coincide with the renormalized
solutions.

1. Introduction

Let Ω be an open bounded domain in R
N , N � 2, let QT be the cylinder Ω×

(0,T ) with T > 0 and ΣT = ∂Ω × (0,T ). In framework of parabolic problems in
isotropic case, Boccardo et al. studied in [16] the existence and regularity of solutions
for the nonlinear parabolic equation⎧⎨

⎩
ut −div (|∇u|p−2∇u)+ α0|u|s−1u = f in QT ,
u = 0 on ΣT ,
u(x,0) = 0 in Ω,

(1.1)

where p > 1+ N
N+1 , s > p(N+1)−N

N , α0 > 0 and the data f is assumed to be in L1(QT ).
Other problems have been considered in this direction, see e.g. [6, 7, 14, 16].

Note that, the notion of renormalized solution has been introduced by DiPerna
and Lions [20] in their study of the Boltzmann equation, then adapted to the study of
elliptic problems with L1 -data by Boccardo, Giachetti, Diaz, and Murat [13] and Lions
and Murat (see Lions book on the Navier-Stokes equations [29]). However the notion
of entropy solutions was introduced independently by Bénilan et al. [5], see also [2].

In the last years, anisotropic Sobolev spaces have attracted a lot of attention, the
impulse for this mainly comes from their applications of electro-rheological fluids and
image processing (we refer the reader to [30, 31, 35] for more details).

In the context of stationary problems, let us mention here that several studies have
been devoted to the investigation of related problems and a lot of papers have appeared
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dealing with equations involving anisotropic elliptic problems, see e.g. [15, 19, 27, 32].
There is also a large amount of literature for such problems, which we do not need to
cite here since the reader may easily find such papers, we restrict ourselves to cite some
work related to our topic. In [8], Bendahmane et al. used Hedberg-type’s approximation
to prove existence of distributional solutions in appropriate anisotropic function spaces
for some strongly nonlinear boundary value problems associated with an anisotropic
second-order operator where the data is assumed to be in the dual, see also [11]. Let us
point out that more work in this direction can be found in [18] where the authors studied
the existence and uniqueness results for strongly nonlinear anisotropic problems when
the nonlinear lower-order term having natural growth with respect to the gradient and
the data is regular or merely integrable using penalization methods, and in [17], where
the authors studied some anisotropic elliptic problems of higher order in L1 , we refer
the reader to [10, 12].

Also in the context of degenerate parabolic problems, it would be interesting to
refer to the works [9, 22]. In [22], Elmahi et al. used an approximation theorem in
inhomogeneous Orlicz–Sobolev spaces to solve a second-order parabolic equation in
Orlicz spaces, see also [21, 25, 26] for related topics. As for the variable exponent case,
in [9], the authors proved the existence and uniqueness of the renormalized solutions
to the nonlinear parabolic problem involving the p(x)-Laplace in the framework of
variable exponent Sobolev spaces⎧⎨

⎩
u′t −div (|∇u|p(x)−2∇u) = f in QT = Ω× (0,T),
u = 0 on ΣT = ∂Ω× (0,T),
u(x,0) = u0(x) in Ω,

(1.2)

with f ∈ L1(Ω). Moreover, they proved that u ∈ Lq(·)(0,T ;W 1,q(·)
0 (Ω)) when p(·) >

2− 1
N+1 for all continuous variable exponents q(·) on Ω satisfying 1 � q(x) <

N(p(x)−1)+p(x)
N+1 for all x ∈ Ω.
Recently, Abdou et al. proved in [1] the existence of weak solutions for some

quasilinear anisotropic parabolic problem when the data is assumed to be in the dual
and the initial condition in L2(Ω).

The aim of this paper is to establish the existence of entropy and renormalized
solutions for some quasilinear anisotropic parabolic problem associated with a second-
order operator of Leray-Lions type⎧⎪⎪⎨

⎪⎪⎩
ut −

N

∑
i=1

Diai(x,t,u,∇u)+g(x,t,u) = f in QT ,

u(x,t) = 0 on ΣT ,
u(x,0) = u0(x) in Ω,

(1.3)

where f ∈ L1(QT ), u0 ∈ L1(Ω), and the Carathéodory functions ai(x,s,ξ ) satisfying
some anisotropic growth conditions.

The main difficulty in proving the existence of solutions stems from the fact that
the operator Au is not coercive in the anisotropic parabolic space L�p(0,T ;W 1,�p

0 (Ω)),
to overcome this difficulty, we will penalize the approximate problems.
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This paper is organized as follows. In section 2 we present some definitions and
results concerning the anisotropic parabolic spaces. We introduce in section 3 some
essential assumptions on ai(x,t,s,ξ ) and g(x,t,s) to assure the existence of entropy
solutions for our quasilinear anisotropic parabolic problem. Section 4 will be devoted
to show the existence of entropy solutions for our problem (1.3). In the last section, we
prove that the entropy solutions of the problem (1.3) are also renormalized solutions.

2. Preliminaries

In this section, we list briefly some definitions and well known facts about aniso-
tropic Sobolev spaces used to study our quasilinear parabolic problem (1.3).

Let Ω be an open bounded domain in R
N (N � 2) with boundary ∂Ω, and let

p0, p1, . . . , pN be N +1 exponents, with 1 < pi < ∞ for i = 1, . . . ,N. We denote

�p = {p0, p1, . . . , pN}, D0u = u and Diu =
∂u
∂xi

for i = 1, . . . ,N, (2.1)

and
p = min

{
p0, p1, p2, . . . , pN

}
then p > 1. (2.2)

The anisotropic Sobolev space W 1,�p(Ω) is defined as follows

W 1,�p(Ω) =
{
u ∈ Lp0(Ω) and Diu ∈ Lpi(Ω) for i = 1,2, . . . ,N

}
endowed with the norm

‖u‖1,�p =
N

∑
i=0

‖Diu‖Lpi(Ω). (2.3)

The space
(
W 1,�p(Ω),‖u‖1,�p

)
is a separable and reflexive Banach space (cf. [31, 33,

34]).
We define also W 1,�p

0 (Ω) as the closure of C∞
0 (Ω) in W 1,�p(Ω) with respect to the

norm (2.3) .
Let us recall the Poincaré and Sobolev type inequalities in the anisotropic Sobolev

space.

PROPOSITION 2.1. Let u ∈W 1,�p
0 (Ω), we have

(i) Poincaré inequality: there exists a constant Cp > 0 such that

‖u‖Lpi(Ω) � Cp ‖Diu‖Lpi(Ω) for any i = 1, . . . ,N.

(ii) Sobolev inequality: there exists a constant Cs > 0 such that

‖u‖Lq(Ω) � Cs

N

N

∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
Lpi (Ω)

,

where

1
p

=
1
N

N

∑
i=1

1
pi

and

⎧⎨
⎩q = p∗ =

Np
N− p

if p < N,

q ∈ [1,+∞[ if p � N.
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LEMMA 2.1. Let Ω be a bounded open set in R
N (N � 2), we set

s = max(q, max
1�i�N

pi),

then, we have the following embedding:

• if p < N then the embedding W 1,�p
0 (Ω) ↪→↪→ Lr(Ω) is compact for any r∈ [1,s[,

• if p = N then the embedding W 1,�p
0 (Ω) ↪→↪→ Lr(Ω) is compact for any r ∈

[1,+∞[,

• if p > N then the embedding W 1,�p
0 (Ω) ↪→↪→ L∞(Ω)∩C0(Ω) is compact.

For more details, we refer the reader to [23].

PROPOSITION 2.2. We denote the dual of the anisotropic Sobolev space W 1,�p
0 (Ω)

by W−1,�p′(Ω) , where �p′ = {p′0, p
′
1, . . . , p

′
N} and 1

p′i
+ 1

pi
= 1.

For each F ∈ W−1,�p′(Ω) there exists Fi ∈ Lp′i(Ω) for i = 0,1, . . . ,N, such that

F = F0−
N

∑
i=1

DiFi. Moreover, for all u ∈W 1,�p
0 (Ω) , we have

〈F,u〉 =
N

∑
i=0

∫
Ω

Fi D
iu dx.

We define a norm on the dual space by

‖F‖−1,�p′ = inf
{ N

∑
i=0

‖Fi‖p′i / F = F0−
N

∑
i=1

DiFi with F0 ∈ Ls′(Ω) and Fi ∈ Lp′i(Ω)
}
.

We refer to [8] for more details.

DEFINITION 2.1. Let k > 0, we consider the truncation function Tk(·) : R 
−→R ,
given by

Tk(s) =

{
s if |s| � k,

k
s
|s| if |s| > k.

We define

T 1,�p
0 (Ω) := {u : Ω 
→ R measurable, such that Tk(u) ∈W 1,�p

0 (Ω) for any k > 0}.

PROPOSITION 2.3. Let u ∈ T 1,�p
0 (Ω) . For i = 1, . . . ,N, there exists a unique

measurable function vi : Ω 
→ R such that

DiTk(u) = vi · χ{|u|<k} a.e. in Ω, for any k > 0,

where χA denotes the characteristic function of a measurable set A. The functions vi

are called the weak partial derivatives of u and are still denoted Diu. Moreover, if u
belongs to W 1,1

0 (Ω) , then vi coincides with the standard distributional derivative of u,
that is vi = Diu.
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2.1. Parabolic spaces

Let QT = Ω× (0,T ) with 0 < T < ∞. We introduce the anisotropic parabolic
space L�p(0,T ;W 1,�p(Ω)) by

L�p(0,T ;W 1,�p(Ω)) =

{
u measurable function /

N

∑
i=0

∫ T

0
‖Diu‖pi

pi
dt < ∞

}
, (2.4)

endowed with the norm

‖u‖L�p(0,T ;W 1,�p(Ω)) =
N

∑
i=0

‖Dαu‖Lpi(QT ).

We introduce the functional space L�p(0,T ;W 1,�p
0 (Ω)), defined by

L�p(0,T ;W 1,�p
0 (Ω)) =

{
u ∈ L�p(0,T ;W 1,�p(Ω)) / u = 0 on ∂Ω× [0,T ]

}
. (2.5)

The spaces L�p(0,T ;W 1,�p(Ω)) and L�p(0,T ;W 1,�p
0 (Ω)) are separable and reflexive Ba-

nach spaces.
The dual space of L�p(0,T ;W 1,�p

0 (Ω)) is defined as follows

L
�p′(0,T ;W−1,�p′(Ω)) =

{
F = F0−

N

∑
i=1

DiFi, with Fi ∈ Lp′i(QT ) for i = 0,1, . . . ,N
}

(2.6)
normed by

‖F‖
L

�p′ (0,T ;W−1,�p′ (Ω))
= inf

{ N

∑
i=0

‖Fi‖
Lp′i (QT )

/ F = F0−
N

∑
i=1

DiFi with F0 ∈ Ls′(QT )

and Fi ∈ Lp′i(QT )
}
.

The duality of the spaces L�p(0,T ;W 1,�p
0 (Ω)) and L

�p′(0,T ;W−1,�p′(Ω)) is given by the
relation

〈F,v〉 =
N

∑
i=0

∫
QT

fiD
iv(x)dx for all v ∈ L�p(0,T ;W 1,�p

0 (Ω)).

LEMMA 2.2. (cf. [36]) Let 1 � p < ∞ and r = 1, or p = ∞ and r > 1.
Let X , B and Y be three Banach spaces such that

the embedding X ↪→↪→ B is compact and the embedding B ↪→ Y is continuous.

Let (un)n be a bounded sequence in Lp(0,T ;X), with
(∂un

∂ t

)
n

is bounded in Lr(0,T ;Y ),

Then, there exists u ∈ Lp(0,T ;B) such that, up to a subsequence, we have

un −→ u in Lp(0,T ;B).

i.e. the sequence (un)n is relatively compact in Lp(0,T ;B).
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REMARK 2.1. Let p = r = 1, taking

X = W 1,1
0 (Ω), B = L1(Ω) and Y = W−1,1(Ω).

We have the embedding W 1,1
0 (Ω) ↪→↪→ L1(Ω) is compact and the embedding L1(Ω) ↪→

W−1,1(Ω) is continuous. Then

{
u : u ∈ L1(0,T ;W 1,1

0 (Ω)) and
∂u
∂ t

∈ L1(0,T ;W−1,1(Ω))
}

↪→↪→ L1(QT ).
(2.7)

Moreover, since p > 1, W 1,�p
0 (Ω) ↪→W 1,1

0 (Ω) and W−1,�p′(Ω) ↪→W−1,1(Ω) are contin-
uous, it follows that

{
u : u ∈ L�p(0,T ;W 1,�p

0 (Ω)) and
∂u
∂ t

∈ L
�p′(0,T ;W−1,�p′(Ω))

}
↪→↪→ L1(QT ).

(2.8)

3. Essential assumptions and some technical Lemmas

Let Ω be a bounded open subset of R
N (N � 2) with a Lipschitz boundary de-

noted by ∂Ω . For T > 0, we denote by QT the cylinder Ω× (0,T ) and by ΣT the
lateral surface ∂Ω× (0,T).

We assume that the vector �p = (p0, p1, . . . , pN) satisfies 1 < pi < ∞ for i =
0,1, . . . ,N, and

p0 � max{pi, i = 1,2, . . . ,N}. (3.1)

We consider a Leray-Lions operator A acted from L�p(0,T ;W 1,�p
0 (Ω)) into its dual

L
�p′(0,T ;W−1,�p′(Ω)) defined by

Au = −
N

∑
i=1

Di ai(x,t,u,∇u),

where ai(x, t,s,ξ ) are Carathéodory functions (measurable with respect to (x, t) in
QT for any (s,ξ ) in R×R

N , and continuous with respect to (s,ξ ) in R×R
N for

almost every (x, t) in QT ) satisfying the following conditions

|ai(x,t,s,ξ )| � β (Ki(x,t)+ |s|pi−1 + |ξi|pi−1), (3.2)

ai(x,t,s,ξ )ξi � α|ξi|pi , (3.3)

for any ξ = (ξ1, . . . ,ξN) and ξ ′ = (ξ ′
1, . . . ,ξ ′

N), we have

(ai(x, t,s,ξ )−ai(x,t,s,ξ ′))(ξi − ξ ′
i ) > 0 for ξi �= ξ ′

i , (3.4)

for a.e. (x, t) ∈ QT , and all (s,ξ ) ∈ R×R
N , where Ki(x,t) is a nonnegative function

lying in Lp′i(QT ) and α,β > 0.
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The nonlinear term g is a Carathéodory function which satisfies

|g(x,t,s)| � b(x,t)+ γ|s|p0−1, (3.5)

g(x,t,s)s � 0, (3.6)

for a.e. (x, t) ∈ QT and any s ∈ R, the function b : Ω× (0,T ) 
−→ R
+ with b ∈

Lp′0(QT ), and γ > 0.

We consider the quasilinear anisotropic parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

ut −
N

∑
i=1

Dia(x,t,u,∇u)+g(x,t,u) = f in QT ,

u = 0 on ΣT ,
u(x,0) = u0 in Ω,

(3.7)

with f ∈ L1(QT ) and u0 ∈ L1(Ω).

REMARK 3.1. The assumption (3.1) is essential to ensure that ai(x,t,u,∇u) be-

longs to Lp′i(QT ). In the case of Au = −
N

∑
i=1

Diai(x,t,∇u), the existence of an entropy

solution is guaranteed, without using this assumption.

LEMMA 3.1. (see [24], Theorem 13.47) Let (un)n be a sequence in L1(Ω) and
u ∈ L1(Ω) such that

(i) un → u a.e. in Ω,

(ii) un � 0 and u � 0 a.e. in Ω,

(iii)
∫

Ω
un dx →

∫
Ω

u dx,

then un → u in L1(Ω).

LEMMA 3.2. Assuming that (3.2)–(3.4) hold. Let (un)n be a sequence in

L�p(0,T ;W 1,�p
0 (Ω)) such that ((un)t)n is bounded in L

�p′(0,T ;W−1,�p′(Ω)), with un ⇀ u

in L�p(0,T ;W 1,�p
0 (Ω)) and

N

∑
i=1

∫
QT

(
ai(x,t,un,∇un)−ai(x,t,un,∇u)

)
(Diun−Diu)dx dt

+
∫

QT

(
|un|p0−2un−|u|p0−2u

)
(un−u)dx dt −→ 0,

(3.8)

then un → u in L�p(0,T ;W 1,�p
0 (Ω)) for a subsequence.
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Proof. Let

Dn(x, t) =
N

∑
i=1

(
ai(x,t,un,∇un)−ai(x,t,un,∇u)

)
(Diun−Diu)

+
(|un|p0−2un−|u|p0−2u

)
(un−u).

Thanks to (3.4), we have Dn(x,t) is a positive function, and in view of (3.8), we get
Dn → 0 in L1(QT ) as n → ∞ .

We also have un ⇀ u in L�p(0,T ;W 1,�p
0 (Ω)), and in view of the compact embed-

ding (2.8), we get un → u strongly in L1(QT ) . It follows that un → u a.e in QT , and
since Dn → 0 a.e in QT , there exists a subset B in QT with measure zero such that
∀(x,t) ∈ QT\B |un(x,t)| < ∞ , |Diun(x,t)| < ∞ , |K(x,t)| < ∞ , un → u and Dn → 0
a.e. in QT . Then we have

Dn(x, t) =
N

∑
i=1

(
ai(x,t,un,∇un)−ai(x,t,un,∇u)

)
(Diun−Diu)

+
(|un|p0−2un−|u|p0−2u

)
(un−u)

� α
N

∑
i=1

|Diun|pi + α
N

∑
i=1

|Diu|pi + |un|p0 + |u|p0

−β
N

∑
i=1

(
Ki(x,t)+ |un|pi−1 + |Diun|pi−1)|Diu|

−β
N

∑
i=1

(
Ki(x,t)+ |un|pi−1 + |Diu|pi−1)|Diun|− |un|p0−1|u|− |u|p0−1|un|

� α
N

∑
i=0

|Diun|pi −Cx,t

N

∑
i=0

(
1+ |Diun|pi−1 + |Diun|

)
,

where α = min(1,α) and Cx,t is a constant depending on (x, t), without dependence
on n, (since un(x, t) → u(x,t) then (un)n is bounded). Hence we obtain

Dn(x) �
N

∑
i=0

|Diun|pi

(
α − Cx,t

|Diun|pi
− Cx,t

|Diun| −
Cx,t

|Diun|pi−1

)
.

By a standard argument, the sequence (Diun)n is bounded almost everywhere in QT .
Indeed, if |Diun| → ∞ in a measurable subset E ∈ QT then

lim
n→∞

∫
QT

Dn(x)dxdt � lim
n→∞

N

∑
i=0

∫
E
|Diun|pi

(
α− Cx,t

|Diun|pi
− Cx,t

|Diun| −
Cx,t

|Diun|pi−1

)
dxdt = ∞,

which is absurd since Dn → 0 in L1(QT ) . Let now ξ ∗
i be an accumulation point

of (Diun)n, we have |ξ ∗
i | < ∞ and by the continuity of the Carathéodory function

a(x,t, ·, ·), we obtain(
ai(x,t,u,ξ ∗)−ai(x,t,u,∇u)

)
(ξ ∗

i −Diu) = 0.
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Thanks to (3.4), we have ξ ∗
i = Diu, and the uniqueness of the accumulation point

implies that Diun(x, t) → Diu(x,t) a.e in QT for i = 0,1, · · · ,N.

Since (ai(x, t,un,∇un))n is bounded in Lp′i(QT ) and ai(x, t,un,∇un)→ ai(x,t,u,∇u)
a.e in QT , we can establish that

ai(x,t,un,∇un) ⇀ ai(x,t,u,∇u) in Lp′i(QT ).

Using (3.8) and Lemma 3.1, we deduce that

|un|pi −→ |u|pi in L1(QT ), (3.9)

and
ai(x, t,un,∇un)Diun −→ ai(x,t,u,∇u)Diu in L1(QT ). (3.10)

According to the condition (3.3) , we have

α|Diun|pi � ai(x,t,un,∇un)Diun for i = 1, . . . ,N.

Let

yi
n =

ai(x,t,un,∇un)Diun

α
and yi =

ai(x,t,u,∇u)Diu
α

.

In view of Fatou’s Lemma, we get∫
QT

2yi dx dt � liminf
n→∞

∫
QT

(yi
n + yi− 1

2pi−1 |Diun−Diu|pi)dx dt.

Then 0 � − limsup
n→∞

∫
QT

|Diun−Diu|pi dx dt, and since

0 � liminf
n→∞

∫
QT

|Diun−Diu|pi dx dt � limsup
n→∞

∫
QT

|Diun−Diu|pi dx dt � 0.

It follows that
∫

QT

|Diun−Diu|pi dx dt −→ 0 as n → ∞. Hence we get

Diun −→ Diu in Lpi(QT ) for i = 1, . . . ,N.

Finally, thanks to (3.9), we deduce that

un −→ u in L�p(0,T ;W 1,�p
0 (Ω)).

This completes the proof. �

4. Main result

We set

ϕk(r) =
∫ r

0
Tk(s)ds =

{
r2
2 if |r| � k,

k|r|− k2

2 if |r| > k.
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DEFINITION 4.1. Let f∈L1(QT ) and u0 ∈ L1(Ω). A measurable function u is
an entropy solution of the anisotropic parabolic problem (3.7), if Tk(u)∈L�p(0,T ;W 1,�p

0 (Ω))
for all k > 0, and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫
Ω

ϕk(u−ψ)(T)dx−
∫

Ω
ϕk(u−ψ)(0)dx+

∫
QT

∂ψ
∂ t

Tk(u−ψ)dx dt

+
N

∑
i=1

∫
QT

ai(x,t,u,∇u)DiTk(u−ψ)dx dt +
∫
QT

g(x,t,u)Tk(u−ψ)dx dt

�
∫

QT

f Tk(u−ψ)dx dt,

(4.1)

for any ψ ∈ L�p(0,T ;W 1,�p
0 (Ω))∩L∞(QT ) with

∂ψ
∂ t

∈ L
�p′(0,T ;W−1,�p′(Ω))+L1(QT ).

THEOREM 4.1. Let f ∈ L1(QT ) and u0 ∈L1(Ω). Assuming that the assumptions
(3.1)–(3.6) hold true. Then the quasilinear anisotropic parabolic problem (3.7) has
at least one entropy solution.

Proof.

Step 1: Approximate problem. Let ( fn)n be a sequence in L
�p′(0,T ;W−1,,�p′(Ω))∩

L1(QT ) such that fn → f in L1(QT ), with | fn| � | f | (for example fn = Tn( f )), and
let (u0,n) be a sequence in C∞

0 (Ω) such that u0,n → u0 in L1(Ω) and |u0,n| � |u0|.
We consider the approximate problem⎧⎪⎨

⎪⎩
∂un

∂ t
+Anun +gn(x,t,un)+

1
n
|un|p0−2un = fn in Ω× (0,T),

uk(x, t) = 0 on ∂Ω× (0,T),
uk(x,0) = u0 in Ω,

(4.2)

with Anu = −
N

∑
i=1

Diai(x,t,Tn(u),∇u) and gn(x,t,s) =
g(x,t,s)

1+ 1
n |g(x,t,s)| . Note that

gn(x, t,s)s � 0, |gn(x,t,s)| � |g(x,t,s)| and |gn(x,t,s)| � n ∀n ∈ N
∗.

We define the operator Gn : L�p(0,T ;W 1,�p
0 (Ω)) 
−→ L

�p′(0,T ;W−1,,�p′(Ω)) by∫ T

0
〈Gnu,v〉dt =

∫
QT

gn(x,t,u)vdxdt +
1
n

∫
QT

|u|p0−2uvdxdt ∀v∈ L�p(0,T ;W 1,�p
0 (Ω)).

Thanks to (3.2), (3.5) and Hölder inequality, we have for all u, v ∈ L�p(0,T ;W 1,�p
0 (Ω))∣∣∣∣

∫ T

0
〈Anu,v〉dt

∣∣∣∣ =
N

∑
i=1

∫
QT

|ai(x,t,Tn(u),∇u)| |Div|dx dt

�
N

∑
i=1

∫
QT

β (Ki(x,t)+ |Tn(u)|pi−1 + |Diu|pi−1)|Div|dx dt

� β
N

∑
i=1

(‖Ki(x,t)‖
Lp′i (QT )

+‖Tn(u)‖pi−1
Lpi (QT ) +‖Diu‖pi−1

Lpi(QT ))‖Div‖Lpi(QT )

(4.3)
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and∣∣∣∣
∫ T

0
〈Gnu,v〉dt

∣∣∣∣ �
∫

QT

|gn(x,t,u)| |v|dx dt +
1
n

∫
QT

|u|p0−1 |v|dx dt

�
∫

QT

((1
n

+1
)
|u|p0−1 +b(x,t)

)
|v|dx dt

�
((1

n
+1

)
‖u‖p0−1

Lp0(QT ) +‖b(x,t)‖
Lp′0(QT )

)∥∥v
∥∥

Lp0 (QT ). �

(4.4)

LEMMA 4.1. The operator Bn=An+Gn is pseudo-monotone from L�p(0,T ;W 1,�p
0 (Ω))

into L
�p′(0,T ;W−1,�p′(Ω)). Moreover, Bn is coercive in the following sense

∫ T
0 〈Bnv,v〉dt

‖v‖
L�p(0,T ;W 1,�p

0 (Ω))

−→ ∞ as ‖v‖
L�p(0,T ;W1,�p

0 (Ω))
→ ∞.

Proof. In view of the inequality (4.3) and (4.4), the operator Bn is bounded.
For the coercivity, thanks to (3.3) and (3.6), we have for all u ∈ L�p(0,T ;W 1,�p

0 (Ω))

∫ T

0
〈Bnu,u〉dt =

N

∑
i=1

∫
QT

ai(x,t,Tn(u)∇u)Diu dx dt +
∫

QT

g(x,t,u)udx dt

+
1
n

∫
QT

|u|p0 dx dt

� α
N

∑
i=1

∫
QT

|Diu|pi dx dt +
1
n

∫
QT

|u|p0 dx dt

� α
N

∑
i=1

(‖Diu‖p

Lpi (QT ) −1)+
1
n
(‖u‖p

Lp0(QT )−1)

� α ′‖v‖p

L�p(0,T ;W 1,�p
0 (Ω))

−αN− 1
n
,

with α ′ =
min(α, 1

n )

(N +1)p−1 . It follows that

∫ T
0 〈Bnu,u〉dt

‖u‖
L�p(0,T ;W1,�p

0 (Ω))

−→ ∞ as ‖u‖
L�p(0,T ;W 1,�p

0 (Ω))
→ ∞.

It remain to show that Bn is pseudo-monotone. Let (uk)k be a sequence in L�p(0,T ;W 1,�p
0 (Ω))

such that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk ⇀ u in L�p(0,T ;W 1,�p
0 (Ω)),

Bnuk ⇀ χn in L
�p′(0,T ;W−1,�p′(Ω)),

limsup
k→∞

∫ T

0
〈Bnuk,uk〉dt �

∫ T

0
〈χn,u〉dt.

(4.5)



422 M. CHRIF, S. EL MANOUNI AND H. HJIAJ

We prove that

χn = Bnu and
∫ T

0
〈Bnuk,uk〉dt −→

∫ T

0
〈χn,u〉dt as k → +∞.

First, we have uk ⇀ u in L�p(0,T ;W 1,�p
0 (Ω)) and in view of the compact embedding

(2.8), we obtain un → u strongly in L1(QT ), and a.e. in QT .

We have (uk)k is a bounded sequence in L�p(0,T ;W 1,�p
0 (Ω)). Using the growth

condition (3.3), the Carathéodory function (ai(x,t,Tn(uk),∇uk))k is bounded in Lp′i(QT ).
Therefore there exists a function ϕi ∈ Lp′i(QT ) such that

ai(x, t,Tn(uk),∇uk) ⇀ ϕi in Lp′i(QT ) for i = 1, . . . ,N. (4.6)

Further, we have gn(x,t,uk) → gn(x,t,u) a.e. in QT and gn(x,t,uk) � n ∈ Lp′0(QT ).
Hence, in view of Lebesgue’s dominated convergence theorem, we deduce that

gn(x,t,uk) −→ gn(x,t,u) in Lp′0(QT ). (4.7)

We also have
1
n
|uk|p0−2uk ⇀

1
n
|u|p0−2u in Lp′0(QT ). (4.8)

Thus, for any v ∈ L�p(0,T ;W 1,�p
0 (Ω)) , we get

∫ T

0
〈χn,v〉dt = lim

k→∞

∫ T

0
〈Bnuk,v〉dt

= lim
k→∞

( N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Div dx dt +
∫
QT

gn(x,t,uk)v dx dt

+
1
n

∫
QT

|uk|p0−2ukv dx dt
)

=
N

∑
i=1

∫
QT

ϕiD
iv dx dt +

∫
QT

gn(x,t,u)v dx dt +
1
n

∫
QT

|u|p0−2uv dx dt.

(4.9)
Having in mind (4.5) and (4.9), we obtain

limsup
k→∞

〈Bn(uk),uk〉 = limsup
k→∞

( N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Diuk dx dt

+
∫

QT

gn(x,t,uk)uk dx dt +
1
n

∫
QT

|uk|p0 dx dt
)

�
N

∑
i=1

∫
QT

ϕiD
iu dx dt +

∫
QT

gn(x, t,u)udx dt +
1
n

∫
QT

|u|p0 dx dt.

(4.10)
Thanks to (4.7), we have∫

QT

gn(x,t,uk)uk dx dt −→
∫

QT

gn(x, t,u)udx dt. (4.11)
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Therefore

limsup
k→∞

{ N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Diuk dx dt +
1
n

∫
QT

|uk|p0 dx dt

}

�
N

∑
i=1

∫
QT

ϕiD
iu dx dt +

1
n

∫
QT

|u|p0 dx dt.

(4.12)

On the other hand, using (3.4) , we have

N

∑
i=1

∫
QT

(ai(x, t,Tn(uk),∇uk)−ai(x,t,Tn(uk),∇u))(Diuk −Diu)dx dt

+
1
n

∫
QT

(|uk|p0−2uk −|u|p0−2u)(uk −u)dx dt � 0.

(4.13)

Then
N

∑
i=1

∫
QT

ai(x, t,Tn(uk),∇uk)Diuk dx dt +
1
n

∫
QT

|uk|p0 dx dt

�
N

∑
i=1

∫
QT

ai(x, t,Tn(uk),∇u)(Diuk −Diu)dx dt +
N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Diu dx dt

+
1
n

∫
QT

|u|p0−2u(uk −u)dx dt +
1
n

∫
QT

|uk|p0−2uku dx dt.

Now, we have Tn(uk)→ Tn(u) in Lpi(QT ), then ai(x,t,Tn(uk),∇u)→ ai(x,t,Tn(u),∇u)
in Lp′i(QT ). Thanks to (4.6) and (4.8) , we obtain

liminf
k→∞

{ N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Diuk dx dt +
1
n

∫
QT

|uk|p0 dx dt

}

�
N

∑
i=1

∫
QT

ϕiD
iu dx dt +

1
n

∫
QT

|u|p0 dx dt,

which implies, thanks to (4.12), that

lim
k→∞

{ N

∑
i=1

∫
QT

ai(x,t,Tn(uk),∇uk)Diuk dx dt +
1
n

∫
QT

|uk|p0 dx dt

}

=
N

∑
i=1

∫
QT

ϕiD
iu dx dt +

1
n

∫
QT

|u|p0 dx dt.

(4.14)

By combining (4.9), (4.11) and (4.14), we deduce that∫ T

0
〈Bnuk,uk〉dt −→

∫ T

0
〈χn,u〉dt as k → ∞,

and in view of (4.14), we obtain

N

∑
i=1

∫
QT

(ai(x, t,Tn(uk),∇uk)−ai(x,t,Tn(uk),∇u))(Diuk −Diu)dx dt

+
1
n

∫
QT

(|uk|p0−2uk −|u|p0−2u)(uk −u)dx dt −→ 0 as k → +∞.
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Hence, thanks to Lemma 3.2, we get

uk −→ u in L�p(0,T ;W 1,�p
0 (QT )).

Thus, Diuk −→Diu a.e. in QT . It follows that ai(x,t,Tn(uk),∇uk)−→ ai(x,t,Tn(u),∇u)
a.e. in QT , and in view of (3.2), we get

ai(x, t,Tn(uk),∇un) ⇀ ai(x,t,Tn(u),∇u) in Lp′i(QT ) for i = 1, . . . ,N.

Having in mind (4.7) and (4.8), we deduce that χn = Bnu, which completes the
proof of Lemma 4.1.

Consequently, in view of Lemma 4.1, there exists at least one weak solution un ∈
L�p(0,T ;W 1,�p

0 (Ω)) of problem (4.2) (cf. [28], Theorem 2.7, page 180).

Step 2: A priori estimates. Taking Tk(un) as a test function in (4.2), we obtain

∫ T

0

〈∂un

∂ t
,Tk(un)

〉
dt +

N

∑
i=1

∫
QT

ai(x,t,Tn(un),∇un)DiTk(un)dx dt

+
∫

QT

gn(x, t,un)Tk(un)dx dt +
1
n

∫
QT

|un|p0−2unTk(un)dx dt =
∫

QT

fnTk(un)dx dt.

(4.15)
Since |ϕk(r)| � k|r|, then∫ T

0

〈∂un

∂ t
,Tk(un)

〉
dt =

∫
Ω

∫ T

0

∂un

∂ t
Tk(un)dt dx =

∫
Ω

∫ T

0

∂ϕk(un)
∂ t

dt dx

=
∫

Ω
ϕk(un(T ))dx−

∫
Ω

ϕk(un(0))dx

�
∫

Ω
ϕk(un(T ))dx− k‖u0‖L1(Ω).

(4.16)

In view of (3.6), the third and fourth terms on the right-hand side of (4.16) are posi-
tives, and thanks to (3.3), we get

∫
Ω

ϕk(un(T ))dx+ α
N

∑
i=1

∫
QT

|DiTk(un)|pi dx dt � k(‖u0‖L1(Ω) +‖ f‖L1(QT )). (4.17)

On the other hand, we have

N

∑
i=1

∫
QT

|DiTk(un)|pi dx dt �
N

∑
i=1

∫
QT

|DiTk(un)|P −1 dx dt

=
N

∑
i=1

‖DiTk(un)‖p

Lp(QT ) −N ·meas(QT )

� 1

Np−1 ‖∇Tk(un)‖p

Lp(QT )−N ·meas(QT ).

Since ϕk(un(T )) � 0, then there exists a constant C1 that does not depend on n and
k, such that

‖∇un‖Lp(QT ) � C1k
1
p for k � 1. (4.18)
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Therefore, for any k � 1, we have

k meas
{|un| > k

}
=

∫
{|un|>k}

|Tk(un)|dx dt �
∫

QT

|Tk(un)|dx dt

� ‖1‖
Lp′ (QT )

.‖Tk(un)‖Lp(QT )

� C2‖∇Tk(un)‖Lp′ (QT )

� C3k
1
p ,

which implies that

meas
{|un| > k

}
� C3

1

k
1− 1

p

−→ 0 as k → +∞. (4.19)

We have for any δ > 0

meas
{|un−um| > δ

}
� meas

{|un| > k
}

+meas
{|um| > k

}
+meas

{|Tk(un)−Tk(um)| > δ
}
. (4.20)

Using (4.19), we get that for all ε > 0, there exists k0 > 0 such that

meas
{|un| > k

}
� ε

3
and meas

{|um| > k
}

� ε
3

∀k � k0(ε). (4.21)

On the other hand, thanks to (4.17), we have (Tk(un))n is bounded in L�p(0,T ;W 1,�p
0 (Ω)).

Then there exists a subsequence still denoted by (Tk(un))n and a measurable function
ηk ∈ L�p(0,T ;W 1,�p

0 (Ω)) such that

Tk(un) ⇀ ηk in L�p(0,T ;W 1,�p
0 (Ω)) as n → +∞.

Now the compact embedding (2.8) gives

Tk(un) −→ ηk in L1(QT ) and a.e in QT .

Thus, we can assume that (Tk(un))n is a Cauchy sequence in measure in QT , then for
all k > 0 and δ , ε > 0, there exists n0 = n0(k,δ ,ε) such that

meas
{|Tk(un)−Tk(um)| > δ

}
� ε

3
∀n,m � n0. (4.22)

By combining (4.20)–(4.22), we deduce that for all ε, δ > 0, there exists n0 =
n0(δ ,ε) such that

meas{|un−um| > δ} � ε ∀n,m � n0. (4.23)

If follows that (un)n is a Cauchy sequence in measure. Hence, there exists a subse-
quence still denoted by (un)n, such that

un −→ u a.e in QT .
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We deduce that
Tk(un) ⇀ Tk(u) in L�p(0,T ;W 1,�p

0 (Ω)), (4.24)

and in view of Lebesgue’s dominated convergence theorem, we get

Tk(un) −→ Tk(u) in Lp0(QT ). (4.25)

Step 3: The equi-integrability of the sequences (gn(x,t,un))n and
(1

n
|un|p0−2un

)
n
.

In this step, we show that

gn(x, t,un) → g(x,t,u) and
1
n
|un|p0−2un → 0 strongly in L1(QT ).

Indeed, we have gn(x,t,un)→ g(x,t,u) and 1
n |un|p0−2un → 0 a.e. QT . By using Vitali’s

theorem, it suffices to prove that (gn(x,un,∇un))n and ( 1
n |un|p0−2un)n are uniformly

equi-integrable in QT .

Taking Th+1(un)−Th(un) as a test function in (4.2), we obtain

∫ T

0

〈∂un

∂ t
,Th+1(un)−Th(un)

〉
dt

+
N

∑
i=1

∫
QT

ai(x,t,Tn(un),∇un) · (DiTh+1(un)−DiTh(un))dx dt

+
∫

QT

gn(x,t,un)(Th+1(un)−Th(un))dx dt

+
1
n

∫
QT

|un|p0−2un(Th+1(un)−Th(un))dx dt

=
∫

QT

fn · (Th+1(un)−Th(un))dx dt.

On the one hand, we have

∫ T

0

〈∂un

∂ t
,Th+1(un)−Th(un)

〉
dt =

∫
Ω

∫ T

0

∂ϕh+1(un)
∂ t

dt dx−
∫

Ω

∫ T

0

∂ϕh(un)
∂ t

dt dx

=
∫

Ω
ϕh+1(un(T ))−ϕh+1(u0,n)dx

−
∫

Ω
ϕh(un(T ))−ϕh(u0,n)dx.

Since

∫
Ω

ϕh+1(un(T ))dx−
∫

Ω
ϕh(un(T ))dx =

∫
{h�|un(T )|<h+1}

(u2
n(T )
2

−h|un(T )|+ h2

2

)
dx

+
∫
{h+1�|un(T )|}

(
|un(T )|−h− 1

2

)
dx � 0,

(4.26)
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then thanks to (3.3) and (3.6), we deduce that

α
N

∑
i=1

∫ T

0

∫
{h�|un|<h+1}

|Diun|pi dx dt +
∫ T

0

∫
{h+1�|un|}

|gn(x,t,un)|dx dt

+
1
n

∫ T

0

∫
{h+1�|un|}

|un|p0−1 dx dt

�
N

∑
i=1

∫ T

0

∫
{h�|un|<h+1}

ai(x,t,Tn(un),∇un) ·Diun dx dt

+
∫ T

0

∫
{h�|un|}

gn(x,t,un)(Th+1(un)−Th(un))dx dt

+
1
n

∫ T

0

∫
{h�|un|}

|un|p0−2un(Th+1(un)−Th(un))dx dt

�
∫

QT

fn · (Th+1(un)−Th(un))dx dt +
∫

Ω
ϕh+1(u0,n)dx−

∫
Ω

ϕh(u0,n)dx.

The terms on the right-hand side of the inequality above can be interpreted as follows

∣∣∣∫
QT

fn · (Th+1(un)−Th(un))dx dt
∣∣∣ �

∫
{|un|�h}

| f |dx dt −→ 0 as h → ∞,

and since u0 ∈ L1(Ω), then

∫
Ω

ϕh+1(u0,n)dx−
∫

Ω
ϕh(u0,n)dx

=
∫
{h�|u0,n|<h+1}

( |u0,n|2
2

−h|u0,n|+ h2

2

)
dx+

∫
{h+1�|u0,n|}

(
|u0,n|−h− 1

2

)
dx

�
∫
{h�|u0,n|<h+1}

1
2

dx+
∫
{h+1�|u0,n|}

(
|u0|−h− 1

2

)
dx −→ 0 as h → ∞.

Therefore, we conclude that

N

∑
i=1

∫ T

0

∫
{h�|un|<h+1}

ai(x,t,Tn(un),∇un) ·Diun dx dt −→ 0 as h → ∞, (4.27)

∫ T

0

∫
{h+1�|un|}

|gn(x,t,un)|dx dt −→ 0 as h → ∞, (4.28)

and
1
n

∫ T

0

∫
{h+1�|un|}

|un|p0−1 dx dt −→ 0 as h → ∞. (4.29)

Moreover, thanks to (4.28)–(4.29), we have ∀η > 0, ∃h(η) > 0 such that

∫ T

0

∫
{h(η)�|un|}

|gn(x,t,un)|dxdt +
1
n

∫ T

0

∫
{h(η)�|un|}

|un|p0−1 dxdt � η
2

. (4.30)
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On the other hand, for any measurable subset E ⊂ QT , we have
∫

E
|gn(x, t,un)|dx dt +

1
n

∫
E
|un|p0−1 dx dt

�
∫

E
|gn(x, t,Th(η)(un))|dx dt +

1
n

∫
E
|Th(η)(un)|p0−1 dx dt

+
∫
{h(η)�|un|}

|gn(x,t,un)|dx dt +
1
n

∫
{h(η)�|un|}

|un|p0−1 dx dt,

(4.31)

and there exists λ (η) > 0 such that

∫
E
|gn(x, t,Th(η)(un))|dx dt +

1
n

∫
E
|Th(η)(un)|p0−1 dx dt � η

2
for meas(E) � λ (η).

(4.32)
Finally, by combining (4.30), (4.31) and (4.32), we obtain

∫
E
|gn(x, t,un)|dx dt +

1
n

∫
E
|un|p0−1 dx dt � η , with meas(E) � λ (η). (4.33)

Thus (gn(x, t,un))n and (|un|p0−1)n are uniformly equi-integrable, and in view of
Vitali’s Theorem we deduce that

gn(x, t,un) −→ g(x,t,u) and
1
n
|un|p0−1 −→ 0 in L1(QT ). (4.34)

Step 4: The weak convergence of (Sh(un))t in L
�p′(0,T ;W−1,�p′(Ω))+ L1(QT ).

Let Sh(·) be an increasing function C2(R), such that Sh(r) = r for |r| � h and
supp(S′h) ⊂ [−h−1,h+1], then supp(S′′h) ⊂ [−h−1,−h]∪ [h,h+1].

Let v ∈ L�p(0,T ;W 1,�p
0 (Ω))∩ L∞(QT ). By taking S′h(un)v as a test function in

(4.2), we get

∫ T

0

〈∂un

∂ t
,S′h(un)v

〉
dt +

N

∑
i=1

∫
QT

ai(x,t,Tn(un),∇un)(S′h(un)Div+S′′h(un)vDiun)dx dt

+
∫

QT

gn(x, t,un)S′h(un)v dx dt +
1
n

∫
QT

|un|p0−2unS
′
h(un)v dx dt =

∫
QT

fnS
′
h(un)v dx dt.

Then∣∣∣∣
∫ T

0

〈∂Sh(un)
∂ t

,v
〉

dt

∣∣∣∣ �
N

∑
i=1

∫
QT

|ai(x,t,Tn(un),∇un)| |S′h(un)Div+S′′h(un)vDiun|dx dt

+
∫

QT

|gn(x,t,un)| |S′h(un)v|dx dt

+
1
n

∫
QT

|un|p0−1 |S′h(un)v|dx dt

+
∫

QT

| fn| |S′h(un)v|dx dt.

(4.35)
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For the first term on the right-hand side of (4.35), we have

∫
QT

|ai(x, t,Tn(un),∇un)| |S′h(un)Div+S′′h(un)vDiun|dx dt

�
∫ T

0

∫
{|un|�h+1}

β (Ki(x,t)+ |Tn(un)|pi−1 + |Diun|pi−1)

×(|S′h(un)||Div|+ |S′′h(un)||v||Diun|)dx dt

� 2β
(
‖Ki(x, t)‖

Lp′i (QT )
+‖Th+1(un)‖pi−1

Lpi (QT ) +‖DiTh+1(un)‖pi−1
Lpi (QT )

)
×(‖S′h(·)‖L∞(R)‖Div‖Lpi(QT ) +‖S′′h(·)‖L∞(R)‖v‖L∞(QT )‖DiTh+1(un)‖Lpi (QT )

)
� C4(‖v‖L�p(0,T ;W 1,�p

0 (Ω))
+‖v‖L∞(QT )).

(4.36)
Concerning the last three terms on the right-hand side of (4.35), we get

∫
QT

|gn(x, t,un)| |S′h(un)v|dx dt

+
1
n

∫
QT

|un|p0−1 |S′h(un)v|dx dt +
∫

QT

| fn| |S′h(un)v|dx dt

�
∫

QT

(
b(x, t)+ (γ +

1
n
)|un|p0−1

)
|S′h(un)v|dx dt +

∫
QT

| fn| |S′h(un)v|dx dt

� 2

(
‖b(x, t)‖

Lp′0(QT )
+2‖Th+1(un)‖p0−1

Lp0(QT )

)
‖S′h(·)‖L∞(R)‖v‖Lp0(QT )

+‖ f‖L1(QT ) · ‖S′h(·)‖L∞(R) · ‖v‖L∞(QT )

� C5(‖v‖L�p(0,T ;W1,�p
0 (Ω))

+‖v‖L∞(QT )).

(4.37)

Using (4.35)–(4.37), we obtain

∣∣∣∣
∫ T

0

〈∂Sh(un)
∂ t

,v
〉
dt

∣∣∣∣ � C6(‖v‖L�p(0,T ;W 1,�p
0 (Ω))

+‖v‖L∞(QT )) (4.38)

for v ∈ L�p(0,T ;W 1,�p
0 (Ω))∩L∞(QT ) , with C6 is a constant that does not depend on n.

Hence

(
∂Sh(un)

∂ t

)
n

is bounded in L
�p′(0,T ;W−1,�p′(Ω))+L1(QT ) and

∂Sh(un)
∂ t

⇀
∂Sh(u)

∂ t
in L

�p′(0,T ;W−1,�p′(Ω))+L1(QT ). (4.39)

Step 5: Convergence of the gradient. Let k � h and n large enough. By taking
S′h(un)(Tk(un)−Tk(u)) as a test function in (4.2), we obtain

J 1
n,h +J 2

n,h +J 3
n,h +J 4

n,h = J 5
n,h, (4.40)
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where

J 1
n,h =

∫ T

0

∫
Ω

∂Sh(un)
∂ t

(Tk(un)−Tk(u))dx dt

J 2
n,h =

N

∑
i=1

∫
QT

S′h(un)ai(x,t,Tn(un),∇un)(DiTk(un)−DiTk(u))dx dt

J 3
n,h =

N

∑
i=1

∫
QT

(Tk(un)−Tk(u))S′′h(un)ai(x,t,Tn(un),∇un)Diun dx dt

J 4
n,h =

∫
QT

gn(x,t,un)S′h(un)(Tk(un)−Tk(u))dx dt

+
1
n

∫
QT

|un|p0−2unS
′
h(un)(Tk(un)−Tk(u))dx dt

J 5
n,h =

∫
QT

fnS
′
h(un)(Tk(un)−Tk(u))dx dt.

(4.41)

The first term. In view of (4.39), we have
∂Sh(un)

∂ t
⇀

∂Sh(u)
∂ t

in L
�p′(0,T ;W−1,�p′(Ω))

+L1(QT ), then

liminf
n→∞

J 1
n,h = liminf

n→∞

∫
QT

∂Sh(un)
∂ t

Tk(un)dx dt− lim
n→∞

∫
QT

∂Sh(un)
∂ t

Tk(u)dx dt

= liminf
n→∞

∫
QT

∂Sh(un)
∂ t

Tk(Sh(un))dx dt−
∫
QT

∂Sh(u)
∂ t

Tk(Sh(u))dx dt

= liminf
n→∞

∫
Ω

ϕk(Sh(un(T )))−ϕk(Sh(u0,n))dx

−
∫

Ω
ϕk(Sh(u(T )))−ϕk(Sh(u0))dx

= liminf
n→∞

∫
Ω

ϕk(Sh(un(T )))dx−
∫

Ω
ϕk(Sh(u(T )))dx.

(4.42)
Now, we show that the right-hand side of (4.42) is positive. By using S′h(un)Tk(un) as
a test function in (4.2), we get

∫ T

0

〈∂Sh(un)
∂ t

,Tk(un)
〉

dt +
∫

QT

S′′h(un)Tk(un) a(x,t,Tn(un),∇un) ·∇un dx dt

+
∫

QT

S′h(un) a(x,t,Tn(un),∇un) ·∇Tk(un)dx dt

+
∫

QT

gn(x, t,un)S′h(un)Tk(un)dx dt +
∫
QT

|un|p0−2unS
′
h(un)Tk(un)dx dt

=
∫

QT

fnS
′
h(un)Tk(un)dx dt.

(4.43)
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Since S′h(un) � 0, then the last three terms on the left-hand side of (4.43) are nonneg-
ative. Thus∫

Ω
ϕk(Sh(un(T )))dx−

∫
Ω

ϕk(Sh(u0,n))dx

� k‖S′′h(·)‖L∞(R)

∫
{h�|un|<h+1}

|a(x,t,Th+1(un),∇Th+1(un))| |∇Th+1(un)|dx dt

+k‖S′h(·)‖L∞(R)‖ f‖1

� kC7,

with C7 is a constant that does not depend on n. Then

∫
Ω

ϕk(Sh(un(T )))dx � kC7 +
∫

Ω
ϕk(Sh(u0))dx.

Now, we have ϕk(Sh(un(T ))) � 0 and ϕk(Sh(un(T ))) → ϕk(Sh(u(T ))) a.e. in Ω, and
thanks to Fatou’s lemma, we obtain

∫
Ω

ϕk(Sh(u(T )))dx � liminf
n→∞

∫
Ω

ϕk(Sh(un(T )))dx.

Hence, thanks to (4.42), we deduce that

liminf
n→∞

J 1
n,h = liminf

n→∞

∫
Ω

ϕk(Sh(un(T )))dx−
∫

Ω
ϕk(Sh(u(T )))dx � 0. (4.44)

The second term. We have S′h(s) � 0 and S′h(s) = 1 for |s|� k, with supp(S′h)⊂
[−h−1,h+1], then

J 2
n,h =

N

∑
i=1

∫ T

0

∫
{|un|�k}

ai(x,t,Tk(un),∇Tk(un))(DiTk(un)−DiTk(u))dx dt

−
N

∑
i=1

∫ T

0

∫
{k<|un|�h+1}

S′h(un)ai(x,t,Th+1(un),∇Th+1(un))DiTk(u)dx dt

�
N

∑
i=1

∫
QT

(
ai(x,t,Tk(un),∇Tk(un))−ai(x,t,Tk(un),∇Tk(u))

)
×(DiTk(un)−DiTk(u))dx dt

+
N

∑
i=1

∫
QT

ai(x,t,Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))dx dt

+
N

∑
i=1

∫
{|un|>k}

ai(x,t,Tk(un),∇Tk(un))DiTk(u)dx dt

−
N

∑
i=1

‖S′h(·)‖L∞(R)

∫
{k<|un|�h+1}

|ai(x,t,Th+1(un),∇Th+1(un))||DiTk(u)|dx dt.

(4.45)
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In view of Lebesgue’s dominated convergence theorem, we have Tk(un) → Tk(u) in
Lpi(QT ). Thus, ai(x,t,Tk(un),∇Tk(u))→ ai(x,t,Tk(u),∇Tk(u)) in Lp′i(QT ) and since
DiTk(un) ⇀ DiTk(u) in Lpi(QT ), then∫

QT

ai(x, t,Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))dx dt −→ 0 as n → ∞. (4.46)

Using (3.3) and the continuity of the Carathéodory function, we have ai(x,t,s,0) = 0.
Hence∫
{|un|>k}

ai(x, t,Tk(un),∇Tk(un))DiTk(u)dx dt =
∫
{|un|>k}

ai(x,t,Tk(un),0)DiTk(u)dx dt

= 0. (4.47)

For the last term of the right-hand side of (4.45), we have (ai(x,t,Th+1(un),∇Th+1(un)))n
is bounded in Lp′i(QT ), then there exists ξi ∈ Lp′i(QT ) such that ai(x, t,Th+1(un),
∇Th+1(un)) ⇀ ξi in Lp′i(QT ). It follows that∫

{k<|un|�h+1}
|ai(x,t,Th+1(un),∇Th+1(un))||DiTk(u)|dx dt

−→
∫
{k<|u|�h+1}

ξi |DiTk(u)|dx dt = 0. (4.48)

By combining (4.46)–(4.48), we deduce that

J 2
n,h �

N

∑
i=1

∫
QT

(
ai(x,t,Tk(un),∇Tk(un))−ai(x, t,Tk(un),∇Tk(u))

)
×(DiTk(un)−DiTk(u))dxdt + ε2(n). (4.49)

The third term. We have supp(S′′h) ⊂ [−h−1,−h]∪ [h,h+1]. Moreover, in view
of Young’s inequality, we get

J 3
n,h � ‖S′′h(·)‖L∞(R)

N

∑
i=1

∫ T

0

∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |DiTh+1(un)|
×|ai(x, t,Th+1(un),∇Th+1(un))|dx dt

� β‖S′′h(·)‖L∞(R)

N

∑
i=1

∫ T

0

∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |DiTh+1(un)|
×(Ki(x, t)+ |Th+1(un)|pi−1 + |DiTh+1(un)|pi−1)dx dt

� β‖S′′h(·)‖L∞(R)

N

∑
i=1

∫ T

0

∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |Ki(x,t)|p′i
p′i

dx dt

+β‖S′′h(·)‖L∞(R)

N

∑
i=1

∫ T

0

∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |Th+1(un)|pi

p′i
dx dt

+2kβ‖S′′h(·)‖L∞(R)(
2
pi

+1)
N

∑
i=1

∫ T

0

∫
{h<|un|�h+1}

|DiTh+1(un)|pi dx dt.
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Since Tk(un)−Tk(u) ⇀ 0 weak-� in L∞(QT ), then

∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |Ki(x,t)|p′i
p′i

dx dt −→ 0 as n → ∞,

and
∫
{h<|un|�h+1}

|Tk(un)−Tk(u)| |Th+1(un)|pi

p′i
dx dt −→ 0 as n → ∞.

Thanks to (4.27), we have

∫
{h<|un|�h+1}

|DiTh+1(un)|pi dx dt −→ 0 as h → ∞.

Hence, it follows that

J 3
n,h −→ 0 as n and h → ∞. (4.50)

The fourth and last terms. We have Tk(un)−Tk(u) ⇀ 0 weak-� in L∞(QT ), and
thanks to (4.34), we obtain

|J 4
n,h| � ‖S′h(·)‖L∞(R)

∫
QT

|gn(x,t,un)| |Tk(un)−Tk(u)|dx dt

+
‖S′h(·)‖L∞(R)

n

∫
QT

|Tk(un)|p0−1|Tk(un)−Tk(u)|dx dt −→ 0 as n → ∞.

(4.51)
Also, we have fn → f in L1(QT ), then

J 5
n,h � ‖S′h(·)‖L∞(R)

∫
QT

| fn| |Tk(un)−Tk(u)|dx dt −→ 0 as n → 0. (4.52)

Combining (4.40), (4.44) and (4.49)–(4.52), we deduce that

N

∑
i=1

∫
QT

(
ai(x,t,Tk(un),∇Tk(un))−ai(x, t,Tk(un),∇Tk(u))

)
×(DiTk(un)−DiTk(u))dx dt � ε5(n,h).

By letting n and h tend to infinity, we conclude that

lim
n→∞

( N

∑
i=1

∫
QT

(
ai(x,t,Tk(un),∇Tk(un))−ai(x,t,Tk(un),∇Tk(u))

)

×(DiTk(un)−DiTk(u))dx dt

+
∫

QT

(|Tk(un)|p0−2Tk(un)−|Tk(u)|p0−2Tk(u))(Tk(un)−Tk(u))dx dt
)

= 0.

(4.53)
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Now, in view of Lemma 3.2, then

Tk(un) −→ Tk(u) in L�p(0,T ;W 1,�p
0 (Ω)) ∀k > 0. (4.54)

Therefore ∇un −→ ∇u a.e in QT .

Step 6: The convergence of un in C([0,T ];L1(Ω)). Let un (resp. um ) be the
weak solution of the approximate problem (4.2) for the integer n (resp. m). For
0 < s � T, taking T1(un−um) · χ[0,s] as a test function allows us to obtain

∫
Ω

∫ s

0

∂ϕ1(un−um)
∂ t

dt dx

+
N

∑
i=1

∫ s

0

∫
Ω

(
ai(x,t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)

)
DiT1(un−um)dx dt

+
∫ s

0

∫
Ω

(
gn(x,t,un)−gm(x,t,um)

)
T1(un−um)dx dt

+
∫ s

0

∫
Ω

(1
n
|un|p0−2un− 1

m
|um|p0−2um

)
T1(un−um)dx dt

=
∫ s

0

∫
Ω
( fn − fm) ·T1(un−um)dx dt.

(4.55)
On one hand, we have∫

Ω

∫ s

0

∂ϕ1(un−um)
∂ t

dt dx =
∫

Ω
ϕ1(un(s)−um(s))−ϕ1(un(0)−um(0))dx

=
∫

Ω
ϕ1(un(s)−um(s))dx−

∫
Ω

ϕ1(u0,n−u0,m)dx.

In what concern the second term on the left-hand side of (4.55), since ∇T1(un−um) =
(∇un−∇um) · χ{|un−um|�1} , we deduce that (see Appendix)∫ s

0

∫
Ω

(
ai(x, t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)

)
DiT1(un−um)dxdt → 0 as n,m→∞,

(4.56)
and thanks to (4.34), we have∣∣∣∫ s

0

∫
Ω

(
gn(x,t,un)−gm(x,t,um)

)
T1(un−um)dx dt

∣∣∣
�

∫
QT

∣∣gn(x,t,un)−gm(x,t,um)
∣∣dx dt −→ 0 as n,m → ∞,∣∣∣∫ s

0

∫
Ω

(1
n
|un|p0−2un− 1

m
|um|p0−2um

)
T1(un−um)dx dt

∣∣∣
�

∫
QT

∣∣1
n
|un|p0−2un− 1

m
|um|p0−2um

∣∣dx dt −→ 0 as n,m → ∞,

and∣∣∣∫ s

0

∫
Ω
( fn − fm) ·T1(un−um)dx dt

∣∣∣ �
∫

QT

∣∣ fn − fm
∣∣dx dt −→ 0 as n,m → ∞.
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Since ϕ1(u0,n−u0,m) → 0 in L1(Ω), then we conclude that∫
Ω

ϕ1(un(s)−um(s))dx −→ 0 as n,m → ∞. (4.57)

On the other hand, we have∫
{|un−um|�1}

|un(s)−um(s)|2 dx+
∫
{|un−um|>1}

|un(s)−um(s)|dx

� 2
∫

Ω
ϕ1(un(s)−um(s))dx, (4.58)

and∫
Ω
|un(s)−um(s)|dx =

∫
{|un−um|�1}

|un(s)−um(s)|dx+
∫
{|un−um|>1}

|un(s)−um(s)|dx

�
(∫

{|un−um|�1}
|un(s)−um(s)|2 dx

) 1
2 · (meas(Ω))

1
2

+
∫
{|un−um|>1}

|un(s)−um(s)|dx.

(4.59)
In view of (4.57)–(4.59), we deduce that∫

Ω
|un(s)−um(s)|dx −→ 0 as m,n → ∞. (4.60)

Hence, un is a Cauchy sequence in C([0,T ];L1(Ω)), thus u ∈ C([0,T ];L1(Ω)) and
for any 0 � s � T we have un(s) → u(s) in L1(Ω).

Step 7: Passage to the limit. Let ψ ∈ L�p(0,T ;W 1,�p
0 (Ω))∩ L∞(QT ), By taking

Tk(un−ψ) ∈ L�p(0,T ;W 1,�p
0 (Ω)) as a test function in (4.2), we obtain

∫ T

0

〈∂un

∂ t
,Tk(un−ψ)

〉
dt +

N

∑
i=1

∫
QT

ai(x,t,Tn(un),∇un)DiTk(un−ψ)dx dt

+
∫

QT

gn(x, t,un)Tk(un−ψ)dx dt +
1
n

∫
QT

|un|p0−2unTk(un−ψ)dx dt

=
∫

QT

fnTk(un−ψ)dx dt.

(4.61)

For the first term on the left-hand side of (4.61), we have
∂un

∂ t
=

∂ (un −ψ)
∂ t

+
∂ψ
∂ t

,

then ∫ T

0

〈∂un

∂ t
,Tk(un −ψ)

〉
dt =

∫ T

0

〈∂ (un−ψ)
∂ t

,Tk(un−ψ)
〉

dt

+
∫ T

0

〈∂ψ
∂ t

,Tk(un−ψ)
〉

dt

=
∫

Ω
ϕk(un−ψ)(T )dx−

∫
Ω

ϕk(un−ψ)(0)dx

+
∫

QT

∂ψ
∂ t

Tk(un−ψ)dx dt.
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Since un → u in C([0,T ];L1(Ω)), then un(T ) → u(T ) in L1(Ω). It follows that∫
Ω

ϕk(un−ψ)(0)dx−→
∫

Ω
ϕk(u0−ψ(0))dx and∫

Ω
ϕk(un−ψ)(T )dx −→

∫
Ω

ϕk(u−ψ)(T)dx. (4.62)

Now, we have ∂ψ
∂ t ∈ L

�p′(0,T ;W 1,�p′(Ω))+L1(QT ), and since Tk(un−ψ) ⇀ Tk(u−ψ)
in L�p(0,T ;W 1,�p

0 (Ω)) and weak−� in L∞(QT ), then∫
QT

∂ψ
∂ t

Tk(un −ψ)dx dt −→
∫

QT

∂ψ
∂ t

Tk(u−ψ)dx dt. (4.63)

Concerning the second term on the left-hand side of (4.61), it’s clear that {|un−ψ |�
k} ⊆ {|un| � M = k+‖ψ‖L∞} , and since DiTM(un) → DiTM(u) strongly in Lpi(QT ),
then in view of Fatou’s Lemma, we obtain

liminf
n→+∞

∫
QT

ai(x, t,Tn(un),∇un)DiTk(un−ψ)dx dt

= liminf
n→+∞

∫ T

0

∫
{|un−ψ|�k}

ai(x,t,TM(un),∇TM(un))(DiTM(un)−Diψ)dx dt

�
∫ T

0

∫
{|u−ψ|�k}

(ai(x,t,TM(u),∇TM(u))−ai(x,t,TM(u),∇ψ))(DiTM(u)−Diψ)dx dt

+
∫ T

0

∫
{|u−ψ|�k}

ai(x,t,TM(u),∇ψ)(DiTM(u)−Diψ)dx dt

=
∫

QT

ai(x, t,u,∇u)DiTk(u−ψ)dx dt.

(4.64)
Also, since Tk(un−ψ) ⇀ Tk(u−ψ) weak−� in L∞(QT ), and thanks to (4.34), we
have ∫

QT

gn(x, t,un)Tk(un−ψ)dx dt +
1
n

∫
QT

|un|p0−2unTk(un−ψ)dx dt

→
∫

QT

g(x,t,u)Tk(u−ψ)dx dt, (4.65)

and ∫
QT

fnTk(un−ψ)dx dt −→
∫

QT

f Tk(u−ψ)dx dt. (4.66)

By combining (4.61)–(4.66), we deduce that∫
Ω

ϕk(u−ψ)(T)dx−
∫

Ω
ϕk(u−ψ)(0)dx+

∫
QT

∂ψ
∂ t

Tk(u−ψ)dx dt

+
N

∑
i=1

∫
QT

ai(x,t,u,∇u)DiTk(u−ψ)dx dt +
∫

QT

g(x, t,u)Tk(u−ψ)dx dt

�
∫

QT

f Tk(u−ψ)dx dt,

which concludes our proof. �
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5. Renormalized solutions

DEFINITION 5.1. Let f ∈ L1(QT ) and u0 ∈ L1(Ω). A measurable function u is
a renormalized solution of the anisotropic parabolic problem (3.7) if Tk(u) ∈ L�p(0,T ;
W 1,�p

0 (Ω)) for all k > 0,

u ∈C([0,T ];L1(Ω)), lim
h→∞

N

∑
i=1

∫
{h�|u|�h+1}

ai(x,t,u,∇u)Diu dx dt = 0,

and⎧⎪⎪⎨
⎪⎪⎩

∫
QT

dS(u)
dt

ϕ dx dt +
N

∑
i=1

∫
QT

ai(x,t,u,∇u) · (S′′(u)ϕDiu+S′(u)Diϕ)dx dt

+
∫

QT

g(x, t,u) S′(u)ϕ dx dt =
∫

QT

f S′(u)ϕ dx dt,
(5.1)

for every function ϕ ∈ L�p(0,T ;W 1,�p
0 (Ω))∩ L∞(QT ) and any renormalization S(·) ∈

C∞(R) such that supp S′(·) ⊆ [−M,M] for some constant M > 0.

THEOREM 5.1. Let f ∈ L1(QT ) and u0 ∈ L1(Ω). Under the assumptions (3.1)–
(3.6), the entropy solution of the quasilinear anisotropic parabolic problem (3.7) is
also a renormalized solution.

Proof. We shall prove that every entropy solution u satisfies all the properties of
renormalized solutions.

Indeed, in view of Theorem 4.1, there exists a subsequence (un)n of solutions
for the approximate problems (4.2) such that Tk(un) strongly converges to Tk(u) in
L�p(0,T ;W 1,�p

0 (Ω)) for any k > 0, and satisfies

gn(x, t,un) −→ g(x,t,u) and
1
n
|un|p0−1 −→ 0 in L1(QT ).

Also, in view of Fatou’s Lemma, we deduce that
N

∑
i=1

∫
{h�|u|<h+1}

ai(x,t,u,∇u)Diu dx dt

� liminf
n→∞

N

∑
i=1

∫
{h�|un|<h+1}

ai(x,t,un,∇un)Diun dx dt → 0 as h → ∞.

Now, we will show the equality (5.1).
Let ϕ ∈L�p(0,T ;W 1,�p

0 (Ω))∩L∞(QT ) and S(·)∈C∞(R), with supp S′(·)⊂ [−M,M]
for some M > 0. By taking S′(un)ϕ a test function in (4.2), we obtain∫ T

0

〈∂un

∂ t
,S′(un)ϕ

〉
dt +

N

∑
i=1

∫
QT

ai(x,t,Tn(un),∇un)Di(S′(un)ϕ)dx dt

+
∫

QT

gn(x, t,un)S′(un)ϕ dx dt +
1
n

∫
QT

|un|p0−2unS
′(un)ϕ dx dt

=
∫

QT

fnS
′(un)ϕ dx dt.

(5.2)
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First, in view of (4.39), we have
∂S(un)

∂ t
⇀

∂S(u)
∂ t

weakly in L
�p′(0,T ;W−1,�p′(Ω))+

L1(QT ), and then

lim
n→∞

∫ T

0

〈∂un

∂ t
,S′(un)ϕ

〉
dt = lim

n→∞

∫
QT

∂S(un)
∂ t

ϕ dx dt =
∫

QT

∂S(u)
∂ t

ϕ dx dt. (5.3)

Concerning the second term on the left-hand side of (5.2), we have∫
QT

ai(x, t,Tn(un),∇un) ·Di(S′(un)ϕ)dx dt

=
∫

QT

ai(x, t,TM(un),∇TM(un)) · (S′′(un)ϕDiTM(un)+S′(un)Diϕ)dx dt.

By (3.2) we have ai(x,t,TM(un),∇TM(un)) is bounded in (Lp′i(QT ))N , and ai(x, t,TM(un),
∇TM(un)) → ai(x, t,TM(u),∇TM(u)) a.e. in QT , it follows that

ai(x, t,TM(un),∇TM(un)) ⇀ ai(x,t,TM(u),∇TM(u)) in Lp′i(QT ),

and since

S′′(un)ϕDiTM(un)+S′(un)Diϕ −→ S′′(u)ϕDiTM(u)+S′(u)Diϕ in Lpi(QT ),

we conclude that

lim
n→∞

∫
QT

ai(x, t,TM(un),∇TM(un))(S′′(un)ϕDiTM(un)+S′(un)Diϕ)dx dt

=
∫

QT

ai(x, t,TM(u),∇TM(u))(S′′(u)ϕDiTM(u)+S′(u)Diϕ)dx dt

=
∫

QT

ai(x, t,u,∇u)(S′′(u)ϕDiu+S′(u)Diϕ)dx dt.

(5.4)

Moreover, since S(un) ϕ ⇀ S(u) ϕ weak−� in L∞(Ω) , then

∫
QT

gn(x, t,un)S′(un) ϕ dx+
1
n

∫
QT

|un|p0−2unS
′(un) ϕ dx −→

∫
QT

g(x,t,u)S′(u)ϕ dx,

(5.5)
and ∫

Ω
fnS

′(un) ϕ dx −→
∫

Ω
f S′(u) ϕ dx. (5.6)

By combining (5.2)–(5.6), we deduce that

∫ T

0

〈∂S(u)
∂ t

,ϕ
〉

dt +
N

∑
i=1

∫
QT

ai(x,t,u,∇u) · (S′′(u)ϕDiu+S′(u)Diϕ)dx dt

+
∫

QT

g(x, t,u)S′(u)ϕ dx dt =
∫

QT

f S′(u)ϕ dx dt.
(5.7)

Therefore, u is a renormalized solution to problem (3.7). �
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EXEMPLE 5.1. Let us consider the following nonlinear parabolic problem⎧⎪⎪⎨
⎪⎪⎩

ut +
N

∑
i=1

∂
∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣
pi−2 ∂u

∂xi

)
+ γ|u|p0−2u = f in QT = Ω× (0,T),

u(x, t) = 0 on ΣT = ∂Ω× (0,T),
u(x,0) = u0(x) in Ω,

(5.8)

where u0 ∈ L1(Ω) , γ > 0 and f ∈ L1(QT ). Note that the assumptions (3.1)–(3.6)
hold true, then there exists at least one entropy solution. Moreover, this entropy solution
is a renormalized solution with |u|p0−1 ∈ L1(Ω).

6. Appendix

Let h > 0, we set

En,m = {|un−um| � 1}, H−
m,n = {|un| � h}∩{|um| � h}

and
H+

m,n = {|un| > h}∩{|um| > h}.
In view of Young’s inequality, we have∣∣∣∫ s

0

∫
Ω

(
ai(x, t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)

)
DiT1(un−um)dx dt

∣∣∣
=

∣∣∣∫ s

0

∫
Ω

(
ai(x, t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)

)
(Diun−Dium) · χEn,m dx dt

∣∣∣
�

∫
H−

m,n

∣∣ai(x, t,Th(un),∇Th(un))−ai(x,t,Th(um),∇Th(um))
∣∣

×|DiTh(un)−DiTh(um)| · χEn,m dx dt

+
∫

H+
m,n

∣∣ai(x, t,Tn(un),∇un)−ai(x,t,Th(um),∇um)
∣∣p′i · χEn,m dx dt

+
∫

H+
m,n

|Diun−Dium|pi · χEn,m dx dt.

(6.1)
For the first term on the right-hand side of (6.1), since DiTh(un) and DiTh(um)
converge strongly to DiTh(u) in Lpi(QT ), and∣∣ai(x, t,Th(un),∇Th(un))−ai(x,t,Th(um),∇Th(um))

∣∣ is bounded in Lp′i(QT ),

then ∫
H+

m,n

∣∣ai(x,t,Th(un),∇Th(un))−ai(x,t,Th(um),∇Th(um))
∣∣

×|DiTh(un)−DiTh(um)| · χEn,m dx dt −→ 0, (6.2)

as m and n tend to infinity.
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Concerning the two last terms on the right-hand side of (6.1), we have

H+
m,n ∩En,m ⊆ {|un| > h}∩{|un|−1 � |um| � |un|+1},

and
H+

m,n∩En,m ⊆ {|um| > h}∩{|um|−1 � |un| � |um|+1}.
Thanks to (3.2) and (4.27), we obtain

∫
H+

m,n

∣∣ai(x, t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)
∣∣p′i · χEn,m dx dt

� c1

∫
H+

m,n

(2|K(x, t)|p′i + |Tn(un)|pi + |Tm(um)|pi + |Diun|pi + |Dium|pi) · χEn,m dx dt

� c1

∫
H+

m,n

(2|K(x, t)|p′i + |Tn(un)|pi + |Tm(um)|pi) · χEn,m dx dt

+c1

∫
{|um|>h}∩{|um|−1�|un|�|um|+1}

|Diun|pi dx dt

+c1

∫
{|un|>h}∩{|un|−1�|um|�|un|+1}

|Dium|pi dx dt −→ 0 as h → ∞.

(6.3)
Similarly, we prove that∫

H+
m,n

|Diun−Dium|pi · χ{|un−um|�1} dx dt −→ 0 as h → ∞. (6.4)

By combining (6.2)–(6.4), we deduce that

∫ s

0

∫
Ω

(
ai(x, t,Tn(un),∇un)−ai(x,t,Tm(um),∇um)

)
DiT1(un −um)dx dt −→ 0 (6.5)

as n, m → ∞ , then the convergence (4.56) is proved.
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L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. 4, (1995), 241–273.

[6] D. BLANCHARD AND F. MURAT, Renormalized solutions of nonlinear parabolic problems with L1

data, Existence and uniqueness, Proc. Roy.Soc. Edinburgh Sect. A 127, (1997), 1137–1152.
[7] D. BLANCHARD, F. MURAT AND H. REDWANE, Existence and Uniqueness of a Renormalized Solu-

tion for a Fairly General Class of Nonlinear Parabolic Problems, J. Differential Equations. Vol 177,
(2001), 331–374.



Differ. Equ. Appl. 12, No. 4 (2020), 411–442. 441

[8] M. BENDAHMANE, M. CHRIF AND S. EL MANOUNI, An approximation result in generalized
anisotropic Sobolev spaces and applications, Z. Anal. Anwend. 30 (2011), no. 3, 341–353.

[9] M. BENDAHMANE, P. WITTBOLD AND A. ZIMMERMANN, Renormalized solutions for a nonlinear
parabolic equation with variable exponents and L1 -data, J. Differential Equations 249 (2010), no. 6,
1483–1515.

[10] M. BENDAHMANE AND K. H. KARLSEN, Renormalized solutions of an anisotropic reaction-
diffusion, Comm. Pure Appl. Anal. 5 (4) (2006), 733–762.

[11] M. BENDAHMANE AND K. H. KARLSEN, Nonlinear anisotropic elliptic and parabolic equations in
R

N with advection and lower order terms and locally integrable data, Potential Analysis, (2005), vol.
22, 207–227.

[12] M. BENDAHMANE AND S. MAZEN, Entropy Solution for Anisotropic Reaction-Diffusion-Advection
Systems with L1 Data, Rev. Mat. Complut. (2005), 18, No. 1, 49–67.

[13] L. BOCCARDO, J. I. DIAZ, D. GIACHETTI, AND F. MURAT, Existence of a solution for a weaker
form of a nonlinear elliptic equation. In Recent advances in nonlinear elliptic and parabolic problems,
(Nancy, 1988), volume 208 of Pitman Res. Notes Math. Ser., pages 229–246. Longman Sci. Tech.,
Harlow, 1989.
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[16] L. BOCCARDO, T. GALLOUËT AND J. L. VÁZQUEZ, Some regularity results for some nonlinear
parabolic equations in L1 , Rend. Sem. Mat. Univ. Special Issue (1991), 69–74.

[17] M. CHRIF AND S. EL MANOUNI, On a strongly anisotropic equation with L1 data, Appl. Anal. 87
(7) (2008), 865–871.

[18] M. CHRIF, S. EL MANOUNI AND F. MOKHTARI, Strongly anisotropic elliptic problems with regular
and L1 data, Portugal. Math. 72 (4) (2015), 357–391.

[19] A. DI CASTRO, Anisotropic elliptic problems with natural growth terms, Manuscripta Math. 135 (3–4)
(2011), 521–543.

[20] R. J. DIPERNA AND P.-L. LIONS,On the Cauchy problem for Boltzmann equations: global existence
and weak stability, Ann. of Math. (2), (1989) vol. 130 (2):321–366.

[21] T. DONALDSON, Inhomogeneous Orlicz–Sobolev spaces and nonlinear parabolic initial boundary
value problems, J. Differential Equations 16 (1974), 201–256.

[22] A. ELMAHI AND D. MESKINE, Parabolic equations in Orlicz spaces, J. London Math. Soc. (2) 72
(2005), 410–428.
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