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A REMARK ON THE LOCAL WELL–POSEDNESS FOR A

COUPLED SYSTEM OF MKDV TYPE EQUATIONS IN Hs ×Hk

XAVIER CARVAJAL

Abstract. We consider the initial value problem associated to a system consisting modified
Korteweg-de Vries type equations{

∂tv+∂ 3
x v+∂x(vw2) = 0, v(x,0) = φ(x),

∂tw+α∂ 3
x w+∂x(v2w) = 0, w(x,0) = ψ(x),

and using only bilinear estimates of the type ‖JγF1
b1
·Jβ F2

b2
‖L2

xL2
t
, where J is the Bessel potential

and F j
b j

, j = 1,2 are multiplication operators, we prove the local well-posedness results for

given data in low regularity Sobolev spaces Hs(R)×Hk(R) for α �= 0,1 . In this work we
improve the previous result in [6], extending the LWP region from |s− k| < 1/2 to |s− k| < 1 .
This result is sharp in the region of the LWP with s � 0 and k � 0 , in the sense of the trilinear
estimates fails to hold.
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