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Abstract. We consider the initial value problem associated to a system consisting modified
Korteweg-de Vries type equations{

∂tv+∂ 3
x v+∂x(vw2) = 0, v(x,0) = φ(x),

∂tw+α∂ 3
x w+∂x(v2w) = 0, w(x,0) = ψ(x),

and using only bilinear estimates of the type ‖JγF1
b1
·Jβ F2

b2
‖L2

xL2
t
, where J is the Bessel potential

and F j
b j

, j = 1,2 are multiplication operators, we prove the local well-posedness results for

given data in low regularity Sobolev spaces Hs(R)×Hk(R) for α �= 0,1 . In this work we
improve the previous result in [6], extending the LWP region from |s− k| < 1/2 to |s− k| < 1 .
This result is sharp in the region of the LWP with s � 0 and k � 0 , in the sense of the trilinear
estimates fails to hold.

1. Introduction

In this work we consider the initial value problem (IVP) associated to the following
system of the modified Korteweg-de Vries (mKdV) type equations{

∂t v+ ∂ 3
x v+ ∂x(vw2) = 0, v(x,0) = φ(x),

∂tw+ α∂ 3
x w+ ∂x(v2w) = 0, w(x,0) = ψ(x),

(1.1)

where (x, t) ∈ R×R ; v = v(x,t) and w = w(x,t) are real-valued functions, and α ∈ R

is a constant.
We mean by local well-posedness (LWP) in Hs that for any initial data u0 ∈ Hs ,

there exist R > 0, a time T = T (R) > 0 and a unique solution u , belonging to some
space-time function space continuously embedded in C([0,T ];Hs) , such that for any
t ∈ [0,T ] the map u0 → u(t) is continuous from the ball BR(u0) ⊆ Hs into Hs . If the
above T can be any large number we obtain the global well-posedness.

For α = 1, the system (1.1) reduces to a special case of a broad class of nonlinear
evolution equations considered by Ablowiz, Kaup, Newell and Segur [1] in the inverse
scattering context. In this case, the well-posedness issues along with existence and

Mathematics subject classification (2010): 35Q35, 35Q53.
Keywords and phrases: Korteweg-de Vries equation, Cauchy problem, local well-posedness.

c© � � , Zagreb
Paper DEA-12-27

443

http://dx.doi.org/10.7153/dea-2020-12-27


444 X. CARVAJAL

stability of solitary waves for this system is widely studied in the literature. Using the
technique developed by Kenig, Ponce and Vega [17], Montenegro [22] proved that the
IVP (1.1) with α = 1 is locally well-posed for given data (φ ,ψ) in Hs(R)×Hs(R) ,
s � 1

4 . In this approach one uses the smoothing property of the linear group combined
with the Lp

xLq
t Strichartz estimates and maximal function estimates. Tao [21] showed

that this local result can also be proved by using the Fourier transform restriction norm
space Xs,b (see definition (1.6) below) introduced by Bourgain [5]. In this method the
trilinear estimate

‖∂x(uvw)‖Xs,b′ � ‖u‖Xs,b‖v‖Xs,b‖w‖Xs,b (1.2)

that is valid for s � 1
4 plays a central role to apply contraction mapping principle.

Author in [22] also proved global well-posedness for given data in Hs(R)×Hs(R) ,
s � 1, using the conservation laws

I1(v,w) :=
∫

R
(v2 +w2)dx

and
I2(v,w) :=

∫
R
(v2

x +w2
x − v2w2)dx,

satisfied by the flow of (1.1). This global result is further improved in [12] by proving
for data with regularity s > 1

4 (see also [8]). For existence and estability of solitary
waves to the system (1.1) we refer to works in [2] and [22]. It is worth noting that the
local well-posedness result for the system (1.1) with α = 1 is sharp as it can be justified
in two different way. First, the key trilinear estimate (1.2) fails whenever s < 1

4 , see
[16].

Other works that studied LWP in systems with two different KdV groups were the
work of Alvarez et al. [3] in Gear-Grimshaw systems and, later, the work of Oh [15] in
Majda-Vielo system.

For 0 < α < 1, very less is known regarding well-posedness issues for the IVP
(1.1). We note that, the approach of Kenig, Ponce, Vega [17] yields local well-posedness
for s � 1

4 for α �= 1 too. However, if one uses the Fourier transform restriction norm
space the situation is quite different. In fact the case α ∈ (0,1) and k = s , with
s > −1/2 in order to obtain LWP was proved in [7], later it was extended to the case
α ∈ R \ {0,1} , k > −1/2, s > −1/2 and |k− s| � 1/2 in [6]. In both works the
main idea was to use bilinear estimates in Bourgain spaces to obtain the results. In
this work we use a approach different with the use of bilinear estimates of the type
‖JγF1

b1
· Jβ F2

b2
‖L2

xL
2
t
, see Lemma 5.

Remember that the KdV equation and the mKdV equation are particular cases of
the generalized KdV equation:

∂t v+ ∂ 3
x v+ c∂x(vk+1) = 0, v(x,0) = φ(x). (1.3)

The case k = 1 is the Korteweg-de Vries (KdV) equation. The case k = 2 is the
modified KdV (mKdV) equation. The case k = 4 is the critical KdV equation. The
mKdV equation is linked with the KdV equation through the Miura transform

v �→ u := c1∂xv+ c2v
2.
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The Miura transform behaves roughly like a derivative, so the result for mKdV at a
certain regularity is similar to that for KdV at one lower regularity.

Observe that if v is a solution of generalized KdV equation then

u(x,t) = λ 2/kv(λx,λ 3t)

is also is a solution of generalized KdV equation, and holds

‖u(t)‖Ḣs = λ s+2/k−1/2‖v(λ 3t)‖Ḣs , λ > 0,

where both norms are the same if and only if

s = sk =
1
2
− 2

k
. (1.4)

This argument scaling suggests that the best LWP to the KdV equation (k = 1) is
s1 = −3/2 and to the mKdV equation is s2 = −1/2. Also if v1(x,t) and w1(x, t) are
solutions of the IVP (1.1), then v2(x,t) = λv1(λx,λ 3t) and w2(x,t) = λw1(λx,λ 3t)
also are solutions of the IVP (1.1) and therefore the above scaling argument suggests
that the space H−1/2×H−1/2 is the sharp space in order to obtain local well-posedness
to the IVP (1.1). Therefore the model provided by the IVP (1.1) is very interesting in
the sense that the end point in the LWP found in [7], attains its scaling index (see Table
1 below).

Table 1: Summary of Results (LWP in Hs ×Hs spaces)

Equation/System LpLq-Estimates Xs,b-Spaces

KdV equation Hs, s > 3
4 Hs, s > − 3

4
mKdV equation Hs, s � 1

4 Hs, s � 1
4

KdV-KdV system Hs×Hs, s > 3
4 Hs×Hs, s > − 3

4
(same groups)

KdV-KdV system Hs×Hs, s > 3
4 Hs ×Hs, s � 0

(different groups) (T. Oh [15])
mKdV-mKdV system Hs×Hs, s � 1

4 Hs×Hs, s � 1
4

(same groups)
mKdV-mKdV system Hs×Hs, s � 1

4 Hs×Hs, s > − 1
2

(different groups) (Carvajal, Panthee [7])

Remember some local well-posedness results for the KdV equation:

• LWP in Hs(R) , s > 3/4 by Kenig, Ponce, and Vega, 1993 [17].

• LWP in Hs(R) , s � 0 by Bourgain, 1993 [5].

• LWP in Hs(R) , s > −5/8 and s > −3/4, by Kenig, Ponce, and Vega, 1993 and
1996 respectively [18] and [16].

• LWP in H−3/4(R) , by Kishimoto and Guo, 2009, [20] and [14] respectively.
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• LWP in H−1(R) , by Killip and Visan, 2019 [19].

Regarding some local well-posedness results for the mKdV equation we have:

• LWP in Hs(R) , s � 1/4 by Kenig, Ponce, and Vega, 1993 [17].

• Weak LWP in Hs(R) , −1/8 < s < 1/4 by Christ, Holmer and Tataru, 2012 [11].

• LWP in modulation spaces M1/4
2,q (R) , which contains a class of functions in

H−1/4 by Chen and Guo, 2018 [10].

We use f̂ (ξ ) to denote the Fourier transform of f (x) defined by

f̂ (ξ ) = c
∫

R
e−ixξ f (x)dx

and f̃ (ξ ,τ) or f̂ (ξ ,τ) to denote the Fourier transform of f (x,t) defined by

f̃ (ξ ,τ) = c
∫

R2
e−i(xξ+tτ) f (x, t)dxdt.

We also use f̂ (ξ , t) to denote the spatial Fourier transform of f (x,t) and f̂ (x,τ) to
denote the time Fourier transform of f (x,t) .

We use Hs to denote the L2 -based Sobolev space of order s ∈ R with norm

‖ f‖Hs(R) = ‖〈ξ 〉s f̂ (ξ )‖L2
ξ
,

where 〈ξ 〉 = 1+ |ξ | . The Bessel potential is defined by Ĵs f (ξ ,t) = 〈ξ 〉s f̂ (ξ , t) .
The Bourgain space Xα

s,b , for s,b ∈ R , to be the completion of the Schwartz class

S (R2) under the norm

‖ f‖Xα
s,b

:= ‖Uα(t) f‖Hb
t (R;Hs

x ) = ‖〈ξ 〉s〈τ −αξ 3〉b f̃ (τ,ξ )‖L2
τ,ξ

. (1.5)

If b > 1/2, we have that Xα
s,b ↪→ C(R : Hs

x(R)) and thus for an interval I = [−δ , δ ] ,

we can define the restricted bourgain spaces Xα ,δ
s,b endowed with the norm

‖ f‖
Xα,δ

s,b
= inf{‖g‖Xα

s,b
; g|[−δ ,δ ] = f}. (1.6)

We write Xδ
s,b instead of X1,δ

s,b . We use c or C to denote various constants whose exact
values are immaterial and may vary from one line to the next. We use A � B to denote
an estimate of the form A � cB and A ∼ B if A � cB and B � cA .

On the ill-posedness of the trilinear estimates, in [6] they proved the following
results:

PROPOSITION 1. Let α �= 0,1 .
(a) The trilinear estimate (2.3) fail to hold for any b ∈ R whenever s−2k > 1 or

k < −1/2 .
(b) The trilinear estimate (2.4) fail to hold for any b ∈ R whenever k−2s > 1 or

s < −1/2 .
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and

PROPOSITION 2. Let α �= 0,1 .
(a) The trilinear estimate (2.3) fails to hold whenever s− k > 2 , for any ε such

that 0 < ε < 2
3(s− k−2) .

(b) The trilinear estimate (2.4) fails to hold whenever k− s > 2 , for any ε such
that 0 < ε < 2

3(s− k−2) .

In this work we improve the previous result in [6], extending the LWP region from
|s−k|< 1/2 to |s−k|< 1. Indeed we obtain the following local well-posedness result
for the IVP (1.1).

THEOREM 1. Let α ∈ R , α �= 0,1 , s,k > −1/2 and |s− k| < 1 , s−2k < 1 and
k− 2s < 1 , then for any (φ ,ψ) ∈ Hs(R)×Hk(R) , there exist δ = δ (‖(φ ,ψ)‖Hs×Hk )
(with δ (ρ)→ ∞ as ρ → 0 ) and a unique solution (v,w) ∈ X1,δ

s,b ×Xα ,δ
k,b to the IVP (1.1)

in the time interval [0,δ ] . Moreover, the solution satisfies the estimate

‖(v,w)‖
X1,δ

s,b ×Xα,δ
k,b

� ‖(φ ,ψ)‖Hs×Hk ,

where the norm ‖ · ‖
X1,δ

s,b
and ‖ · ‖

Xα,δ
s,b

are as defined in (1.6).

REMARK 1. We observe that the LWP given by Theorem 1 is sharp in the case
k,s � 0, see the Proposition 1 and the Figure 1.

Figure 1: In blue is the region of the LWP of Theorem 1. In red the region where the trilinear
estimates fail to hold
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Figure 2: In green is the region of the LWP of [6]

The LWP in the case 0 < α < 1 is equivalent to the LWP in the case α > 1 by
using the transformation v(x,t) := ṽ(α−1/3x,t) and u(x,t) := ũ(α−1/3x, t) where{

∂t ṽ+ 1
α ∂ 3

x ṽ+ ∂x(ṽw̃2) = 0,

∂t w̃+ ∂ 3
x w̃+ ∂x(ṽ2w̃) = 0.

So we restrict ourselves to prove Theorem 1 in the case α ∈ (−∞, 0)∪ (1, +∞) .

2. Preliminar estimates

The following lemma will be useful in the proof of the trilinear estimates

LEMMA 1. (i) If a,b > 0 and a+b > 1 , we have∫
R

dx
〈x−α〉a〈x−β 〉b � 1

〈α −β 〉c , c = min{a,b,a+b−1}. (2.1)

(ii) For l > 1/3 , ∫
R

dx
〈x3 +a2x2 +a1x+a0〉l � 1. (2.2)

Proof. Proof of (2.1) can be found in [23] and proof of (2.2) in [4].
The main ingredients in the proof of Theorem 1 are the new trilinear estimates

PROPOSITION 3. Let α ∈ R , α �= 0,1 , −1/2 < s,k .
If s− k < 1 and s−2k < 1 , then the following trilinear estimate

‖(vw1w2)x‖X1
s,b′

� ‖v‖X1
s,b
‖w1‖Xα

k,b
‖w2‖Xα

k,b
(2.3)
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hold for b = 1
2 + ε , b′ = −1/2+2ε and 0 < ε 
 1 .

And if k− s < 1 and k−2s < 1 , then the following trilinear estimate

‖(v1v2w)x‖Xα
k,b′

� ‖v1‖X1
s,b
‖v2‖X1

s,b
‖w‖Xα

k,b
(2.4)

hold for b = 1
2 + ε , b′ = −1/2+2ε and 0 < ε 
 1 .

LEMMA 2. Let α < 1 or α < 0 and s > −1/2 , then

sup
ξ ,τ

∫
R

〈ξ2〉
〈ξ1〉2s〈τ − ξ 3

2 −αξ 3
1 〉1−4ε dξ1 � 1.

Proof. For the case 0 < α < 1, see the proof of Lemma 3.2 in [7] (estimate of
L1 ) and for the case α � 0 see Lemma 3.3 in [6].

COROLLARY 1. Let ι < 1 and α > 1 or α < 0 , then

sup
ξ ,τ

∫
R

〈ξ1〉ι 〈ξ2〉
〈τ −αξ 3

2 − ξ 3
1 〉1−4ε dξ1 � 1. (2.5)

Proof. This inequality follows from the previous Lemma, considering

〈τ −αξ 3
2 − ξ 3

1 〉 ∼
〈

τ
α
− 1

α
ξ 3

1 − ξ 3
2

〉
.

LEMMA 3. Let μ < 2 , α > 1 or α < 0 and b > 1/2 , then

sup
ξ ,τ

∫
R

〈ξ1〉μ

〈τ − ξ 3
1 −αξ 3

2 〉2b
dξ1 � 1. (2.6)

Proof. Using the inequality (2.2) we can suppose that |ξ1| > 1 and this implies
that |ξ1| ∼ 〈ξ1〉 , thus it is sufficient to estimate the integral∫

R

|ξ1|μ
〈τ − ξ 3

1 −αξ 3
2 〉2b

dξ1. (2.7)

Observe that in the case α < 0, if H(ξ1) = τ − ξ 3
1 −αξ 3

2 , then −H ′(ξ1) = 3ξ 2
1 −

3αξ 2
2 > 3ξ 2

1 � |ξ1|μ and in this case we obtain the estimate (2.7). So from now on we
will consider α > 1.

We will go to consider the following regions:

Case 1. If |ξ | � 1. In this case we have

〈ξ1〉 ∼ 〈ξ2〉
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and
〈ξ1〉μ = 〈ξ1〉μ−1〈ξ1〉 � 〈ξ1〉ι〈ξ2〉,

where ι = μ −1 < 1 and the estimate is consequence of the Corollary 1.

Case 2. If c1
2 < |ξ |< c1|ξ1| , where c1 =

α −1
3α

is such that

[(6αξ )ξ1− (3αξ 2)] � 6α|ξ ||ξ1|−3αξ 2

� (6α)c1ξ 2
1

= 2(α −1)ξ 2
1 ,

consequently H ′(ξ1) = 3(α−1)ξ 2
1 − [(6αξ )ξ1−(3αξ 2)] � (α −1)ξ 2

1 and we proceed
as above.

Case 3. If |ξ | � 1
c2
|ξ1| , where c2 =

3−λ
6

, λ ∈ (0,3) is such that

[(6αξ )ξ1−3(α −1)ξ 2
1 )] � (6α)c2ξ 2

= (3−λ )αξ 2,

and thus H ′(ξ1) = 3αξ 2 − [(6αξ )ξ1 − 3(α − 1)ξ 2
1 ] � 3αξ 2 − (3−λ )αξ 2 � λ αξ 2 .

And in this case we have
ξ 2

1 � ξ 2 � H ′(ξ1).

Finally we consider the region

Case 4. If c1|ξ1| < |ξ | < 1
c2
|ξ1| we get

∫
R

ξ 2
1

〈τ − ξ 3
1 −αξ 3

2 〉2b
dξ1 ∼ ξ 2

∫
R

1
〈H(ξ1)〉2b dξ1 � 1,

where R = {ξ1; c2|ξ |< |ξ1|< 1
c1
|ξ |} and in the last inequality we use the estimate of

inequality (3.7) case d) in [7] (see the estimate of X defined in (3.27), and also see
(3.33), (3,41) and (3.47)).

COROLLARY 2. Let 0 < ε 
 1 and α > 1 or α < 0 , then

sup
ξ ,τ

∫
R

〈ξ1〉2−20ε

〈τ −αξ 3
2 − ξ 3

1 〉1−4ε dξ1 � 1. (2.8)

Proof.
Case 1. 〈H〉 � 〈ξ1〉3 . In this case we have

〈ξ1〉2−20ε

〈H〉1−4ε � 〈ξ1〉2−2ε

〈H〉1+2ε ,
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and (2.8) follows using the Lemma 3.

Case 2. 〈H〉 � 〈ξ1〉3 . With this condition we obtain∫
R

〈ξ1〉2−20ε

〈H〉1−4ε dξ1 �
∫
R

〈ξ1〉2−20ε

〈ξ1〉3−12ε dξ1 =
∫
R

1
〈ξ1〉1+8ε dξ1 � 1.

LEMMA 4. Let 0 � μ < 2 and 0 � r � μ , α > 1 or α � 0 , then

Ir =:
∫
R

〈ξ1〉r〈ξ2〉μ−r

〈τ − ξ 3
1 −αξ 3

2 〉2b
dξ1 � 1.

Proof.
Case 1. |ξ | � 1. In this case is 〈ξ1〉 ∼ 〈ξ2〉 , thus using the Lemma 3 we have

Ir ∼
∫
R

〈ξ1〉μ

〈τ − ξ 3
1 −αξ 3

2 〉2b
dξ1 � 1.

Case 2. |ξ | � 1, |ξ | � |ξ1| . Here is 〈ξ2〉 � 〈ξ1〉 and we estimate Ir as above.

Case 3. |ξ | � 1, |ξ1| � c2|ξ | . Where 0 < c2 =
3−λ

6
<

1
2

as in the Case 3

in Lemma 3, in this way we have |ξ1| � c2|ξ1 + ξ2| � c2|ξ1|+ c2|ξ2| consequently
|ξ1| � c2

1−c2
|ξ2| , thus 〈ξ1〉 � 〈ξ2〉 � 〈ξ 〉 and H ′(ξ1) � ξ 2 and Ir � 1.

Now we introduce the following operators

F̃b f (ξ ,τ) =
f (ξ ,τ)
〈σ1〉b , G̃b f (ξ ,τ) =

f (ξ ,τ)
〈σ2〉b , (2.9)

where σ1 = τ − ξ 3 , σ2 = τ −αξ 3 .

LEMMA 5. Let α > 1 or α < 0 , b = 1/2 + ε , b′ = −1/2+ 2ε , 0 < ε 
 1 ,
0 � γ < 1 , 0 � r � γ and θ < 1/2 , then

‖Jr(Fb f1) · Jγ−r(Gb f2)‖L2
xL

2
t
� ‖ f1‖L2‖ f2‖L2 , (2.10)

‖Jθ (F−b′ f ) · J1/2(Gb f1)‖L2
xL

2
t
� ‖ f‖L2‖ f1‖L2 , (2.11)

and
‖J1−10ε(F−b′ f ) ·Gb f1)‖L2

xL
2
t
� ‖ f‖L2‖ f1‖L2 . (2.12)

Proof. First we will prove (2.10). Using Plancherel’s identity we have

‖Jr(Fb f1) · Jγ−r(Gb f2)‖2
L2

xL
2
t
� ‖

∫
R2

〈ξ1〉r
〈σ1〉b | f1(ξ1,τ1)| · 〈ξ2〉γ−r

〈σ2〉b | f2(ξ2,τ2)|dξ1dτ1‖2
L2

ξ L2
τ

= ‖
∫

R2
K1(ξ1,τ1,ξ2,τ2) · | f1(ξ1,τ1)| · | f2(ξ2,τ2)|dξ1dτ1‖2

L2
ξ L2

τ

� sup
ξ ,τ

‖K1(ξ1,τ1,ξ2,τ2)‖L2
ξ1

L2
τ1
‖ f1‖L2‖ f2‖L2 ,

(2.13)
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where ξ = ξ1 + ξ2 , τ = τ1 + τ2 and

K1(ξ1,τ1,ξ2,τ2) =
〈ξ1〉r〈ξ2〉γ−r

〈σ1〉b〈σ2〉b .

Now we proceed to estimate the kernel K1 :

‖K1(ξ1,τ1,ξ2,τ2)‖2
L2

ξ1
L2

τ1
=

∫
R
〈ξ1〉2r〈ξ2〉2γ−r

(∫
R

1
〈σ1〉2b〈σ2〉2b dτ1

)
dξ1

�
∫

R

〈ξ1〉2r〈ξ2〉2γ−2r

〈τ − ξ 3
1 −αξ 3

2 〉2b
dξ1

� 1.

(2.14)

Similarly, in order to prove (2.11) we consider the kernel

K2(ξ1,τ1,ξ2,τ2) =
〈ξ1〉θ 〈ξ2〉1/2

〈σ1〉−b′ 〈σ2〉b
.

In this way

‖K2(ξ1,τ1,ξ2,τ2)‖2
L2

ξ1
L2

τ1
=

∫
R
〈ξ1〉2θ 〈ξ2〉

(∫
R

1

〈σ1〉−2b′ 〈σ2〉2b
dτ1

)
dξ1

�
∫

R

〈ξ1〉2θ 〈ξ2〉
〈τ − ξ 3

1 −αξ 3
2 〉−2b′ dξ1

� 1,

(2.15)

where in the last inequality was used the Corollary 1. Analogously we prove the in-
equality (2.12) using the Corollary 2.

LEMMA 6. Let b1 > 0 , b2 > 0 , b1+b2 > 1/2 , and c = min{2b1,2b2,2b1+2b2−
1} > 1/3 , then

‖Fb1 f1 ·Gb2 f2‖L2
xL

2
t
� ‖ f1‖L2‖ f2‖L2 . (2.16)

Proof. In order to prove (2.16) we observe that it is enough to estimate the L2

norm of

K2(ξ1,τ1,ξ2,τ2) =
1

〈σ1〉b1〈σ2〉b2
,

in this way

‖K2(ξ1,τ1,ξ2,τ2)‖2
L2

ξ1
L2

τ1
=

∫
R

(∫
R

1
〈σ1〉2b1〈σ2〉2b2

dτ1

)
dξ1

�
∫

R

1

〈τ − ξ 3
1 −αξ 3

2 〉c
dξ1

� 1.

(2.17)
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LEMMA 7. Assume that f , f1 , f2 and f3 belong to Schwartz space on R2 . Then,
we have∫

R6
f̃ (ξ ,τ) f̃1(ξ1,τ1) f̃2(ξ2,τ2) f̃3(ξ3,τ3)dξ1dτ1dξ2dτ2dξdτ =

∫
R2

f f1 f2 f3(x,t)dxdt,

where ξ3 = ξ −ξ1−ξ2 and τ3 = τ−τ1−τ2 , i.e. ξ1 +ξ2+ξ3 = ξ and τ1 +τ2+τ3 = τ .

Proof. Using the Fourier transform of the product of two functions

f̃1 f2 f3(ξ ,τ) = f̃1 ∗ f̃2 f3(ξ ,τ)

=
∫

R2
f̃1(ξ1,τ1) f̃2 f3(ξ − ξ1,τ − τ1)dξ1dτ1

=
∫

R2
f̃1(ξ1,τ1)

∫
R2

f̃2(ξ2,τ2) f̃3(ξ − ξ1− ξ2,τ − τ1− τ2)dξ2dτ2dξ1dτ1

=
∫

R4
f̃1(ξ1,τ1) f̃2(ξ2,τ2) f̃3(ξ − ξ1− ξ2,τ − τ1− τ2)dξ1dτ1dξ2dτ2.

The above equality and the Plancherel theorem give∫
R2

f f1 f2 f3(x, t)dxdt

=
∫

R2
f̃ (ξ ,τ) f̃1 f2 f3(ξ ,τ)dξdτ

=
∫

R6
f̃ (ξ ,τ) f̃1(ξ1,τ1) f̃2(ξ2,τ2) f̃3(ξ − ξ1− ξ2,τ − τ1− τ2)dξ1dτ1dξ2dτ2dξdτ.

3. Proof of Proposition 3

We will only prove the inequality (2.3), the proof of the estimative (2.4) is similar.
Using duality and Plancherel’s identity we need to prove

X =
∫

R6
K(ξ ,ξ1,ξ2,ξ3)F̃−b′ f (ξ ,τ)F̃b f1(ξ1,τ1)G̃b f2(ξ2,τ2)

× G̃b f3(ξ3,τ3)dξ1dξ2dτ1dτ2dξdτ

� ‖ f‖L2Π3
j=1‖ f j‖L2 ,

(3.1)

where ξ = ξ1 + ξ2 + ξ3 , τ = τ1 + τ2 + τ3 , and

K(ξ ,ξ1,ξ2,ξ3) = ξ 〈ξ 〉s〈ξ1〉−s〈ξ2〉−k〈ξ3〉−k.

For simplicity in the notation we define:

F−b′ := F−b′ f , F1
b := Fb f1, F2

b := Gb f2, F3
b := Gb f3.

And also without loss of generality, we can assume that f̂ � 0 and f̂ j � 0, j = 1,2,3.
We divide the proof into the following cases:
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Case 1. |ξ | � 2|ξ1| . Then the kernel K is bounded by

|K(ξ ,ξ1,ξ2,ξ3)| � 〈ξ 〉1/2−10ε+(1/2+s+10ε)〈ξ1〉−s〈ξ2〉−k〈ξ3〉−k

� 〈ξ 〉1/2−10ε〈ξ1〉1/2+s+10ε−s〈ξ2〉1/2〈ξ3〉1/2−12ε

� 〈ξ 〉1/2−10ε〈ξ2〉1/2〈ξ1〉1/2+10ε〈ξ3〉1/2−12ε ,

(3.2)

where 0 < ε 
 1
12( 1

2 + k) . Thus using the Lemma 7, we get

X �
∫

R2
J1/2−10εF−b′ · J1/2F2

b · J1/2+10εF1
b · J1/2−12εF3

b (x,t)dxdt

� ‖J1/2−10εF−b′ · J1/2F2
b ‖L2

xL
2
t
‖J1/2+10εF1

b · J1/2−12εF3
b ‖L2

xL
2
t

� ‖ f‖L2Π3
j=1‖ f j‖L2 .

(3.3)

Case 2. |ξ1| � 1
2 |ξ | . By simmetry without loss of generality we can suppose

|ξ3| � |ξ2| . Observe that in this case is |ξ | � 4|ξ2| and |ξ1| � 4|ξ2| .
Subcase 2.1) −1/2 < s < 0, k > −1/2. In this subcase if k > 0 we choose

0 < ε < −s
10 and if k < 0 we choose 0 < ε < min{−s

10 , 1+2k
12 } , then we get 〈ξ1〉−s =

〈ξ1〉10ε〈ξ1〉−s−10ε � 〈ξ1〉10ε〈ξ 〉−s−10ε and

|K(ξ ,ξ1,ξ2,ξ3)| � 〈ξ 〉1+s〈ξ1〉−s〈ξ2〉−k〈ξ3〉−k

� 〈ξ 〉1−10ε〈ξ1〉10ε〈ξ2〉1−12ε (3.4)

and

X �
∫

R2
J1−10εF−b′ ·F3

b · J10εF1
b · J1−12εF2

b (x,t)dxdt

� ‖J1−10εF−b′ ·F3
b ‖L2

xL
2
t
‖J10εF1

b · J1−12εF2
b ‖L2

xL
2
t

� ‖ f‖L2Π3
j=1‖ f j‖L2 .

(3.5)

Subcase 2.2) s � 0, s− k < 1, s− 2k < 1. Without loss of generality we can
suppose |ξ3| � |ξ2| .

We will consider the followings subcases

Subcase 2.2 i) k � 0. If 0 < ε < 1−(s−k)
12 , we have

|K(ξ ,ξ1,ξ2,ξ3)| � 〈ξ 〉1−10ε+s+10ε〈ξ1〉−s〈ξ2〉−k〈ξ3〉−k

� 〈ξ 〉1−10ε〈ξ2〉s−k+10ε〈ξ3〉−k

� 〈ξ 〉1−10ε〈ξ2〉1−2ε

(3.6)

and

X �
∫

R2
J1−10εF−b′ ·F3

b ·F1
b · J1−2εF2

b (x,t)dxdt

� ‖J1−10εF−b′ ·F3
b ‖L2

xL
2
t
‖F1

b · J1−2εF2
b ‖L2

xL
2
t

� ‖ f‖L2Π3
j=1‖ f j‖L2 .

(3.7)
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Subcase 2.2 ii) k � 0. In this subcase, if 0 < ε <
1−(s−2k)

12 we have

|K(ξ ,ξ1,ξ2,ξ3)| � 〈ξ 〉1−10ε+s+10ε〈ξ1〉−s〈ξ2〉−k〈ξ3〉−k

� 〈ξ 〉1−10ε〈ξ2〉s−k+10ε〈ξ3〉−k

〈ξ1〉s

� 〈ξ 〉1−10ε〈ξ2〉s−2k+10ε

〈ξ1〉s
� 〈ξ 〉1−10ε〈ξ2〉1−2ε ,

(3.8)

as above, and we also have

X � ‖ f‖L2Π3
j=1‖ f j‖L2 . (3.9)

Now, the proof of Theorem follows from the trilinear estimates (2.3), (2.4) and
fixed point argument, see [6], [7] for details.
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