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A REMARK ON THE LOCAL WELL-POSEDNESS FOR A
COUPLED SYSTEM OF MKDV TYPE EQUATIONS IN H° x H*

XAVIER CARVAJAL

(Communicated by P. I. Naumkin)

Abstract. We consider the initial value problem associated to a system consisting modified
Korteweg-de Vries type equations

Ov+07v+a(m?) =0,  v(x,0) =0 (),
Iw+adiw+d(Vw) =0, w(x,0) = y(x),

and using only bilinear estimates of the type ||J VF,}I -JB 1’7,,22 [|,2,2 » where J is the Bessel potential
. Xt

and Fb’ , j = 1,2 are multiplication operators, we prove the local well-posedness results for
J

given data in low regularity Sobolev spaces H*(R) x H*(R) for o # 0,1. In this work we
improve the previous result in [6], extending the LWP region from [s—k| < 1/2 to |s—k| < 1.
This result is sharp in the region of the LWP with s < 0 and k < 0, in the sense of the trilinear
estimates fails to hold.

1. Introduction

In this work we consider the initial value problem (IVP) associated to the following
system of the modified Korteweg-de Vries (mKdV) type equations

v+ 93v+d.(vw?) =0, v(x,0) = ¢(x), (L1
ow+ oddw+ 9, (w) =0, w(x,0) = y(x), ’
where (x,7) € R xR; v=v(x,7) and w = w(x,r) are real-valued functions, and o € R
is a constant.

We mean by local well-posedness (LWP) in H* that for any initial data ug € H”,
there exist R > 0, a time 7T = T'(R) > 0 and a unique solution u, belonging to some
space-time function space continuously embedded in C([0,7];H*), such that for any
t € [0,T] the map uo — u(t) is continuous from the ball Bg(up) C H* into H*. If the
above T can be any large number we obtain the global well-posedness.

For o =1, the system (1.1) reduces to a special case of a broad class of nonlinear
evolution equations considered by Ablowiz, Kaup, Newell and Segur [1] in the inverse
scattering context. In this case, the well-posedness issues along with existence and
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stability of solitary waves for this system is widely studied in the literature. Using the
technique developed by Kenig, Ponce and Vega [17], Montenegro [22] proved that the
IVP (1.1) with o =1 is locally well-posed for given data (¢,y) in H*(R) x H*(R),
s> ‘l‘ . In this approach one uses the smoothing property of the linear group combined
with the LLL] Strichartz estimates and maximal function estimates. Tao [21] showed
that this local result can also be proved by using the Fourier transform restriction norm
space X;; (see definition (1.6) below) introduced by Bourgain [5]. In this method the
trilinear estimate

l0xm)llx, , < lullx,, M1, i, (1.2)

that is valid for s > % plays a central role to apply contraction mapping principle.
Author in [22] also proved global well-posedness for given data in H*(R) x H*(R),
s > 1, using the conservation laws

Li(v,w) ::/R(vz—i-wz)dx

and
L(v,w) = / (2 4+ w? —v*w?)dx,
R

satisfied by the flow of (1.1). This global result is further improved in [12] by proving
for data with regularity s > % (see also [8]). For existence and estability of solitary
waves to the system (1.1) we refer to works in [2] and [22]. It is worth noting that the
local well-posedness result for the system (1.1) with or = 1 is sharp as it can be justified
in two different way. First, the key trilinear estimate (1.2) fails whenever s < %, see
[16].

Other works that studied LWP in systems with two different KdV groups were the
work of Alvarez et al. [3] in Gear-Grimshaw systems and, later, the work of Oh [15] in
Majda-Vielo system.

For 0 < o0 < 1, very less is known regarding well-posedness issues for the IVP
(1.1). We note that, the approach of Kenig, Ponce, Vega [17] yields local well-posedness
for s > % for o # 1 too. However, if one uses the Fourier transform restriction norm
space the situation is quite different. In fact the case o € (0,1) and k = s, with
s > —1/2 in order to obtain LWP was proved in [7], later it was extended to the case
o€ R\{0,1}, k> —1/2, s> —1/2 and |k —s| < 1/2 in [6]. In both works the
main idea was to use bilinear estimates in Bourgain spaces to obtain the results. In
this work we use a approach different with the use of bilinear estimates of the type
lJ7F), - TPF2 Iz272 - see Lemma 5.

Remember that the KdV equation and the mKdV equation are particular cases of
the generalized KdV equation:

v+ v+ cd, (VT =0, v(x,0)=d(x). (1.3)

The case k =1 is the Korteweg-de Vries (KdV) equation. The case k = 2 is the
modified KdV (mKdV) equation. The case k = 4 is the critical KdV equation. The
mKdV equation is linked with the KdV equation through the Miura transform

Vi 1= 10y + eV
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The Miura transform behaves roughly like a derivative, so the result for mKdV at a
certain regularity is similar to that for KdV at one lower regularity.
Observe that if v is a solution of generalized KdV equation then

u(x,t) = A*5(dx, A31)
is also is a solution of generalized KdV equation, and holds
lu)llge = A2 (220 e, A >0,
where both norms are the same if and only if

1 2

S =S = T % (1.4)
This argument scaling suggests that the best LWP to the KdV equation (k = 1) is
s1 = —3/2 and to the mKdV equation is s, = —1/2. Also if v;(x,7) and wy(x,7) are
solutions of the IVP (1.1), then vy (x,¢) = Avi(Ax,A%t) and wa(x,t) = Aw;(Ax,A%1)
also are solutions of the IVP (1.1) and therefore the above scaling argument suggests
that the space H 125 H1/2 s the sharp space in order to obtain local well-posedness
to the IVP (1.1). Therefore the model provided by the IVP (1.1) is very interesting in
the sense that the end point in the LWP found in [7], attains its scaling index (see Table
1 below).

Table 1: Summary of Results (LWP in H* x H* spaces)

Equation/System LPL9-Estimates X p-Spaces
KdV equation H', s> % H', s> —%
mKdV equation HS, s> % HS, s> %
KdV-KdV system | HSxH',s>3 | H xH’ s>—3
(same groups)
KdV-KdV system | H®x H', s> 3 HxH®,s>0

(different groups) (T.Oh [15])

mKdV-mKdV system | H* x H*, s > ] HS < H', s>
(same groups)
mKdV-mKdV system | H* x H*, s > I HYx H',s > —}
(different groups) (Carvajal, Panthee [7])

Remember some local well-posedness results for the KdV equation:
e LWP in H*(R), s > 3/4 by Kenig, Ponce, and Vega, 1993 [17].
e LWP in H*(R), s > 0 by Bourgain, 1993 [5].

e LWPin H*(R), s > —5/8 and s > —3/4, by Kenig, Ponce, and Vega, 1993 and
1996 respectively [18] and [16].

e LWP in H3/4(R), by Kishimoto and Guo, 2009, [20] and [14] respectively.
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e LWPin H! (R), by Killip and Visan, 2019 [19].
Regarding some local well-posedness results for the mKdV equation we have:
e LWPin H*(R), s > 1 /4 by Kenig, Ponce, and Vega, 1993 [17].
o Weak LWPin H*(R), —1/8 < s < 1/4 by Christ, Holmer and Tataru, 2012 [11].
e LWP in modulation spaces M217/[14(R), which contains a class of functions in
H~'/4 by Chen and Guo, 2018 [10].
We use f() to denote the Fourier transform of f(x) defined by

&) =c [ et
and f(&,7) or f(é ,T) to denote the Fourier transform of f(x,7) defined by
fE ) =c / L OST f (1) ddr.
R

We also use f(&,7) to denote the spatial Fourier transform of f(x,7) and f(x,7) to
denote the time Fourier transform of f(x,7).
We use H* to denote the L?-based Sobolev space of order s € R with norm

1 sy = \\<€>‘f(€)llL§,

where (£) = 1+|&|. The Bessel potential is defined by J5 f(&,7) = (E)SF(E,1).
The Bourgain space X% , for s,b € R, to be the completion of the Schwartz class

% (R?) under the norm
i, = 10O gy = NEP (T~ @&V Oz - (19)

If b>1/2, we have that X% — C(R : H{(R)) and thus for an interval = [0, §],

we can define the restricted bourgain spaces Xf‘ h’a endowed with the norm

Hf|| s = inf{|[gl[xe ; &l[-5,6) = f}- (1.6)

5,b

We write X s instead of Xs1 b5 We use ¢ or C to denote various constants whose exact
values are 1mmater1al and may vary from one line to the next. We use A < B to denote
an estimate of the form A <c¢B and A~ B if A< cB and B < cA.

On the ill-posedness of the trilinear estimates, in [6] they proved the following
results:

PROPOSITION 1. Let o0 #0,1.

(a) The trilinear estimate (2.3) fail to hold for any b € R whenever s —2k > 1 or
k< —1/2.

(b) The trilinear estimate (2.4) fail to hold for any b € R whenever k—2s > 1 or
§<—1/2.
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and

PROPOSITION 2. Let o # 0, 1.

(a) The trilinear estimate (2.3) fails to hold whenever s —k > 2, for any € such
that 0 <& < 3(s—k—2).

(b) The trilinear estimate (2.4) fails to hold whenever k—s > 2, for any € such
that 0 <& < 3(s—k—2).

In this work we improve the previous result in [6], extending the LWP region from
|s—k| < 1/2 to |s—k| < 1. Indeed we obtain the following local well-posedness result
for the IVP (1.1).

THEOREM 1. Let € R, 00 #0,1, s,k>—1/2 and |s—k| <1, s—2k <1 and
k—2s < 1, then for any (¢,y) € H*(R) x H¥(R), there exist & = &(||(d, ¥)|| st

(with 8(p) — e as p — 0) and a unique solution (v,w) € Xslf X X,gl;s to the IVP (1.1)
in the time interval [0,0]. Moreover, the solution satisfies the estimate

109 g1, s S 18 W) s

where the norm || - || 15 and || - || .5 are as defined in (1.6).
s,b 5,b

REMARK 1. We observe that the LWP given by Theorem 1 is sharp in the case
k,s < 0, see the Proposition | and the Figure 1.

Figure 1: In blue is the region of the LWP of Theorem 1. In red the region where the trilinear
estimates fail to hold
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Figure 2: In green is the region of the LWP of [6]

The LWP in the case 0 < o < 1 is equivalent to the LWP in the case o > 1 by
using the transformation v(x,7) := #(o.~"/3x,7) and u(x,r) := ii(cc~/3x,1) where

97+ 137+ 9u(3?) =0,
W+ W+ 9, (7W) = 0.

So we restrict ourselves to prove Theorem 1 in the case o € (—oo, 0) U (1, +o0).
2. Preliminar estimates
The following lemma will be useful in the proof of the trilinear estimates

LEMMA 1. (i) Ifa,b >0 and a+b > 1, we have

dx 1 .
/1R<X—oc>“<x—[3>b e (00— B)e’ ¢=min{a,b,a+b-1}. 2.1

(ii) For1>1/3,

dx
<L 22
/R (¥ +a® + ayx+ag)t ~ 22)

Proof. Proof of (2.1) can be found in [23] and proof of (2.2) in [4].
The main ingredients in the proof of Theorem 1 are the new trilinear estimates

PROPOSITION 3. Ler ¢ €R, a0 #0,1, —1/2 < s,k.
If s—k <1 and s —2k < 1, then the following trilinear estimate

Howiwa)ellyr < Vi, [hwallg, Iw2llxg, 2.3)
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holdfor b=%+¢, b/ =—1/2+2eand 0 <& < 1.
And if k—s <1 and k—2s < 1, then the following trilinear estimate

1vv2w)ellxe, < villyy, 2l wllxe, (24)

hold for b=%+¢, b/ =—1/2+2eand 0 < e < 1.

LEMMA 2. Let . < 1 or o« <0 and s > —1/2, then

u (&)
er) ENFE-& - o))

ds S 1

Proof. For the case 0 < a0 < 1, see the proof of Lemma 3.2 in [7] (estimate of
) and for the case o < 0 see Lemma 3.3 in [6].

COROLLARY 1. Let 1 <1 and o« > 1 or o <0, then

p [ (8)'(&)

b e g

d& S 1. (2.5)

~

Proof. This inequality follows from the previous Lemma, considering
3 g3 T o lys 43
T—aé5 — ~( === - .
(-0 - &)~ (E-280-8)
LEMMA 3. Let u <2, oo >1or aa<0and b>1/2, then

@
prd RTa A 2o

Proof. Using the inequality (2.2) we can suppose that |£;| > 1 and this implies
that |&;| ~ (&), thus it is sufficient to estimate the integral

/ g#d&. 2.7)

| TG -

Observe that in the case o < 0, if H(&) = 17— &) — &3, then —H'(&) = 3&2 —
3a&F > 3E2 > |& M and in this case we obtain the estimate (2.7). So from now on we
will consider o > 1.

We will go to consider the following regions:

Case 1. If |£] < 1. In this case we have

(&1) ~ (G2)
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and
(EnHt = (& 1(&) S (EnH(&),

where 1 = i — 1 < 1 and the estimate is consequence of the Corollary 1.

is such that

o
Case 2. If 3 < [&] < c1|&1], where ¢ =

60|E &1 —3a?
(60)c1&F
2(a—1)&fF,

consequently H'(&1) =3(ot— 1)E2 —[(60&) & — (3e&?)] = (o — 1)E} and we proceed
as above.

[(608)&1 — (3:&?)]

<
< (60
o

1 3—4
Case 3. If |§| > —|&|, where ¢, = 5 A € (0,3) is such that
e

[(608)81 —3(ar — 1)E7)] < (60)c2&?
=(3-2)as?,

and thus H'(&) = 3a&? — [(6a&)& —3(a —1)E2] > 3aé? — (3 —A)aE? = Aa&?,
And in this case we have
ESESH (&)

Finally we consider the region

1
Case 4. If ¢1|&1] < |&| < C—|§1\ we get
2

& 1
/W‘lgl ~ ‘52/W€l§1 S

% %
1
where Z = {&1; 2|&| < |&1| < —|&|} and in the last inequality we use the estimate of
cy
inequality (3.7) case d) in [7] (see the estimate of 2~ defined in (3.27), and also see
(3.33), (3,41) and (3.47)).

COROLLARY 2. Let 0<e <1 and o > 1 or o <0, then

<€1>27205
erd T-ag -Gy

dE < 1. (2.8)

Proof.
Case 1. (H) < (&)?. In this case we have

<§1>2—20£ - <€1>2—2£

<H>174£ = <H>1+2£’
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and (2.8) follows using the Lemma 3.
Case 2. (H) > (&) . With this condition we obtain

(61)2 720 G2 1
/Wdéizmd&—gmday

R

LEMMA 4. Let 0O< u<2and 0<r<u, ao>1o0r o <0, then

e | s 5.

Proof.
Case 1. |E| < 1. Inthis caseis (&) ~ (&), thus using the Lemma 3 we have

(&)
s | g a1

Case 2. |E| Z 1, |E| < |&1]. Hereis (&) < (£)) and we estimate .#, as above.

3-2 1
Case 3. |&E| 2 1, |&1] < ¢2|&]. Where 0 < ¢; = —— < = as in the Case 3

in Lemma 3, in this way we have |§i| < c2|&1 + &| < 2]&1| + ¢2|&2| consequently
&1 < 12518 thus (&) < (&) $(€) and H'(£1) 2 & and .7, S 1.
Now we introduce the following operators
f(§,7)
(o1)?”

where 61 =1—E3, oo =1— &3,

1/7;?(571):

Gof(E,7) = (2.9)

LEMMA 5. Let o« > 1 or 0 <0, b=1/2+¢, b'=—-1/2+2¢, 0<e <1,
0<y<1l,0<r<vyand6<1/2, then

17" (Fof1) - T (Go o)l 2z < 11l 2l 2] 2 (2.10)

O Fp ) -T2 (Gl 2z S I 2l Al @.11)
and

1 E ) Gtz S Il N (2.12)

Proof. First we will prove (2. 10). Using Plancherel’s identity we have

b‘fl(él, )| <f<25>>” \f2(§2,72)|d§1d11HLsz

() (Gl 51 [ 1

o1)
= H/ A 1,171,52,172)'\f1(§1771)|'|f2(§2772)|d51d11\\L%L%
<S%UPH<%/( 1771752,72)“%@1 Al 21721l 2

(2.13)
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where £ =&+ &, T=1+ 1 and
(E)" (&) "

(o1)P(02)?

H1(&1,11,6.1m) =

Now we proceed to estimate the kernel 7] :

i el s = [ @@ ([ omrgman )

2r 2y—2r 2.14
< (€))7 (&) bl S (2.14)
(t—& —a&)
Similarly, in order to prove (2.11) we consider the kernel
(61)°(&)'
Jg s Yl ) = T -\
2(51 T 52 7:2) <01>_b <02>b
In this way
1
HlE &)l ;= [ (@) (/7 d)d
H 2(§1 T 52 Tz)”l’éll’%l R<€1> <€2> R <G]>_2b <02>2b T él
(2.15)

@0 )
S g —aty

<1

~ )

where in the last inequality was used the Corollary 1. Analogously we prove the in-
equality (2.12) using the Corollary 2.

LEMMA 6. Let by >0, b, >0, by +by, >1/2,and ¢ :min{2b1,2b2,2b1 +2by —
1} > 1/3, then
B fi -Gl Il ol @.16)

Proof. In order to prove (2.16) we observe that it is enough to estimate the L>

norm of |

(01)01(09)P2’

H(E1,11,6, 1) =

in this way

1 dg, (2.17)
(- 51 - O£§2>

A

5 e Gl 1y = [ ( / Wdﬁ)d&
A
1

A
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LEMMA 7. Assume that f, fi, f» and f3 belong to Schwartz space on R*. Then,
we have

| JEDAE ARG )G w)dbdndgdndtde = [ Ffiffinndxd,
where &5 =6 —E & and 3 =T— 17—, ie. E+E+E=Cand 1+ T+ T3 =T.
Proof. Using the Fourier transform of the product of two functions

ARHE D) = Fix fs(E.1)
Zézﬁ(§17fl)%(§ =&, 71— 1)d&dn

= [ [ G mAE - &~ &= - n)dgdnddn
R? R?
= [ A& AE AE & - G-t - n)dbdndgdr.
The above equality and the Plancherel theorem give
/ Fhifafa(x,t)dxdt
= 1) fif2f3(8,7)dEdT

A& AE R ABE & & 1— 11— n)dédudbdndEdr.

3. Proof of Proposition 3

We will only prove the inequality (2.3), the proof of the estimative (2.4) is similar.
Using duality and Plancherel’s identity we need to prove

7 = [ K888 1 f (& DR (G 1)G (&)
x Gy f3(E3,73)dE dErdTidTydEdT (3.1)
IR e,

where £ =&+ &4 &, 1=T1+ 1+ 13, and
K(§,61,6,83) = &(&) (&) (&) (&) *

For simplicity in the notation we define:
Fy:=Fyf, F :=Ffi, F}:=Gyf, F =Gfs.

And also without loss of generality, we can assume that ]_?2 0 and fj >0, j=1,2,3.
We divide the proof into the following cases:
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Case 1. |E| < 2|&;|. Then the kernel K is bounded by

IK(E,&1,&,&3)| S ()2 100 (/2 100) 2y =5 (£5) K (&)
<§>1/27108<§1>1/2+.\'+1087S<§2>l/2<§3>1/2712£ (3.2)
<€>1/27108<€2>1/2<€1>1/2+108<€3>1/271287

where 0 < e < ﬁ(% + k). Thus using the Lemma 7, we get

IZANRZAN

2 < /211/27108F_b/ VAR U0 pL 12128 B3 (0 g
i
< HJ1/2—108F_b, '11/2F13||L;L,2||Jl/2+108Fb1 .J1/27124¥:I,~173HL)%LI2 (3.3)
S AT 152
Case 2. |&1] < %|’g’\ By simmetry without loss of generality we can suppose

|€3] < |&,|. Observe that in this case is |&| < 4|&| and || < 4]&].

Subcase 2.1) —1/2 <s<0, k> —1/2. In this subcase if Xk > 0 we choose
0<ée< 33 andif k <0 we choose 0 < & < min{75, 54}, then we get (&) =

<§1>10£<§1>—s—10£ < <§1>10£<§>—s—10£ and

K(E&1,6.8)1 S (6 (&) &) (&)™ G4
S(E)TI(EN (&) 1
and
s 5/]1{2‘]1—108}77})/ FR TR 2R (0
<|10eE .F}fHL%L?HJloerl ,Jl—lngszL%Ltz (3.5)

ST £ 2

Subcase 2.2) s> 0, s—k <1, s—2k < 1. Without loss of generality we can

suppose |&3| < [&].
We will consider the followings subcases

Subcase 2.2i) k>0.1f0<e< #,wehave

K (&, 61,82, 85)| < (&)1 71001088, ) 2(65) T(&3)
<§>17105 <§2>S7k+108<§3>7k (3.6)
< >1—10£<§2>1—2£

ANRIA

e

and
2 S /R U TF By - TR (v dxd
- 262
S ||J1 1OEF—b’ '1171;3||L§L[2||Fb1 J! ng HL%L[Z (3.7

S ”fHLZH;:l”fjHLZ'
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Subcase 2.2 ii) k <0. In this subcase, if 0 < & < =02 we have

IK(§,81,62,83) < (&) 101088 =5 (&) (&)
<§>1—10£<§2>s—k+10£<§3>—k

<
~ (€1)*
(3.8)
- <§>17108<§2>S72k+108
~ (E1)*
S(E)T1%(&) !,
as above, and we also have
2 ST 12 (3.9)

Now, the proof of Theorem follows from the trilinear estimates (2.3), (2.4) and

fixed point argument, see [0], [7] for details.
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