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SOLUTIONS FOR THE FRACTIONAL p–LAPLACIAN SYSTEMS

WITH SEVERAL CRITICAL SOBOLEV–HARDY TERMS

IRAJ DEHSARI AND NEMAT NYAMORADI ∗

(Communicated by D. Kang)

Abstract. In this paper, we consider a class of fractional p -Laplacian system with three frac-
tional critical Sobolev-Hardy exponents. By the Ekeland variational principle and the Mountain-
Pass theorem, we study the existence and multiplicity of positive solutions to the system.

1. Introduction

Our purpose in this paper is to establish the existence of nontrivial solutions to the
following fractional p -Laplacian system⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−Δ)s
pu = |u|p∗α−2u

|x|α + ϑ
ϑ+ηQ(x) |u|

ϑ−2|v|ηu
|x−x0|γ +λh(x) |u|

q−2u
|x|σ , x ∈Ω,

(−Δ)s
pv = |v|p

∗
β−2

v
|x|β + η

ϑ+ηQ(x) |u|
ϑ |v|η−2v
|x−x0|γ +λh(x) |v|

q−2v
|x|σ , x ∈Ω,

u = v = 0, x ∈ R
N \Ω

(1.1)

where s∈ (0,1) is fixed, N > sp , 1< p <∞ , λ > 0 is a parameter, 0 < λ <∞ , 1 < q <

p , ϑ ,η > 1 such that ϑ+η = p∗γ , p∗ = Np
N−sp and p∗ξ = (N−ξ )p

N−sp for ξ =α,β ,γ are the
fractional critical Sobolev and Hardy-Sobolev exponents respectively, Q is continuous
and nonnegative function on Ω , Q(x0)= ‖Q‖∞ for 0 �= x0 ∈Ω , h(x)∈C(Ω) , h(x) �ℜ
for some positive constant ℜ , 0 � α,β ,σ � γ < sp < N , and (−Δ)s

p is the fractional
p -Laplacian operator which, up to normalization factors, may be defined as

(−Δ)s
pu(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N+ps dy

for x ∈ R
N , where Bε(x) := {y ∈ R

N : |x− y| < ε} . As for some recent results on the
fractional p -Laplacian, we refer to for example [18, 19, 21] and the references therein.
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In this paper, let 0 < s < 1 < p <∞ be real numbers. The fractional Sobolev space
Ws,p(RN) is defined by

Ws,p(RN) =
{

u ∈ Lp(RN) : [u]ps,p :=
∫∫

R2N

|u(x)−u(y)|p
|x− y|N+ps dxdy < ∞

}
,

equipped with the norm ‖u‖Ws,p(RN ) = ‖u‖Lp(RN ) +
(
[u]ps,p

) 1
p . Set Λ = R

2N \ (CΩ×
CΩ) with CΩ= R

N \Ω . Define

X =
{
u : R

N → R measurable, u|Ω ∈ Lp(Ω), [u]ps,p < ∞
}

,

equipped with the norm ‖u‖X =
(
‖u‖p

Lp(RN ) + [u]ps,p
) 1

p
. The space X0 is defined as

X0 := {u ∈ X : u = 0 on CΩ} with the norm

‖u‖ := ‖u‖X0 =
(
[u]ps,p

) 1
p . (1.2)

We can define the fractional Hardy-Sobolev constant:

Sα = inf
u∈X0\{0}

∫∫
R2N

|u(x)−u(y)|p
|x−y|N+ps dxdy(∫

Ω |x|−α |u|p∗αdx
) p

p∗α
= inf

u∈X0\{0}
‖u‖p

‖u‖p

Lp∗α (Ω,|x|−αdx)

, (1.3)

where Lp∗α (Ω, |x|−αdx) is the weighted Lp∗α (Ω) space with the norm ‖u‖
Lp∗α (Ω,|x|−αdx) =∫

Ω |x|−α |u|p
∗
αdx .

Now, we define the space W = X0×X0 with respect to the norm

‖(u,v)‖ = (‖u‖p +‖v‖p)
1
p .

For any ϑ ,η > 1 and ϑ+η = p∗γ , by the Young inequality, the following best constant
are well defined:

Sϑ ,η,γ := inf
(u,v)∈W\{(0,0)}

‖(u,v)‖p(∫
Ω

|u|ϑ |v|η
|x|γ dx

) p
p∗γ

. (1.4)

Using the ideas from the proof of the Theorem 5 in [1], we get

Sϑ ,η,γ =
((ϑ

η

) η
ϑ+η +

(η
ϑ

) ϑ
ϑ+η

)
Sγ .

In this paper, choose the positive constat R̃0 such that Ω⊂BR̃0
(0) , where BR̃0

(0)=
{x ∈ R

N : |x| < R0} . By Hölder and (1.3), for all u ∈ X0 , we obtain∫
Ω

|u|q
|x|σ �

(∫
B(0;R0)

|x|−σ
) p∗σ−q

p∗σ
(∫

Ω

|u|p∗σ
|x|σ

) q
p∗σ

�
(
NωN

∫ R0

0
r−σ+N−1dr

) p∗σ−q
p∗σ (Sσ )−

q
p ‖u‖q

� D0(Sσ )−
q
p ‖u‖q, (1.5)
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where ωN = 2π
N
2

NΓ( N
2 )

and D0 :=
(

NωNRN−σ
0

N−σ
) p∗σ−q

p∗σ .

Existence and nonexistence of nontrivial non-negative solutions, multiple solu-
tions, ground states and regularity results for fractional Laplacian equations have been
recently considered by several authors, but, essentially, only with a solely critical expo-
nent. We refer to [2, 3, 4, 5, 10, 13, 15, 25, 26, 28, 30, 33] and the references therein.
For example, the authors in [9], by finding the minimizer of the corresponding energy
functional on positive Nehari and sign-changing Nehari manifold studied the existence
and multiplicity of solutions of the following nonlocal problem{

(−Δ)s
pu = λ |u|r−2u+ μ |u|q−2u

|x|α , x ∈Ω,

u = 0, x ∈ R
N \Ω,

(1.6)

where s ∈ (0,1) , p > 1, μ > 0, 0 � α < ps < N and p � q � p∗α . Also, Meanwhile,
Yang [34] studied the existence, multiplicity, and bifurcation of the problem (1.6) when
r = p , μ = 1 and q = p∗α . The existence and multiplicity of positive solutions to a
system of fractional elliptic system has been studied in [35]. In [6], Chen considered
the following doubly critical problem involving the fractional Laplacian

(−Δ)su− γ u
|x|2s =

|u|2∗s (α)−2u
|x|α +

|u|2∗s (β )−2u

|x|β , u > 0, in R
n, (1.7)

where s ∈ (0,1) , 0 < α,β < 2s < n with α �= β , γ < γH . Applying the mountain pass
lemma and a concentration compactness principle, the authors proved the existence of
positive solutions to (1.7).

Equations involving fractional Laplacian have been studied in [7, 8, 12, 15, 16,
29, 32, 34, 35] by Nehari manifold and fibering maps arguments. For example, the
authors in [32] studied the following system driven by a nonlocal integro-differential
operator with zero Dirichlet boundary conditions via the the variational methods and
Nehari manifold decomposition techniques:⎧⎪⎨⎪⎩

(−Δ)s
pu = a(x)|u|q−2u+ 2α

α+β c(x)|u|α−2|v|βu, x ∈Ω,

(−Δ)s
pv = b(x)|v|q−2v+ 2β

α+β c(x)|u|α |v|β−2v, x ∈Ω,

u = v = 0, x ∈ R
N \Ω

(1.8)

where Ω is a smooth bounded domain in R
N , N > ps with s ∈ (0,1) fixed, a(x),b(x),

c(x) > 0 and a(x),b(x),c(x)∈ L∞(Ω) , 1 < q < p and α,β > 1 satisfy p <α+β < p∗ ,
p∗ = Np

N−ps . Chen and Deng [7] proved the existence of multiple non-trivial solution of
problem (1.8) when a(x) = λ , b(x) = μ and C(x) = 1. In [15], the authors obtained
the existence of ground state solution of problem (1.8), when p = 2, q = 2∗s = 2N

N−2s
and α+β = 2∗s .

Deng and Huang [11] studied the existence of solutions to the following problem:{
−div

(
|x|−2a∇u

)
= μ u

|x|2(a+1) = Q(x) |u|
p−2u

|x|bp +σh(x,u), x ∈Ω,

u = 0, x ∈ ∂Ω
(1.9)
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where Ω is an open and bounded domain in R
N , 0 � a < N−2

2 , σ � , 0 � μ <

(N−2−2a
2 )2 , a � b < a+ 1, p = p(a, b)= 2N

N−2(1+a−b) is the critical Hardy-Sobolev ex-
ponen and Q,h are continuous functions. The authors proved the existence and mul-
tiplicity of G-symmetric solutions and positive solutions under certain conditions on
Q,h .

The authors in [20] studied the following quasilinear elliptic problem{
−Δpu− μ |u|p−2u

|x|p = K(x) |u|
p∗(s)−2u
|x|s +Q(x) |u|

p∗(t)−2u
|x−x0|t +λ f (x,u), x ∈Ω,

u = 0, x ∈ ∂Ω
(1.10)

where Ω ⊂ R
N , λ > 0 1 < p < N , K,Q defined on Ω are nonnegative continuous

functions and obtained the existence and multiplicity of solutions via Nehari manifold
and Ekeland’s variational principle.

In this paper, let 0 � α,β ,σ � γ < sp < N , ϑ ,η > 1 and ϑ +η = p∗γ . Set

θ (α) :=
p∗α − p
pp∗α

(Sα)
p∗α

p∗α−p ,

ϖ(ϑ ,η ,γ) :=
p∗γ − p

pp∗γ

1

‖Q‖
N−sp
sp−γ
∞

(Sϑ ,η,γ)
p∗γ

p∗γ−p ,

Π∗ := {θ (α),θ (β ),ϖ(ϑ ,η ,γ)} .

Moreover, assume that Q satisfies some of the following assumptions:
(H1) Q ∈C(Ω) , Q(x) � 0 and meas({x ∈Ω, Q(x) > 0}) > 0.
(H2) There exist ρ > 0 such that Q(x0) = ‖Q‖∞ > 0 and Q(x) = Q(x0)+O(|x−

x0|ρ) , as x → x0 .
Now, we state our main results:

THEOREM 1. Assume that 1 < p <∞ , s ∈ (0,1) is fixed, N > sp and (H1). Then
there exists ℑ∗ > 0 such that problem (1.1) has at lest one positive solution in W for
0 < λ < ℑ∗ .

THEOREM 2. Assume that Q(0) = 0 , 1 < p < ∞ , s ∈ (0,1) is fixed, N > sp,

Π∗ =
p∗γ−p
pp∗γ

1

‖Q‖
N−sp
sp−γ
∞

(Sϑ ,η,γ)
p∗γ

p∗γ−p , (H1) and (H2), ρ > N−sp
p−1 + γ and (N−σ)(p−1)

N−sp � q <

p. Then there exists ℑ > 0 such that problem (1.1) has at least two positive solutions
in W for all 0 < λ < ℑ .

This paper is organized as follows. Section 2 contains preliminary concepts of
fractional Sobolev space and some important lemmas, which are needed in the proof of
main results. We prove our main results in Section 3.
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2. Preliminaries

The corresponding energy functional of (1.1) is

J(u,v) =
1
p
‖(u,v)‖p− λ

q

∫
Ω

h(x)
( |u|q
|x|σ +

|v|q
|x|σ

)
dx− 1

p∗α

∫
Ω

|u|p∗α
|x|α dx

− 1
p∗β

∫
Ω

|v|p∗β
|x|β dx− 1

ϑ +η

∫
Ω

Q(x)
|u|ϑ |v|η
|x− x0|γ dx.

LEMMA 1. Suppose that (u,v) is a weak solution of (1.1), s ∈ (0,1) is fixed,
N > sp, 1 < p <∞ and (H1). Then there exists d = d(N,s, |Ω|, |h|∞,γ,Sσ ,q) > 0 such
that

J(u,v) � −dλ
p

p−q .

Proof. Since (u,v) is a weak solution of problem (1.1), then

〈J′(u,v),(u,v)〉 = ‖(u,v)‖p−λ
∫
Ω

h(x)
( |u|q
|x|σ +

|v|q
|x|σ

)
dx−

∫
Ω

|u|p∗α
|x|α dx

−
∫
Ω

|v|p∗β
|x|β dx−

∫
Ω

Q(x)
|u|ϑ |v|η
|x− x0|γ dx = 0. (2.1)

Now, in view of h(x) �= 0, the Hölder inequality, (1.5) and (2.1), one can get

J(u,v) � 2 inf
t�0

[(1
p
− 1

p∗γ

)
t p−λ

(1
q
− 1

p∗γ

)
D0(Sσ )−

q
p |h|∞tq

]
� −dλ

p
p−q .

Here d = d(N,s, |Ω|, |h|∞,γ,Sσ ,q) is a positive constant. �
We say that (un,vn)n∈N is a (PS)c sequence in W for J if J(un,vn) → c and

J′(un,vn) → 0 as n → ∞ . We say that J satisfies the (PS)c condition if any (PS)c

sequence (un,vn)n∈N in W has a convergent subsequence.

LEMMA 2. Suppose that Q(0) = 0 , s ∈ (0,1) is fixed, N > sp, 1 < p < ∞ and
(H1). Then J satisfies the (PS)c condition for all c < c∗ , where

c∗ := minΠ∗ −dλ
p

p−q . (2.2)

Proof. We easily deduce that the (PS)c sequence (un,vn)n∈N of J is bounded
in W . So (un,vn) ⇀ (u,v) weakly in W and so un ⇀ u and vn ⇀ v weakly in X0

as n → ∞ . Now from [14, 22], we may assume that there exist five positive measure
α, α̃ ,γ, γ̃ and ν on R

N , and an at most countable set {xi}i∈I ∈Ω\ {0} such that∫
RN

|un(x)−un(y)|p
|x−y|N+ps dx ⇀ α,

∫
RN

|vn(x)−vn(y)|p
|x−y|N+ps dx ⇀ α̃,
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|un|p∗α
|x|α dx ⇀ γ, |vn|p

∗
β

|x|β dx ⇀ γ̃,

Q(x) |un|ϑ |vn|η
|x−x0|γ dx ⇀ ν.

Thus, there exist real numbers axi , ãxi ,dxi , i ∈ I , a0, ã0,b0, b̃0 and d0 , such that

α �
∫

RN

|un(x)−un(y)|p
|x− y|N+ps dx+∑

i∈I

axiδxi +a0δ0,

α̃ �
∫

RN

|vn(x)− vn(y)|p
|x− y|N+ps dx+∑

i∈I
ãxiδxi + ã0δ0, (2.3)

γ =
|u|p∗α
|x|α +b0δ0, γ̃ =

|v|p∗β
|x|β dx+ b̃0δ0, (2.4)

ν = Q(x)
|u|ϑ |v|η
|x− x0|γ dx+∑

i∈I
Q(xi)dxiδxi +Q(0)d0δ0. (2.5)

So we claim that I = /0 . To this end, by contradiction, suppose that I �= /0 , then there
exists i∈ I . For ε > 0 small enough, let ηεxi

(x) = θ
( x−xi

ε
)
, x∈R

N , where θ ∈C∞0 (RN)
is a smooth cut off function, such that θ = 1 in B(0,1) and θ = 0 in R

N \B(0,2) . Since
(ηεxi

un,ηεxi
vn) is bounded in W , then we have 〈J′(un,vn),(ηεxi

un,ηεxi
vn)〉→ 0 as n→∞ .

So

o(1) = 〈J′(un,vn),(ηεxi
un,ηεxi

vn)〉

=
∫∫

R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

+
∫∫

R2N

vn(x)|vn(x)− vn(y)|p−2(vn(x)− vn(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

+
∫∫

R2N

ηεxi
(y)|un(x)−un(y)|p

|x− y|N−ps dxdy+
∫

R2N

ηεxi
(y)|vn(x)− vn(y)|p
|x− y|N−ps dxdy

−
∫
Ω

Q(x)
|un|ϑ |vn|η
|x− x0|γ η

ε
xi
dx−λ

∫
Ω

h(x)
( |un|q

|x|σ η
ε
xi

+
|vn|q
|x|σ η

ε
xi

)
dx︸ ︷︷ ︸

(II)

−
(∫

Ω

|un|p∗α
|x|α ηεxi

dx+
∫
Ω

|vn|p
∗
β

|x|β ηεxi
dx

)
︸ ︷︷ ︸

(III)

.

In view of (2.3)–(2.5), we have

lim
ε→0

lim
n→∞

(III) = lim
ε→0

(∫
Ω
ηεxi

dγ+
∫
Ω
ηεxi

dγ̃
)

= 0, lim
ε→0

lim
n→∞

(II) = 0,
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and

lim
ε→0

lim
n→∞

∫
Ω

Q(x)
|un|ϑ |vn|η
|x− x0|γ η

ε
xi
dx = lim

ε→0

∫
Ω
ηεxi

dν = Q(xi)dxi.

Hence,

0 = lim
ε→0

lim
n→∞

[∫∫
R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

+
∫∫

R2N

vn(x)|vn(x)− vn(y)|p−2(vn(x)−un(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

+
∫∫

R2N

ηεxi
(y)|un(x)−un(y)|p
|x− y|N−ps dxdy

+
∫∫

R2N

ηεxi
(y)|vn(x)− vn(y)|p
|x− y|N−ps dxdy−Q(xi)dxi

]
. (2.6)

Furthermore, using the Hölder inequality, the fact that {un},{vn} are bounded in X0

and Lemma 2.3 in [31], we have

lim
ε→0

lim
n→∞

∣∣∣∣∣
∫∫

R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

∣∣∣∣∣
� C lim

ε→0

(∫∫
R2N

|un(x)|p|ηεxi
(x)−ηεxi

(y)|p
|x− y|N−ps dxdy

) 1
p

= 0.

(2.7)

Similarly,

lim
ε→0

lim
n→∞

∣∣∣∣∣
∫∫

R2N

vn(x)|vn(x)− vn(y)|p−2(vn(x)− vn(y))(ηεxi
(x)−ηεxi

(y))
|x− y|N−ps dxdy

∣∣∣∣∣= 0.

(2.8)
Combining (2.6)–(2.8), there holds

0 = lim
ε→0

lim
n→∞

[∫∫
R2N

ηεxi
(y)|un(x)−un(y)|p

|x− y|N−ps dxdy

+
∫∫

R2N

ηεxi
(y)|vn(x)− vn(y)|p
|x− y|N−ps dxdy−Q(xi)dxi

]
= lim

ε→0

∫
Ω
ηεxi

dα+ηεxi
dα̃−Q(xi)dxi. (2.9)
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On the other hand, (1.4) implies that

1

‖Q‖
p
p∗γ
∞

Sϑ ,η,γ

(∫
Ω

Q(x)
|(ηεxi

)
1
p un|ϑ |(ηεxi

)
1
p vn|η

|x− x0|γ dx
) p

p∗γ

�
∫∫

R2N

|(ηεxi
)

1
p (x)un(x)− (ηεxi

)
1
p (y)un(y)|p

|x− y|N+ps dxdy

+
∫∫

R2N

|(ηεxi
)

1
p (x)vn(x)− (ηεxi

)
1
p (y)vn(y)|p

|x− y|N+ps dxdy. (2.10)

Note that

lim
ε→0

lim
n→∞

∫∫
R2N

|un(y)|p|(ηεxi
)

1
p (x)− (ηεxi

)
1
p (y)|p

|x− y|N+ps dxdy = 0,

lim
ε→0

lim
n→∞

∫∫
R2N

|vn(y)|p|(ηεxi
)

1
p (x)− (ηεxi

)
1
p (y)|p

|x− y|N+ps dxdy = 0,

together with (2.7) and (2.8), we get

lim
ε→0

lim
n→∞

∫∫
R2N

ηεxi
(x)|un(x)−un(y)|p

|x− y|N+ps dxdy

= lim
ε→0

lim
n→∞

∫∫
R2N

|(ηεxi
)

1
p (x)un(x)− (ηεxi

)
1
p (y)un(y)|p

|x− y|N+ps dxdy, (2.11)

lim
ε→0

lim
n→∞

∫∫
R2N

ηεxi
(x)|vn(x)− vn(y)|p
|x− y|N+ps dxdy

= lim
ε→0

lim
n→∞

∫∫
R2N

|(ηεxi
)

1
p (x)vn(x)− (ηεxi

)
1
p (y)vn(y)|p

|x− y|N+ps dxdy. (2.12)

So, (2.5) and (2.10)–(2.12) imply that

1

‖Q‖
p
p∗γ
∞

Sϑ ,η,γ

(
Q(xi)dxi

) p
p∗γ � lim

ε→0

(∫
Ω
ηεxi

dα+
∫
Ω
ηεxi

dα̃
)

. (2.13)

Combining (2.9) and (2.13),

1

‖Q‖
p
p∗γ
∞

Sϑ ,η,γ

(
Q(xi)dxi

) p
p∗γ � Q(xi)dxi , (2.14)

which implies that

either Q(xi)dxi = 0, or Q(xi)dxi � 1

‖Q‖
N−sp
sp−γ
∞

(Sϑ ,η,γ)
N−γ
sp−γ . (2.15)
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To the concentration at 0, for ε > 0 small enough, let ηε0 (x) = θ
(

x
ε
)
, x ∈ R

N , where
θ ∈ C∞0 (RN) is a smooth cut off function, such that θ = 1 in B(0,1) and θ = 0 in
R

N \B(0,2) . Then

o(1) = 〈J′(un,vn),(ηε0 un,0)〉

=
∫∫

R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηε0 (x)−ηε0 (y))
|x− y|N−ps dxdy

+
∫∫

R2N

ηε0 (y)|un(x)−un(y)|p
|x− y|N−ps dxdy−

∫
Ω

|un|p∗α
|x|α ηε0 dx

− ϑ
ϑ +η

∫
Ω

Q(x)
|un|ϑ |vn|η
|x− x0|γ η

ε
0 dx−λ

∫
Ω

h(x)
|un|q
|x|σ η

ε
0 dx.

Using (2.4), (2.5) and Q(0) = 0, one can get

lim
ε→0

lim
n→∞

∫
Ω

|un|p∗α
|x|α ηε0 dx = b0,

and

lim
ε→0

lim
n→∞

∫
Ω

Q(x)
|un|ϑ |vn|η
|x− x0|γ η

ε
0 dx = lim

ε→0
lim
n→∞

∫
Ω

h(x)
|un|q
|x|σ η

ε
0 dx = 0.

Thus,

0 = lim
ε→0

lim
n→∞

[∫∫
R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηε0 (x)−ηε0 (y))
|x− y|N−ps dxdy

(2.16)

+
∫∫

R2N

ηε0 (y)|un(x)−un(y)|p
|x− y|N−ps dxdy

]
−b0. (2.17)

Note that

lim
ε→0

lim
n→∞

∫∫
R2N

un(x)|un(x)−un(y)|p−2(un(x)−un(y))(ηε0 (x)−ηε0 (y))
|x− y|N−ps dxdy = 0,

combining with (2.16), there holds

lim
ε→0

∫
Ω
ηε0 dα = b0. (2.18)

On the other hand, (1.3) implies that

Sα

(∫
Ω

|(ηε0 )
1
p un|p∗α

|x|α dx

) p
p∗α

�
∫∫

R2N

|(ηε0 )
1
p (x)un(x)− (ηε0 )

1
p (y)un(y)|p

|x− y|N+ps dxdy.

Thus

Sαb
p

p∗α
0 � lim

ε→0
lim
n→∞

∫∫
R2N

|(ηε0 )
1
p (x)un(x)− (ηε0 )

1
p (y)un(y)|p

|x− y|N+ps dxdy. (2.19)
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Note that

lim
ε→0

lim
n→∞

∫∫
R2N

ηε0 (x)|un(x)−un(y)|p
|x− y|N+ps dxdy

= lim
ε→0

lim
n→∞

∫∫
R2N

|(ηε0 )
1
p (x)un(x)− (ηε0 )

1
p (y)un(y)|p

|x− y|N+ps dxdy,

together with (2.19), there holds

Sαb
p

p∗α
0 � lim

ε→0

∫
Ω
ηε0 dα. (2.20)

Therefore, from (2.18) and (2.20),

Sαb
p

p∗α
0 � b0, (2.21)

which implies that

either b0 = 0, or b0 � S
N−α
sp−α
α , (2.22)

similarly,

either b̃0 = 0, or b̃0 � S
N−β
sp−β
β . (2.23)

Since un ⇀ u and vn ⇀ v weakly in X0 , then

c+o(1) = J(un,vn)

=
1
p
‖(un−u,vn− v)‖p

− 1
p∗α

∫
Ω

|un−u|p∗α
|x|α dx− 1

p∗β

∫
Ω

|vn − v|p∗β
|x|β dx

− 1
p∗γ

∫
Ω

Q(x)
|un−u|ϑ |vn− v|η

|x− x0|γ dx+ J(u,v). (2.24)

On the other hand, from o(1) = J′(un,vn) , we obtain that

J′(u,v) = 0. (2.25)

So, 0 = 〈J′(u,v),(u,v)〉 . Hence by the fact o(1) = 〈J′(un,vn),(un,vn)〉 , one can get

o(1) = ‖(un−u,vn− v)‖p−
∫
Ω

|un−u|p∗α
|x|α dx−

∫
Ω

|vn − v|p∗β
|x|β dx

−
∫
Ω

Q(x)
|un−u|ϑ |vn− v|η

|x− x0|γ dx. (2.26)
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From (2.24)–(2.26) and Lemma 1,

c+o(1) �
(

1
p
− 1

p∗α

)∫
Ω

|un−u|p∗α
|x|α dx+

(
1
p
− 1

p∗β

)∫
Ω

|vn− v|p∗β
|x|β dx

+

(
1
p
− 1

p∗γ

)∫
Ω

Q(x)
|un−u|ϑ |vn− v|η

|x− x0|γ dx−dλ
p

p−q , (2.27)

which implies that

c �
(

1
p
− 1

p∗α

)
b0 +

(
1
p
− 1

p∗β

)
b̃0 +

(
1
p
− 1

p∗γ

)
∑
i∈I

Q(xi)dxi −dλ
p

p−q . (2.28)

By the assumption c < c∗ , (2.15), (2.22) and (2.23), we can get b0 = b̃0 = 0, Q(xi)dxi =
0 (i ∈ I) . Hence I = /0 and so (un,vn) → (u,v) as n → ∞ in W . �

We get the following version of Lemma 2 without the condition Q(0) = 0.

LEMMA 3. Suppose that (H1) hold and, 1 < p < ∞ , s ∈ (0,1) is fixed and N >
sp. Then J satisfies the (PS)c condition for all c < c0 , where

c0 := min

{
p∗α − p
pp∗α

( 1
p
Sα
) p∗α

p∗α−p
,
p∗β − p

pp∗β

( 1
p
Sβ
) p∗β

p∗β−p
,

p∗γ − p

pp∗γ

1

‖Q‖
N−sp
N−γ
∞

( 1
p
Sϑ ,η,γ

) p∗γ
p∗γ−p

}
−dλ

p
p−q . (2.29)

Proof. The proof is similar to Lemma 2 and is omitted. �

Here, we recall a recent result on the extremal functions of Sα [23].
For 0 < α < sp < N , there exists a minimizer for Sα ; see [23, Theorem 1.1] for

more details. Now, by similar method in [8], we fix a radially symmetric decreasing
minimizer Uα = Uα(r) for Sα , multiplying Uα by a positive constant if necessary, we
assume that

(−�)s
pUα =

U p∗α−1
α
|x|α in R

N . (2.30)

LEMMA 4. ([23]) There exist constants c1,c2 > 0 and κ > 1 such that for all
r � 1 ,

c1

r
N−sp
p−1

� Uα(r) � c2

r
N−sp
p−1

and
Uα(κr)
Uα(r)

� 1
2
. (2.31)
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If κ is the above constant, then for δ � ε > 0, set

mε,δ =
Uα ,ε(δ )

Uα ,ε(δ )−Uα ,ε(κδ )
,

and

gε,δ (t) =

⎧⎪⎨⎪⎩
0, if 0 � t � Uα ,ε(κδ ),
mp
ε,δ (t−Uα ,ε(κδ )), if Uα ,ε(κδ ) � t � Uα ,ε(δ ),

t +Uα ,ε(δ )(mp−1
ε,δ −1), if t � Uα ,ε(δ ),

and define uα ,ε,δ (r) = Gε,δ (Uα ,ε(r)) , where

Gε,δ (Uα ,ε(r)) :=
∫ Uα,ε (r)

0
(g′ε,δ (t))

1
p dt.

Also, uα ,ε,δ satisfies

uα ,ε,δ (r) =

{
Uα ,ε(r), if r � δ ,

0, if r � κδ .

To obtain our results we need the the following lemmas.

LEMMA 5. (See [9, 8]) There exists C̃ > 0 such that for any 0 < 2ε � δ < κ−1δΩ
the following estimates hold:∫∫

R2N

|uα ,ε,δ (x)−uα ,ε,δ (y)|p
|x− y|N+ps dxdy � S

N−α
sp−α
α + C̃

( ε
δ

)N−sp
p−1

, (2.32)

∫
RN

up∗α
α ,ε,δ

|x|α dx � S
N−α
sp−α
α − C̃

( ε
δ

) N−α
p−1

. (2.33)

LEMMA 6. (See [17, Lemma 2.3]) For any 1 < q < p∗σ , there exists a constant
C̃q = C̃q(N, p,s) > 0 such that

∫
RN

uq
α ,ε,δ
|x|σ (x)dx �

⎧⎪⎪⎨⎪⎪⎩
C̃qεN− N−sp

p q−σ , if q > (N−σ)(p−1)
N−sp ,

C̃qεN− N−sp
p q−σ | lnε|, if q = (N−σ)(p−1)

N−sp ,

C̃qε(N−sp)( q
p−1− q

p ), if q < (N−σ)(p−1)
N−sp .

(2.34)

LEMMA 7. Assume that Q(0) = 0 , 1 < p < ∞ , s ∈ (0,1) is fixed, N > sp, ρ >
N−sp
p−1 + γ , (N−σ)(p−1)

N−sp � q < p, (H1) and (H2). Then there exists (u,v) ∈W \ {(0,0)}
and ℑ1 > 0 , such that for 0 < λ < ℑ1 ,

sup
t�0

J(tu,tv) < ϖ(ϑ ,η ,γ)−dλ
p

p−q . (2.35)
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Proof. For simplicity, we take δ = 1 and we set uε := uα ,ε,1 . So we consider the
functional

I(u,v) =
1
p
‖(u,v)‖p− 1

p∗γ

∫
Ω

Q(x)
|u|ϑ |v|η
|x− x0|γ dx.

Let u = ϑ
1
p uε , v = η

1
p uε and consider the function L (t) := J(tu,tv) , t � 0. We

know that limt→+∞L (t) = −∞ and L (t) > 0 as t is close to 0. Hernce supt�0 L (t)
is attained at some finite tε > 0 with L ′(tε ) = 0. Furthermore, Ĉ1 < tε < Ĉ2 ; where
Ĉ1 and Ĉ2 are the positive constants independent of ε . So we get

Z (tu, tv)=
t p

p
(ϑ+η)

∫∫
R2N

|uε(x)−uε(y)|p
|x− y|N+ps dxdy− t p∗γ

p∗γ
(ϑ

ϑ
p η

η
p )
∫
Ω

Q(x0)
|uε |p∗γ

|x− x0|γ dx,

and

I(tu, tv) = Z (tu,tv)− t p∗γ

p∗γ
(ϑ

ϑ
p η

η
p )

∫
Ω
(Q(x)−Q(x0))

|uε |p∗γ
|x− x0|γ dx. (2.36)

Note that

sup
t�0

( t p

p
A− t p∗γ

p∗γ
B
)

=

(
1
p
− 1

p∗γ

)(
A

B
p
p∗γ

) p∗γ
p∗γ−p

, A,B > 0. (2.37)

From (H2), (2.32), (2.33) and (2.37) it follows that straightforward

sup
t�0

Z (tu, tv) �
(

1
p
− 1

p∗γ

)
1

‖Q‖
N−sp
sp−γ
∞

(
Sϑ ,η,γ

) p∗γ
p∗γ−p +O

(
ε

N−sp
p−1

)
. (2.38)

By (H2), there exists R̃1 > , such that for x ∈ BR̃1
(x0) , |Q(x)−Q(x0)| � C|x− x0|ρ .

Thus ∣∣∣∣∣
∫
Ω
(Q(x)−Q(x0))

|uε |p∗γ
|x− x0|γ dx

∣∣∣∣∣ � C
∫
Ω
|Q(x)−Q(x0)| |uε |p∗γ

|x− x0|γ dx

= C
∫

B2r(x0)

|x− x0|ρ |uε |p∗γ
|x− x0|γ dx

= O(ερ−γ) (2.39)

From (2.36), (2.38) and (2.39), we conclude that

sup
t�0

I(tu,tv) = I(tεu,tεv) � ϖ(ϑ ,η ,γ)+O
(
ε

N−sp
p−1

)
. (2.40)

Obviously that there exists a positive constant ℑ∗
1 , such that for 0 < λ < ℑ∗

1 ,

ϖ(ϑ ,η ,γ)−dλ
p

p−q > 0,
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Then for 0 < λ < ℑ∗
1 , there exists t1 ∈ (0,1) , such that

sup
0�t�t1

J(tu,tv) � sup
0�t�t1

1
p
t p‖(u,v)‖p

< ϖ(ϑ ,η ,γ)−dλ
p

p−q . (2.41)

Also, one has

sup
t�t1

J(tu, tv) � sup
t�t1

[
I(tu,tv)− λ

q
tq
∫
Ω

h(x)
|u|q
|x|σ dx− t p∗α

p∗α

∫
Ω

|u|p∗α
|x|α dx

]
� sup

t�t1
I(tu,tv)− λ

q
tq1

∫
Ω

h(x)
|u|q
|x|σ dx− t p∗α

1

p∗α

∫
Ω

|u|p∗α
|x|α dx

]
� ϖ(ϑ ,η ,γ)+O

(
ε

N−sp
p−1

)
−C

∫
Ω

|uε |p∗α
|x|α dx−λC

∫
Ω

h(x)
|uε |q
|x|σ dx. (2.42)

From (2.33), ∫
Ω

|uε |p∗α
|x|α dx � O

(
ε

N−sp
p−1

)
. (2.43)

Also, from (2.34), it follows that∫
Ω

h(x)
|uε |q
|x|σ dx � ℜ

∫
Ω

|uε |q
|x|σ dx

�

⎧⎪⎪⎨⎪⎪⎩
C̃qεN− N−sp

p q−σ , if q > (N−σ)(p−1)
N−sp ,

C̃qεN− N−sp
p q−σ | lnε|, if q = (N−σ)(p−1)

N−sp ,

C̃qε(N−sp)( q
p−1− q

p ), if q < (N−σ)(p−1)
N−sp .

(2.44)

Since q � (N−σ)(p−1)
N−sp , by (2.42)–(2.44) we have

sup
t�t1

J(tu, tv) � ϖ(ϑ ,η ,γ)+O
(
ε

N−sp
p−1

)
+O

(
ε

N−α
p−1

)

−λ
⎧⎨⎩CC̃qεN− N−sp

p q−σ , if q > (N−σ)(p−1)
N−sp ,

CC̃qεN− N−sp
p q−σ | lnε|, if q = (N−σ)(p−1)

N−sp .

Note that N−sp
p−1 < N−α

p−1 , so one can get

sup
t�t1

J(tu, tv) � ϖ(ϑ ,η ,γ)+O
(
ε

N−α
p−1

)

−λ
⎧⎨⎩CC̃qεN− N−sp

p q−σ , if q >
(N−σ)(p−1)

N−sp ,

CC̃qεN− N−sp
p q−σ | lnε|, if q = (N−σ)(p−1)

N−sp .
(2.45)
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Since q � (N−σ)(p−1)
N−sp , then[
N− N− sp

p
q−σ

]
p−q

q
<

N− sp
p−1

−
[
N− N− sp

p
q−σ

]
.

Choose λ = ετ , where
[
N− N−sp

p q−σ
]

p−q
q < τ < N−sp

p−1 −
[
N− N−sp

p q−σ
]
. Hence

λO(εN− N−sp
p q−σ ) = O(ετ+N− N−sp

p q−σ ), and dλ
p

p−q = O(ε
pτ

p−q ).

Since τ + N − N−sp
p q−σ < pτ

p−q , τ + N − N−sp
p q−σ < N−sp

p−1 , then there exists

δ̂ > 0 such that

−dλ
p

p−q > O
(
ε

N−α
p−1

)
−λO

(
εN− N−sp

p q−σ), ∀ λ : 0 < λ
p

p−q < δ̂ . (2.46)

Set ℑ1 = min{ℑ∗
1,

p−q
p δ̂} . Thus for all λ ∈ (0,ℑ1) one can get

sup
t�t1

J(tu,tv) � ϖ(ϑ ,η ,γ)−dλ
p

p−q .

Combening with (2.41), we get the conclusion of Lemma 7. �

3. Proof of the main results

This section is devoted to the proofs of the main results of this paper

Proof of Theorem 1. Set

F (r) : =
1
p
rp − 1

p∗α
S
− p∗α

p
α rp∗α − 1

p∗β
S
−

p∗β
p

β rp∗β − 1
p∗γ

S
− p∗γ

p
ϑ ,η,γ‖Q‖∞,

H (r) : = D0(Sμ,a,d)
− q

p rq,

r : = ‖(u,v)‖.

(1.4) and (1.5) imply that J(u,v) � F (r)−H (r) . Since p < p∗α , p∗β , p∗γ , then F (r)
has a maximum at ρ0 and F (ρ0) > 0. Hence, there exists a positive constant ℑ11 > 0,
such that

inf
‖(u,v)‖=ρ0

I(u,v) � F (ρ0)−H (ρ0) > 0 ∀ 0 < λ < ℑ11. (3.1)

Choose d̃ > 0 small enough, such that

I(d̃u, d̃v) < 0, (3.2)

where (u,v) �= (0,0) and (d̃u, d̃v) ∈ Bρ0 . Consequently,

−∞< inf
(u,v)∈Bρ0

I(u,v) < 0. (3.3)
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Thus, in view of the Ekeland variational principle in [24], one can get {(un,vn)} ⊂ Bρ0 ,
such that

I(un,vn) � inf
(u,v)∈Bρ0

I(u,v)+
1
n
, (3.4)

I(un,vn) � I(u,v)+
1
n
‖(un−u,vn− v)‖, (3.5)

for all (u,v) ∈ Bρ0 . Define

J (u,v) := J(u,v)+
1
n
‖(un−u,vn− v)‖. (3.6)

In view of (3.5), one has (un,vn) is the minimizer of J (u,v) on Bρ0 . In view of (3.1),
(3.3) and (3.4), there exist ε > 0 and N0 ∈N , such that for n � N0 , ‖(un,vn)‖� ρ0−ε .
So, for (ϕ ,ψ)∈W and n �N0 , let t0 > 0 small enough, such that (un+t0ϕ ,vn+t0ψ)∈
Bρ0 and

J (un + t0ϕ ,vn + t0ψ)−J (un,vn)
t0

� 0.

Consequently,

J(un + t0ϕ ,vn + t0ψ)− J(un,vn)
t0

+
1
n
‖(ϕ ,ψ)‖ � 0, (3.7)

which implies that

〈J′(un,vn),(ϕ ,ψ)〉 � −1
n
‖(ϕ ,ψ)‖,

and then

‖J′(un,vn)‖ � 1
n
. (3.8)

Combining (3.4) and (3.8), there holds

lim
n→∞

J′(un,vn) = 0, (3.9)

lim
n→∞

J(un,vn) = inf
(u,v)∈Bρ0

J(u,v) < 0. (3.10)

So there exists 0 <ℑ∗ <ℑ11 , such that c0 > inf(u,v)∈Bρ I(u,v) for all 0 < λ <ℑ∗ . So in
view of Lemma 3, (3.9) and (3.10), (un,vn)→ (u,v) strongly in W for all 0 < λ <ℑ∗ .
Hence, (u,v) is a nontrivial solution of (1.1) and by replacing

∫
Ω

|u|q
|x|σ dx,

∫
Ω

|v|q
|x|σ dx,

∫
Ω

|u|p∗α
|x|α dx,

∫
Ω

|v|p∗β
|x|β dx,

∫
Ω

Q(x)
|u|ϑ |v|η
|x− x0|γ dx

by

∫
Ω

uq
+

|x|σ dx,
∫
Ω

vq
+

|x|σ dx,
∫
Ω

up∗α
+

|x|α dx,
∫
Ω

v
p∗β
+

|x|β dx,
∫
Ω

Q(x)
uϑ+vη+

|x− x0|γ dx,
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in problem (1.1), where u+ = max{u,0},v+ = max{v,0} . So, using (u−,v−) as a test
function in (1.1) by the above replacing and integrating by parts, one has 〈J′(u,v),(u−,v−)〉
= 0. Also by |x− y|p−2(x− y)(x−− y−) � |x−− y−| , we can get

‖u−‖p
X0

�
∫∫

R2N

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N−ps (u−(x)−u−(y))dxdy = 0,

‖v−‖p
X0

�
∫∫

R2N

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N−ps (v−(x)− v−(y))dxdy = 0.

Then ‖u−‖X0 = ‖v−‖X0 = 0 and so u � 0, v � 0. Therefore, by the maximum principle
we know that, u > 0,v > 0 on Ω . Therefore, (u,v) is a positive solution for (1.1). �

Proof of Theorem 2. By the proof of Theorem 1, there exists ρ1 > 0, such that
inf‖(u,v)‖=ρ1

I(u,v) � M0 > 0 for all 0 < λ <ℑ11 and constant M0 . Furthermore, (3.10)
and (3.9) hold. We Know that there exists ℑ2 ∈ (0,ℑ11) , such that c∗ > inf(u,v)∈Bρ1

J(u,v)
for all 0 < λ < ℑ2 . So in view of Lemma 2 (3.10) and (3.9), we have (un,vn) → (u,v)
strongly in W . Thus (1.1) has at least one positive solution satisfying J(u,v) < 0 for
all 0 < λ < ℑ2 .

Next we claim that problem (1.1) has a second positive solution. To this end,
obviously J(0,0) = 0. Let ℑ = min{ℑ1,ℑ2} . So Lemma 7 implies that there exists
(u0,v0) ∈W \ {0} such that supt�0 J(tu0,tv0) < c∗ for all 0 < λ < ℑ.

Also, we get liml→∞ J(lu0, lv0)=−∞ . So there exists l0 > 0 such that ‖(l0u0, l0v0)‖
> ρ1 and J(l0u0, l0v0) < 0. Let

c := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)),

where γ(1) = (l0u0, l0v0) and

Γ :=
{
γ ∈C0([0,1],W ) | γ(0) = (0,0), J(γ(1)) < 0, ‖γ(1)‖ > ρ1

}
.

So the Mountain pass theorem in [27] implies that there exists a sequence (un,vn) ∈W
such that

lim
n→∞

J(un,vn) = c and lim
n→∞

J′(un,vn) = 0.

Furthermore, c ∈ (0,c∗) . In view of Lemma 2 we have (un,vn) → (u,v) strongly in
W . So J(u,v) = c and J′(u,v) = 0. Then (u,v) is a second nontrivial solution of (1.1).
So, by the argument of the proof of Theorem 1, one get that u∗ > 0, v∗ > 0. Therefore,
we have the desired conclusion. �
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