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A CLASS OF NONLINEAR THIRD–ORDER BOUNDARY VALUE

PROBLEM WITH INTEGRAL CONDITION AT RESONANCE
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(Communicated by P. Korman)

Abstract. We are interested in the existence result for a class of nonlinear third-order three-point
boundary value problem with integral condition at resonance. By constructing suitable operators,
we establish an existence theorem upon the coincidence degree theory of Mawhin. The result
are illustrated with an example.

1. Introduction

The focus of this paper is to provide sufficient conditions that ensure the existence
of solutions for the following nonlinear third-order boundary value problem

u′′′ (t) = f
(
t,u(t) ,u′ (t)

)
, 0 < t < T, (1.1)

u(0) = u′′ (0) = 0, u(T ) =
2T
η2

∫ η

0
u(t)dt (1.2)

where f : [0,T ]×R
2 → R is a continuous function, 0 < η < T . We say that the

boundary value problem (1.1)–(1.2) is a resonance problem if the linear equation Lu =
u′′′ , with the boundary value conditions (1.2) has non-trivial solution that is dimKerL �
1.

Boundary value problems involving ordinary differential equations with integral
boundary conditions arise in various fields of applied mathematics and physics. For
example, heat conduction, chemical engineering, underground water flow, thermo-
elasticity, and plasma physics can produce boundary-valueproblemswith integral bound-
ary conditions [8, 12, 14]. Many authors have studied third-order boundary value
problems with different boundary conditions using different approaches. In the non-
resonance case, we can mention the works of ([1, 2, 4, 5, 11, 17]). For the resonance
case, we refer the reader to see ([3, 6, 7, 9, 10, 13, 16]).

Inspired and motivated by the works mentioned above, in the present article, we
use the coincidence degree theory of Mawhin [15] to discuss the existence of solution
for third-order nonlocal boundary value problem (1.1)–(1.2) at resonance case, and
establish an existence theorem. The layout of this paper is as follows. In section 2,
we give the background information from coincidence degree theory. We also define
appropriate mappings and projections that will be used in the sequel. We state and
prove our main result in section 3, and we illustrate the obtained results by an example.
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2. Preliminaries

In this section, we introduce some notations and an abstract existence result of the
coincidence degree theory (Mawhin 1979).

DEFINITION 1. Let Y, Z be two real Banach spaces. A linear operator L : domL⊂
Y → Z is said to be a Fredholm map of index zero provided that kerL , the kernel of L ,
is of the same finite dimension as the Y/ImL , where ImL is the image of L .

Let L be a Fredholm map of index zero, and P : Y −→ Y , Q : Z −→ Z be con-
tinuous projectors, such that ImP = kerL , KerQ = ImL . Then Y = kerL⊕ kerP ,
Z = ImL⊕ ImQ , thus L |domL∩KerP→ ImL is invertible, denote its inverse by KP .

DEFINITION 2. Let L be a Fredholmmap of index zero and Ω be an open bounded
subset of Y , such that domL∩Ω �= /0 , the map N : Y → Z is said to be L− compact
on Ω , if QN

(
Ω

)
bounded and KP (I−Q)N : Ω → Y is compact.

We will formulate the boundary value problem (1.1)–(1.2) as Lu = Nu where L
and N are appropriate operators. To obtain our existence results we use the following
fixed point theorem of Mawhin.

THEOREM 1. ([15]) Let L be a Fredholm operator of index zero and let N be
L− compact on Ω . Assume that the following conditions are satisfied:

(i) Lu �= λNu for every (u,λ ) ∈ [(domL\KerL)∩∂Ω]× (0,1) .
(ii) Nu /∈ ImL for every u ∈ KerL∩∂Ω .
(iii) deg(QN |KerL,KerL∩Ω,0) �= 0 ,

where Q : Z → Z is a projection as above with ImL = KerQ.
Then the abstract equation Lu = Nu has at least one solution in domL∩Ω .

For u∈C2 [0,T ] , we use the norm ‖u‖∞ = max
t∈[0,T ]

|u(t)| and ‖u‖= max{‖u‖∞ ,‖u′‖∞} ,

and denote the norm in L1 [0,T ] by ‖·‖1 . We will use the Sobolev space

W 3,1 (0,T ) =
{
u : [0,T ] → R : u,u′,u′′ are absolutely continuous on [0,T ]

with u′′′ ∈ L1 [0,T ]
}

Let Y = C2 [0,T ] , Z = L1 [0,T ] , define the linear operator L : domL ⊂ Y → Z by

Lu = u′′′, u ∈ domL

where

domL =

⎧⎨
⎩u ∈W 3,1 (0,T ) : u(0) = u′′ (0) = 0, u(T ) = α

η∫
0

u(t)dt

⎫⎬
⎭

and define N : Y → Z by

Nu(t) = f
(
t,u(t) ,u′ (t)

)
, t ∈ (0,T )

Then the boundary value problem (1.1)–(1.2) can be written as Lu = Nu .
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3. Existence results

We will assume that the following conditions hold.
(H1) There exist functions α,β ,γ ∈ L1 [0,T ] , such that for (u,v) ∈ R

2, t ∈ [0,T ] ,
satisfying

| f (t,u,v)| � α (t) |u|+ β (t) |v|+ γ (t) (3.1)

(H2) There exists a constant M > 0, such that for u ∈ domL , if |u′ (t)| > M for
all t ∈ [0,T ] , it holds

T∫
0

(T − s)2 f
(
s,u(s) ,u′ (s)

)
ds− 2T

3η2

η∫
0

(η − s)3 f
(
s,u(s) ,u′ (s)

)
ds �= 0 (3.2)

(H3) There exists a constant M∗ > 0, such that for any u(t) = bt ∈ KerL with
|b| > M∗ , either

b

⎡
⎣

T∫
0

(T − s)2 f
(
s,u(s) ,u′ (s)

)
ds− 2T

3η2

η∫
0

(η − s)3 f
(
s,u(s) ,u′ (s)

)
ds

⎤
⎦ < 0 (3.3)

or else

b

⎡
⎣

T∫
0

(T − s)2 f
(
s,u(s) ,u′ (s)

)
ds− 2T

3η2

η∫
0

(η − s)3 f
(
s,u(s) ,u′ (s)

)
ds

⎤
⎦ > 0 (3.4)

THEOREM 2. Assume that conditions (H1)− (H3) hold and that

‖α‖1 +‖β‖1 <
1

T +1
, (3.5)

then boundary value problem (1.1)–(1.2) has at least one solution in C2 [0,T ] .

For the Proof of Theorem 2 we shall apply Theorem 1 and the following Lemmas.

LEMMA 1. The operator L : domL⊂X → Z is a Fredholm operator of index zero.
Furthermore, define the linear continuous projector operator Q : Z → Z by

Qy(t) =
1
C

⎡
⎣

T∫
0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds

⎤
⎦t

where 1
C = 60

5T 4−2Tη3 and the linear operator KP : ImL → domL∩KerP by

KPy(t) =
1
2

t∫
0

(t− s)2 y(s)ds, ∀y ∈ ImL

Furthermore
‖KPy‖ � ‖y‖1 , ∀y ∈ ImL
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Proof. It is clear that

KerL = {u ∈ domL : Lu = 0}
=

{
u ∈ domL : u′′′ = 0

}
= {u ∈ domL : u(t) = bt, b ∈ R} � R.

Now, we show that

ImL =

⎧⎨
⎩y ∈ Z :

T∫
0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds = 0

⎫⎬
⎭ . (3.6)

Since the problem
u′′′ = y (3.7)

has a solution u(t) that satisfies the conditions u(0) = u′′ (0) = 0, u(T ) = 2T
η2

∫ η
0 u(t)dt

if and only if
T∫

0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds = 0. (3.8)

From (3.7), we have

u(t) = u(0)+u′ (0)t +u′′ (0)
t2

2
+

1
2

t∫
0

(t− s)2 y(s)ds.

Thus from the conditions u(0) = u′′ (0) = 0, we have

u(t) = u′ (0)t +
1
2

t∫
0

(t − s)2 y(s)ds.

According to u(T ) = 2T
η2

∫ η
0 u(t)dt , we obtain

T∫
0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds = 0.

Hence

ImL =

⎧⎨
⎩y ∈ Z :

T∫
0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds = 0

⎫⎬
⎭ .

On the other hand, if (3.8) hold, setting

u(t) = bt +
1
2

t∫
0

(t− s)2 y(s)ds,
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where b is arbitrary constants, then u(t) is solution of (3.7). Hence (3.6) holds.
Setting

Ry =
T∫

0

(T − s)2 y(s)ds− 2T
3η2

η∫
0

(η − s)3 y(s)ds

Let C =
∫ T
0 (T − t)2 tdt− 2T

3η2

∫ η
0 (η − t)3 tdt �= 0, t ∈ (0,1] . By simple calculation, we

get C = 5T4−2Tη3

60 .
Define Qy(t) = 1

C · (Ry) · t , it is clair that dim ImQ = 1. We have

(
Q2y

)
(t) = (Q(Qy)) (t)

=
1
C

(
1
C

Ry

)⎛
⎝

T∫
0

(T − t)2 t2ds− 2T
3η2

η∫
0

(η − t)3 t2ds

⎞
⎠ t

=
1
C

(Ry)t

= (Qy)(t) ,

which implies that the operator Q is projector. Furthermore, ImL = KerQ . For y ∈ Z ,
let y = (y−Qy)+Qy , since Q(y−Qy) = Qy−Q2y = 0, we know (y−Qy)∈ kerQ =
ImL , and Qy ∈ ImQ . Thus Z = ImL+ ImQ .

Let y ∈ ImL∩ ImQ . Since y ∈ ImQ , then there exists ρ ∈ R such that y(t) =
ρt, t ∈ [0,T ] . Since y ∈ ImL = KerQ , then

0 = ρ (Ry)(t) = ρ

⎛
⎝

T∫
0

(T − t)2 tds− 2T
3η2

η∫
0

(η − t)3 tds

⎞
⎠ = ρC,

since C �= 0 , then ρ = 0, so we have y(t) = 0, t ∈ [0,T ] , which implies ImL∩ ImQ =
{0} .

Consequently, Z = ImL⊕ ImQ , and

dimKerL = codimImL = dimImQ = 1.

Thus L is Fredholm operator of index zero (IndL = dimKerL−codimImL = 1−1= 0).
Define the other projector P : X → X by

(Pu)(t) = u′ (0)t, t ∈ [0,T ] . (3.9)

Note that KerP = {u ∈ X : u′ (0)t = 0}= {u ∈ X : u′ (0) = 0} and ImP = KerL .
Since (Pu)′ (t) = u′ (0) , then

(
P2u

)
(t) = P(t) , t ∈ [0,T ] for all u ∈ X , we have

u = (u−Pu)+Pu

u(t) =
(
u(t)−u′ (0)t

)
+u′ (0)t.
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For u ∈ X , let u = (u−Pu)+ Pu . Since P(u−Pu) = Pu−P2u = Pu−Pu = 0, we
know, (u−Pu)∈ KerP and Pu ∈ ImP = KerL , thus X = KerP+KerL .

Let u∈ KerL∩KerP , since u ∈ KerL = ImP , there exists μ ∈ R such that u(t) =
μt2 and since u∈KerP , then μ = u′ (0) = 0 and so u(t) = 0, t ∈ [0,T ] . Consequently,
KerL∩KerP = {0} . Then X = KerP⊕KerL .

Define the generalized inverse operator KP : ImL → domL∩KerP of L by

KPy(t) =
1
2

t∫
0

(t− s)2 y(s)ds.

It follows that

‖KPy‖∞ � 1
2

T∫
0

(T − s)2 |y(s)|ds �
T∫

0

|y(s)|ds = ‖y‖1

from (KPy)′ (t) =
∫ t
0 (t− s)y(s)ds , we obtain

∥∥(KPy)′
∥∥

∞ �
T∫

0

(T − s) |y(s)|ds �
T∫

0

|y(s)|ds = ‖y‖1 .

As such we have
‖KPy‖ = max

{‖KPy‖ ,
∥∥(KPy)′

∥∥}
� ‖y‖1 (3.10)

then, we have ∥∥Kpy
∥∥ � ‖y‖1 .

Also, if y ∈ ImL , then

(LKP)y(t) = [(KPy)(t)]′′′ = y(t)

and for u ∈ domL∩KerP , we know

(KPL)u(t) = (KP)u′′′ (t) =
1
2

t∫
0

(t− s)2 u′′′ (s)ds = u(t)−u(0)−u′ (0)t−u′′ (0)
t2

2

in view of u ∈ domL∩KerP, u(0) = u′′ (0) = 0 and Pu = 0, thus

(KPL)u(t) = u(t)

This shows that KP = (L |domL∩KerP)−1 . �

LEMMA 2. Let Ω1 = {u ∈ domL\KerL : Lu = λNu, f or some λ ∈ [0,1]} . Then
Ω1 is buonded.
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Proof. Suppose that u ∈ Ω1 , and Lu = λNu . Thus λ �= 0 and QNu = 0, so it
yields

T∫
0

(T − s)2 f
(
s,u(s) ,u′ (s)

)
ds− 2T

3η2

η∫
0

(η − s)3 f
(
s,u(s) ,u′ (s)

)
ds = 0.

Thus, by condition (H2) , there exists t1 ∈ [0,T ] , such that |u′ (t1)| � M . In view of

u′ (0) = u(t1)−
t1∫

0

u′′ (s)ds, u′′ (0) = u′′ (t1)+
t∫

0

u′′′ (s)ds.

Hence

|u(0)| =
∣∣∣∣∣∣u(t1)−

t1∫
0

u′ (s)ds

∣∣∣∣∣∣ � M +
∥∥u′

∥∥
1

and

∣∣u′′ (0)
∣∣ =

∣∣∣∣∣∣u
′′ (t1)+

t1∫
0

u′′′ (t)dt

∣∣∣∣∣∣ � M +
∥∥u′′′

∥∥
1

then, we have

∣∣u′ (0)
∣∣ � M+

∫ T

0

⎛
⎝

T∫
0

∣∣u′′′ (s)∣∣ds

⎞
⎠dt = M+T

∥∥u′′′
∥∥

1 = M+T ‖Lu‖1 � M+T ‖Nu‖1 .

(3.11)
Again for u∈ Ω1 , then (I−P)u∈ domL∩KerP = ImKP and LPu = 0, 0 < λ < 1 and
Nu = 1

λ Lu ∈ ImL , thus from Lemma 1, we know

‖(I−P)u‖ = ‖KPL(I−P)u‖ � ‖L(I−P)u‖1 = ‖Lu‖1 � ‖Nu‖1 . (3.12)

From (3.11) ,(3.12) and ‖Pu‖ = |u′ (0)| , we have

‖u‖ � ‖Pu‖+‖(I−P)u‖ =
∣∣u′ (0)

∣∣+‖(I−P)u‖ � M +(T +1)‖Nu‖1 . (3.13)

From (3.1) and (3.13) , we obtain

‖u‖ � (T +1)
[
‖α‖1 ‖u‖∞ +‖β‖1

∥∥u′
∥∥

∞ +‖γ‖1 +
M

T +1

]
. (3.14)

Thus, from ‖u‖∞ � ‖u‖ and (3.13) , we have

‖u‖∞ � T +1
1− (T +1)‖α‖1

[
‖β‖1

∥∥u′
∥∥

∞ +‖γ‖1 +
M

T +1

]
. (3.15)
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From ‖u′‖∞ � ‖u‖ , (3.14) and (3.15), we have

∥∥u′
∥∥

∞ � ‖u‖
∥∥u′

∥∥
∞ � (T +1)

[
1+

(T +1)‖α‖1

1− (T +1)‖α‖1

][
‖β‖1

∥∥u′
∥∥

∞ +‖γ‖1 +
M

T +1

]

=
T +1

1− (T +1)‖α‖1

[
‖β‖1

∥∥u′
∥∥

∞ +‖γ‖1 +
M

T +1

]

i.e., ∥∥u′
∥∥

∞

[
1− (T +1)‖β‖1

1− (T +1)‖α‖1

]
� T +1

1− (T +1)‖α‖1

[
‖γ‖1 +

M
T +1

]
.

Therefore

∥∥u′
∥∥

∞

[
1− (T +1)‖α‖1 − (T +1)‖β‖1

1− (T +1)‖α‖1

]
� 1

1− (T +1)‖α‖1
[(T +1)‖γ‖1 +M]

i.e., ∥∥u′
∥∥

∞ �
(T +1)

[‖γ‖1 + M
T+1

]
1− (T +1)‖α‖1− (T +1)‖β‖1

= M1 (3.16)

thus, from (3.16), there exists M1 > 0 such that
∥∥u′

∥∥
∞ � M1 (3.17)

therefore, from (3.17) and (3.16) , there exists M2 > 0, such that

‖u‖∞ � M2. (3.18)

Concequently
‖u‖ = max

{‖u‖∞ ,
∥∥u′

∥∥
∞
}

� max{M1,M2} .

Again, from(3.1) , (3.17) and (3.18) , we have
∥∥u′′′

∥∥
1 = ‖Lu‖1 � ‖Nu‖1 � ‖α‖1 M2 +‖β‖1 M1 +‖γ‖1 .

Which shows that Ω1 is bounded. �

LEMMA 3. The set Ω2 = {u ∈ KerL : Nu ∈ ImL} is bounded.

Proof. Let u∈Ω2 , then u∈KerL = {u ∈ domL : u = bt, b ∈ R, t ∈ [0,T ]} . Also,
since KerQ = ImL , then QNu = 0, therefore

T∫
0

(T − s)2 f (s,bs,b)ds− 2T
3η2

η∫
0

(η − s)3 f (s,bs,b)ds = 0

From condition (H2) , ‖u‖∞ = |b|T � MT , so ‖u‖ � MT , thus Ω2 is bounded. �



Differ. Equ. Appl. 13, No. 1 (2021), 51–61. 59

LEMMA 4. If the first part of condition(H3) holds, then

b

(
60

5T 4−2Tη3

)⎡
⎣

T∫
0

(T − s)2 f (s,bs,b)ds− 2T
3η2

η∫
0

(η − s)3 f (s,bs,b)ds

⎤
⎦ < 0

(3.19)
for all |b| > M∗ . Let Ω3 = {u ∈ KerL : −λJu+(1−λ )QNu = 0, λ ∈ [0,1]} where
J : kerL → ImQ is the linear isomorphism given by J (bt) = bt, ∀b ∈ R , t ∈ [0,T ] .
Then Ω3 is bounded.

Proof. Suppose that u = b0t ∈ Ω3 , then we obtain

λb0 = (1−λ )
(

60
5T 4−2Tη3

)⎛
⎝

T∫
0

(T − s)2 f (s,b0s,b0)− 2T
3η2

η∫
0

(η − s)3 f (s,b0s,b0)

⎞
⎠ .

If λ = 1, then b0 = 0, in this case Ω3 is bounded.
If λ �= 1, there exists M∗ > 0 such that |b0| > M∗ , then in view of the first part of

(H3) , we have

λb2
0 = b0 (1−λ )

(
30

1−η3

)⎛
⎝

T∫
0

(T − s)2 f (s,b0s,b0)− 2T
3η2

η∫
0

(η − s)3 f (s,b0s,b0)

⎞
⎠< 0

which contradicts the fact that λb2
0 � 0. Then |u| = |b0t| � |b0|T � M∗T , we obtain

‖u‖ � M∗T , hence Ω3 ⊂ {u ∈ KerL : ‖u‖ � M∗T} is bounded.
If λ = 0, it yields

T∫
0

(T − s)2 f (s,b0s,b0)ds− 2T
3η2

η∫
0

(η − s)3 f (s,b0s,b0)ds = 0,

taking condition (H2) into account, we obtain ‖u‖ = |b|T � M∗T . �

LEMMA 5. If the second part of (H3) holds, then

b

(
60

5T 4−2Tη3

)⎡
⎣

T∫
0

(T − s)2 f (s,bs,b)ds− 2T
3η2

η∫
0

(η − s)3 f (s,bs,b)ds

⎤
⎦ > 0

(3.20)
for all |b|> M∗ and Ω3 = {u ∈ KerL : −λJu+(1−λ )QNu = 0, λ ∈ [0,1]} is bounded,
here J is defined as in Lemma 4 .

Proof. A similar argument as above shows that Ω3 is bounded. �
Proof of Theorem 2. Let Ω to be an open bounded subset of X such that ∪3

i=1Ωi ⊂
Ω . By using the fact that u′′′ is bounded and Arzela-Ascoli Theorem, we can prove that
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KP (I−QN) : Ω → X is compact, thus N is L− compact on Ω . Then by Lemmas 2
and 3, we have

(i) Lx �= λNx for every (x,λ ) ∈ [(domL\KerL)∩∂Ω]× (0,1) .
(ii) Nx /∈ ImL for every x ∈ KerL∩∂Ω .
(iii) H (u,λ ) = ±λJu+(1−λ )QNu, λ ∈ [0,1] .
According to Lemmas 4 and 5, we know that H (u,λ ) �= 0 for every u ∈ kerL∩

∂Ω . Thus, by the homotopy property of degree, we obtain

deg(QN |kerL,Ω∩kerL,0) = deg(H (·,0) ,Ω∩kerL,0)
= deg(H (·,1) ,Ω∩kerL,0)
= deg(±J,Ω∩kerL,0) �= 0.

Then, by Theorem 1, Lu = Nu has at least one solution in domL∩Ω , so the boundary
value problem (1.1)–(1.2) has at least one solution in C2 [0,T ] . The proof is com-
plete. �

We construct an example to illustrate the applicability of the results presented.

EXAMPLE 1. Consider the following boundary value problem

u′′′ (t) = f
(
t,u(t) ,u′ (t)

)
, t ∈ (0,T ) (3.21)

u(0) = u′′ (0) = 0, u(T ) =
2T
η2

η∫
0

u(t)dt, η ∈ (0,T ) (3.22)

where

f
(
t,u(t) ,u′ (t)

)
=

(
1− t2

)
6

u(t)+
1
7
u′ (t)+ t, t ∈ (0,T )

Here, we take T = 3
4 , η = 1

4 .
We have ∣∣ f (

t,u(t) ,u′ (t)
)∣∣ � α (t) |u|+ β (t)

∣∣u′∣∣+ γ (t)

where α (t) = 1−t2
6 , β (t) = 1

7 and γ (t) = t , then α , β and γ are nonnegative and
belong to L1 [0,T ] , so, hypothesis (H1) is satisfied.

Set I =
∫ T
0 (T − s)2 f (s,u(s) ,u′ (s))ds− 2T

3η2

∫ η
0 (η − s)3 f (s,u(s) ,u′ (s))ds.

For M = 1,13317 and u ∈ domL , u(t) = bt , if |u′ (t)| > M , for all t ∈ [0,T ] , then,

I =
11211b+12704

491520
�= 0.

Then, the condition (H2) is satisfied.
Now, for M∗ = 2 > 0, and any u(t) = bt ∈ kerL with |b| > M∗ , we have

I =
11211b2 +12704b

491520
> 0,
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consequently, condition (H3) is satisfied.
Finally, a simple calculus gives ‖α‖1 + ‖β‖1 = 13

128 + 3
28 = 187

896 � 1
T+1 = 4

7 . We
conclude from Theorem 2 that the problem (3.21)–(3.22) has at least one solution in
C2 [0,T ]
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