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WELL–POSEDNESS AND BLOW–UP FOR AN

INHOMOGENEOUS SEMILINEAR PARABOLIC EQUATION

MOHAMED MAJDOUB

Abstract. We consider the large-time behavior of sign-changing solutions of the inhomogeneous
equation ut −Δu = |x|α |u|p + ζ (t)w(x) in (0,∞)×R

N , where N � 3 , p > 1 , α > −2 , ζ ,w
are continuous functions such that ζ (t) = tσ or ζ (t) ∼ tσ as t → 0 , ζ (t) ∼ tm as t → ∞ . We
obtain local existence for σ > −1 . We also show the following:

• If m � 0 , p < N−2m+α
N−2m−2 and

∫
RN w(x)dx > 0 , then all solutions blow up in finite time;

• If m > 0 , p > 1 and
∫
RN w(x)dx > 0 , then all solutions blow up in finite time;

• If ζ (t) = tσ with −1 < σ < 0 , then for u0 := u(t = 0) and w sufficiently small the solution exists
globally.

We also discuss lower dimensions. The main novelty in this paper is that blow up depends on
the behavior of ζ at infinity.
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