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CAPUTO TYPE MODIFICATION OF THE ERDÉLYI–KOBER

COUPLED IMPLICIT FRACTIONAL DIFFERENTIAL

SYSTEMS WITH RETARDATION AND ANTICIPATION

MOKHTAR BOUMAAZA, MOUFFAK BENCHOHRA ∗ AND JUAN J. NIETO

(Communicated by J. R. Wang)

Abstract. In this paper, we deal with the existence and uniqueness of solutions of a coupled
system of nonlinear implicit fractional differential equations of Caputo-type modification of the
Erdélyi-Kober involving both retarded and advanced arguments. The arguments are based upon
the Banach contraction principle and Schauder’s fixed point theorem. An example is included to
show the applicability of our outcomes.

1. Introduction

Differential equations of fractional order are valuable in modeling phenomena in
various fields of science and engineering. They can be found in viscoelasticity, elec-
trochemistry, control, porous media, electromagnetism, etc. For examples and details,
we refer the reader to the monographs [1, 2, 3, 19, 24, 25, 28], and the references
therein. On the other hand, coupled systems of fractional differential equations arise
in various problems of applied nature. In recent years, some authors have investigated
the existence and uniqueness of solutions for coupled systems of nonlinear fractional
differential equations; see [8] and the references therein.

In [23] the authors provide some properties of Caputo-type modification of the
Erdélyi-Kober fractional derivative. More details on the Erdélyi-Kober fractional inte-
gral and fractional derivative are given in [10, 16, 20, 21, 22]. Implicit differential equa-
tions have been considered by many authors [6, 11, 12, 14, 27]. In [4, 9, 13, 15, 18, 26],
the authors studied the existence and uniqueness of solutions for boundary value prob-
lems of integer and fractional order functional differential equations and inclusions
involving both retarded and advanced arguments. In [5], Abbas et al. studied a coupled
Caputo-Hadamard fractional differential system with multipoint boundary conditions
given by {

(HcDα1
1 u)(t) = f1(t,u(t),v(t))

(HcDα2
1 v)(t) = f2(t,u(t),v(t))

; t ∈ I := [1,T ],
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with the multipoint boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1u(1)−b1u′(1) = d1u(ξ1)
a2u(T )+b2u′(T ) = d2u(ξ2)
a3v(1)−b3v′(1) = d3v(ξ3)
a4v(T )+b4v′(T ) = d4v(ξ4),

where T > 1, ai,bi,di ∈ R, ξi ∈ (1,T ); i = 1,2,3,4, α j ∈ (1,2], f j : I ×R
m ×R

m →
R

m; j = 1,2 are given continuous functions, R
m; m ∈ N

∗ is the Euclidian Banach
space with a suitable norm ‖ · ‖, HcD

α j
1 is the Caputo–Hadamard fractional derivative

of order α j; j = 1,2. In [7], Abbas et al. studied implicit coupled Hilfer-Hadamard
fractional differential systems under weak topologies given by⎧⎨⎩

HDα ,β
1 u(t) = f1(t,u(t),v(t),H Dα ,β

1 u(t),H Dα ,β
1 v(t))

HDα ,β
1 v(t) = f2(t,u(t),v(t),H Dα ,β

1 u(t),H Dα ,β
1 v(t))

t ∈ I := [1,T ],

with the initial conditions ⎧⎨⎩(HI1−γu1)(t) |t=1= φ1

(HI1−γu2)(t) |t=1= φ2

where T > 1, t ∈ I = [1,T ] , α ∈ (0,1) , β ∈ [0,1] , fi : I×E4 → E ; i = 1,2 are given

continuous functions, E is a real (or complex) Banach space with norm ‖ · ‖E , HDα ,β
1

is the Hilfer-Hadamard fractional derivative of order α and type β .
In this paper, we study the existence and uniqueness of solutions to the following

Coupled system nonlinear implicit of Caputo type modification of the Erdélyi-Kober
fractional differential equations involving both retarded and advanced arguments:⎧⎨⎩

ρ
c Dα

a+u(t) = f1(t,ut ,vt ,
ρ
c Dα

a+u(t),ρc Dα
a+v(t))

ρ
c Dα

a+v(t) = f2(t,ut ,vt ,
ρ
c Dα

a+u(t),ρc Dα
a+v(t))

t ∈ I := [a,T ], (1.1)

⎧⎨⎩(u(t),v(t)) = (φ1(t),φ2(t)), t ∈ [a− r,a], r > 0

(u(t),v(t)) = (ψ1(t),ψ2(t)), t ∈ [T,T + β ], β > 0,
(1.2)

where ρ
c Dα

a+ is the Caputo type modification of the Erdélyi-Kober fractional derivative
and fi : I ×C([−r,β ],R)2 ×R

2 → R is a given function, φi ∈ C([a− r,a],R) with
φi(a) = 0 and ψi ∈C([T,T + β ],R) with ψi(T ) = 0, i = 1,2.

For t ∈ I , we denote by ut the element of C([−r,β ]) defined by:

ut(s) = u(t + s) : s ∈ [−r,β ].
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2. Preliminaries

In this part, we present notations and definitions, we will use throughout this paper.
By C([−r,β ],R) we denote the Banach space of all continuous functions from [−r,β ]
into R equipped with the norm

‖u‖[−r,β ] = sup{|u(t)| : −r � t � β}
and C([a,T ],R) is the Banach space endowed with the norm.

‖u‖[a,T ] = sup{|u(t)| : a � t � T}.
Also, let E1 = C([a− r,a],R) , E2 = C([T,T + β ],R) , and

AC1(I) := {w : I −→ R : w′ ∈ AC(I)},
where

w′(t) = t
d
dt

w(t), t ∈ I.

AC(I,R) is the space of absolutely continuous functions on I .

Ω = {u : [a− r,T + β ] �−→ R : u |[a−r,a]∈C([a− r,a]),u |[a,T ]∈ AC1([a,T ])

and
u |[T,T+β ]∈C([T,T + β ])}

be the spaces endowed, respectively, with the norms

‖u‖[a−r,a] = sup{|u(t)| : a− r � t � a},
‖u‖[T,T+β ] = sup{|u(t)| : T � t � T + β},
‖u‖Ω = sup{|u(t)| : a− r � t � T + β}.

Define the weighted product space Ω := Ω×Ω with the norm

‖(u,v)‖Ω := ‖u‖Ω +‖v‖Ω.

Consider the space X p
c (a,b) , (c ∈ R, 1 � p � ∞) of those complex-valued Lebesgue

measurable functions f on [a,b] for which ‖ f‖X p
c

< ∞ , where the norm is defined by:

‖ f‖X p
c

=
(∫ b

a
|tc f (t)|p dt

t

) 1
p

, (1 � p < ∞, c ∈ R).

In particular, where c = 1
p the space X p

c (a,b) coincides with Lp(a,b) , i.e.

X p
1
p
(a,b) = Lp(a,b).

And for p = ∞, we have

L∞(I) =
{

f : I −→ R| f is measurable and there is a constant C
such that | f (x)| � C a.e. on I

}
,

with the norm
‖ f‖L∞ = inf{C > 0; | f (x)| � C a.e. on I}.
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DEFINITION 1. ([23]): (Erdélyi-Kober fractional integral) Let α ∈ R , c ∈ R and
g ∈ X p

c (a,b) the Erdélyi-Kober fractional integral of order α is defined by:

(ρ Iα
a+g)(t) =

1
Γ(α)

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1

g(s)ds, t > a, ρ > 0 (2.1)

where Γ is the Euler gamma function defined by: Γ(α) =
∫ ∞

0
tα−1e−t dt, α > 0.

DEFINITION 2. ([23]) The generalized fractional derivative, corresponding to the
generalized fractional integrals (2.1), is defined, for 0 � a < t , by:

(ρDα
a+g)(t) =

ρ1−n+α

Γ(n−α)

(
s1−ρ d

ds

)n ∫ t

a

sρ−1

(tρ − sρ)1−n+α g(s)ds (2.2)

= δ n
ρ (ρ In−α

a+ g)(t),

where δ n
ρ =

(
s1−ρ d

ds

)n
.

DEFINITION 3. ([23]) The Caputo-type generalized fractional derivative ρ
c Dα

a+ is
defined via the above generalized fractional derivative (2.2) as follows

ρ
c Dα

a+g(t) =

(
ρDα

a+

[
g(s)−

n−1

∑
k=0

g(k)(a)
k!

(s−a)k
])

(t). (2.3)

LEMMA 1. ([23]) Let α,ρ ∈ R
+ , Then

(ρ Iα
a+

ρ
c Dα

a+g)(t) = g(t)−
n−1

∑
k=0

ck

(
tρ −aρ

ρ

)k

, (2.4)

for some ck ∈ R , n = [α]+1.

THEOREM 1. ([17]) (Schauder’s fixed point theorem) Let X be a Banach space,
D ⊂ X a nonempty convex bounded closed set and let N : D �−→ D be a completely
continuous operator. Then, N has at least one fixed point.

3. Existence of solutions

LEMMA 2. Let 1 < α � 2, φ ∈ C([a− r,a],R) with φ(a) = 0, ψ ∈ C([T,T +
β ],R) with ψ(T ) = 0 and h : I →R be a continuous function. Then the linear problem

ρ
c Dα

a+u(t) = h(t), for a.e t ∈ I := [a,T ], 1 < α � 2, (3.1)

u(t) = φ(t), t ∈ [a− r,a], r > 0 (3.2)

u(t) = ψ(t), t ∈ [T,T + β ], β > 0, (3.3)
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has a unique solution, which is given by

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t), if t ∈ [a− r,a],

−
∫ T

a
G(t,s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T,T + β ],

(3.4)

where

G(t,s)=
ρ1−α

Γ(α)

⎧⎪⎪⎨⎪⎪⎩
(tρ −aρ)(T ρ − sρ)α−1sρ−1

(T ρ −aρ)
− sρ−1(tρ − sρ)α−1, a � s � t � T.

(tρ −aρ)(T ρ − sρ)α−1sρ−1

(T ρ −aρ)
, a � t � s � T.

(3.5)
Here G(t,s) is called the Green function of the boundary value problem (3.1)–(3.3).

Proof. From (2.4) , we have

u(t) = c0 + c1

(
tρ −aρ

ρ

)
+ρ Iα

a+h(s),c0,c1 ∈ R, (3.6)

therefore
u(a) = c0 = 0,

u(T ) = c1

(
T ρ −aρ

ρ

)
+

ρ1−α

Γ(α)

∫ T

a
(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(Tρ −aρ)Γ(α)

∫ T

a
(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (3.6), we get equation(3.4).

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t), if t ∈ [a− r,a],

−
∫ T

a
G(t,s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T,T + β ],

where G is defined by equation (3.5), the proof is complete. �

LEMMA 3. Let fi : I ×C[−r,β ]2 ×R
2 −→ R , i = 1,2 , be continuous functions.

A function (u,v) ∈ Ω2 is solution of system (1.1)–(1.2) if and only if (u,v) satisfies the
following coupled system of integral equations

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ1(t), if t ∈ [a− r,a],

−
∫ T

a
G(t,s)h1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T,T + β ],
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v(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ2(t), if t ∈ [a− r,a],

−
∫ T

a
G(t,s)h2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T,T + β ],

where hi ∈C(I) satisfies the system of functional equations⎧⎨⎩h1(t) = f1(t,ut ,vt ,h1(t),h2(t)),

h2(t) = f2(t,ut ,vt ,h1(t),h2(t)).

The following hypotheses will be used in the sequel:

(H1 ) The functions fi : I×C[−r,β ]2×R
2 −→ R are continuous.

(H2 ) There exist Ki,Ki,Ci,Ci > 0, 0 < C2 < 1, 0 < C1 < 1 such that

| fi(t,u,v,w,z)− fi(t, u, v,w, z)|
� Ki‖u− u‖[−r,β ] +Ki‖v− v‖[−r,β ] +Ci|w−w|+Ci|z− z |

for any u, u ∈C([−r,β ]) and v, v ∈ R , i = 1,2.

(H3 ) There exist pi,qi ∈ L∞([a,T ],R+) such that

| fi(t,u,v, u, v)| � pi(t)‖u‖[−r,β ] +qi(t)‖v‖[−r,β ]

1+‖u‖[−r,β ]+‖v‖[−r,β ]+ |u|+ |v|

for a.e. t ∈ I, and each u,v ∈C([−r,β ]) and u, v ∈ R.

Set
p∗i = esssup

t∈I
pi(t), q∗i = esssup

t∈I
qi(t), i = 1,2

G̃ = sup

{∫ T

a
|G(t,s)|ds : t ∈ I

}
.

Now, we state and prove our existence result for (1.1)–(1.2) based on the Banach
fixed point theorem.

THEOREM 2. Assume (H1) and (H2) hold. If

C2C1

(1−C1)(1−C2)
< 1, (3.7)

and
G∗

1 +G∗
2 < 1, (3.8)

then the problem (1.1)–(1.2) has a unique solution.
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Proof. Let the operator N : Ω×Ω �−→ Ω×Ω defined by

N(u,v)(t) = (N1(u,v)(t),N2(u,v)(t))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(φ1(t),φ2(t)), if t ∈ [a− r,a],

−
(∫ T

a
G(t,s)h1(s)ds,

∫ T

a
G(t,s)h2(s)ds

)
, if t ∈ I

(ψ1(t),ψ2(t)), if t ∈ [T,T + β ].

(3.9)

By Lemma 3 it is clear that the fixed points of N are solutions (1.1)–(1.2).
Let (u2,v2),(u1,v1) ∈ Ω2 . If t ∈ [a− r,a] or t ∈ [T,T + β ] then

|N(u2,v2)(t)−N(u1,v1)(t)| = 0.

For t ∈ I , we have

|N1(u2,v2)(t)−N1(u1,v1)(t)| �
∫ T

a
|G(t,s)||ρc Dαu2(t)−ρ

c Dαu1(t)|ds, (3.10)

and by (H2) we have

|ρc Dα
a+u2(t)−ρ

c Dα
a+u1(t)| = | f1(t,ut

2,v
t
2,

ρ
c Dα

a+u2(t),ρc Dα
a+v2(t))

− f1(t,ut
1,v

t
1,

ρ
c Dα

a+u1(t),ρc Dα
a+v1(t))|

� K1‖u2−u1‖[−r,β ] +K1‖v2− v1‖[−r,β ]

+C1|ρc Dα
a+u2(t)−ρ

c Dα
a+u1(t)|+C1|ρc Dα

a+v2(t)−ρ
c Dα

a+v1(t)|.
Then

|ρc Dα
a+u2(t)−ρ

c Dα
a+u1(t)| � K1

(1−C1)
‖u2−u1‖[−r,β ] +

K1

(1−C1)
‖v2− v1‖[−r,β ]

+
C1

(1−C1)
|ρc Dα

a+v2(t)−ρ
c Dα

a+v1(t)|.

Similarly, one can find that

|ρc Dα
a+v2(t)−ρ

c Dα
a+v1(t)| � K2

(1−C2)
‖u2−u1‖[−r,β ] +

K2

(1−C2)
‖v2− v1‖[−r,β ]

+
C2

(1−C2)
|ρc Dα

a+u2(t)−ρ
c Dα

a+u1(t)|.

Therefore

|ρc Dα
a+u2(t)−ρ

c Dα
a+u1(t)| � K1

(1−C1)
‖u2−u1‖[−r,β ] +

K1

(1−C1)
‖v2− v1‖[−r,β ]

+
C1

(1−C1)

[
K2

(1−C2)
‖u2−u1‖[−r,β ]+

K2

(1−C2)
‖v2−v1‖[−r,β ]

]
+

C2C1

(1−C1)(1−C2)
|ρc Dα

a+u2(t)−ρ
c Dα

a+u1(t)|,
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then

|ρc Dα
a+u2(t)−ρ

c Dα
a+u1(t)| � K1(1−C2)+C1K2

(1−C1)(1−C2)−C2C1
‖u2−u1‖[−r,β ]

+
K1(1−C2)+C1K2

(1−C1)(1−C2)−C2C1
‖v2− v1‖[−r,β ],

and

|ρc Dα
a+v2(t)−ρ

c Dα
a+v1(t)| � K2(1−C1)+C2K1

(1−C1)(1−C2)−C2C1
‖u2−u1‖[−r,β ]

+
K2(1−C1)+K1C2

(1−C1)(1−C2)−C2C1
‖v2− v1‖[−r,β ].

From it we get

|N1(u2,v2)(t)−N1(u1,v1)(t)| �
∫ T

a
|G(t,s)|( K1(1−C2)+C1K2

(1−C1)(1−C2)−C2C1
‖u2−u1‖[−r,β ]

+
K1(1−C2)+C1K2

(1−C1)(1−C2)−C2C1
‖v2− v1‖[−r,β ]ds)

�
G̃
(
K1(1−C2)+C1K2

)
(1−C1)(1−C2)−C2C1

‖u2−u1‖[−r,β ]

+
G̃
(
K1(1−C2)+C1K2

)
(1−C1)(1−C2)−C2C1

‖v2− v1‖[−r,β ].

Therefore, for each t ∈ I , we have

|N1(u2,v2)(t)−N1(u1,v1)(t)| �
G̃
(
K1(1−C2)+C1K2

)
(1−C1)(1−C2)−C2C1

‖u2−u1‖Ω

+
G̃
(
K1(1−C2)+C1K2

)
(1−C1)(1−C2)−C2C1

‖v2− v1‖Ω.

Thus

‖N1(u2,v2)−N1(u1,v1)‖Ω � G∗
1 [‖u2−u1‖Ω +‖v2− v1‖Ω] , (3.11)

with

G∗
1 =

G̃
(
(K1 +K1)(1−C2)+C1(K2 +K2)

)
(1−C1)(1−C2)−C2C1

.

likewise, we get

‖N2(u2,v2)−N2(u1,v1)‖Ω � G∗
2 [‖u2−u1‖Ω +‖v2− v1‖Ω] , (3.12)

with

G∗
2 =

G̃
(
(K2 +K2)(1−C1)+C2(K1 +K1)

)
(1−C1)(1−C2)−C2C1

.
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Thus it follows from (3.11) and (3.12), that

‖N(u2,v2)−N(u1,v1)‖Ω � (G∗
1 +G∗

2)
[‖u2−u1‖Ω +‖v2− v1‖Ω

]
,

with

G∗
1 +G∗

2 = G̃

(
(K1 +K1)(1−C2 +C2)+ (1−C1 +C1)(K2 +K2)

(1−C1)(1−C2)−C2C1

)
.

So by (3.8) the operator N is a contraction. By the Banach contraction principle, N has
a fixed point, which is solution to problem (1.1)–(1.2). �

We now prove an existence result for (1.1)–(1.2) by using the Schauder’s fixed
point theorem.

THEOREM 3. Suppose that (H1) and (H3) hold. Then problem (1.1)–(1.2) has at
least one solution.

Step 1. N is continuous. Let {(un,vn)} be a sequence such that (un,vn)−→ (u,v)
in Ω×Ω . If t ∈ [a− r,a] or t ∈ [T,T + β ] then

|N(un,vn)(t)−N(u,v)(t)|= 0.

For t ∈ I , we have

|Ni(un,vn)(t)−Ni(u,v)(t)| �
∫ T

a
|G(t,s)||hi,n(s)−hi(s)|ds, i = 1,2, (3.13)

where
hi,n(t) = fi(t,ut

n,v
t
n,h1,n(t),h2,n(t)),

and
hi(t) = fi(t,ut ,vt ,h1(t),h2(t)).

Since (un,vn) −→ (u,v) , and by (H1) we get hi,n(t) −→ h(t) , i = 1,2 as n −→ ∞ for
each t ∈ I . By (H3) we have for each t ∈ I , i = 1,2,

|hi,n(t)| � p∗i +q∗i . (3.14)

Then,

|G(t,s)||hi,n(t)−hi(t)| � |G(t,s)| [|hi,n(t)|+ |hi(t)|]
� 2(p∗i +q∗i )|G(t,s)|.

For each t ∈ I the functions s �−→ 2(p∗i +q∗i )|G(t,s)| are integrable on [a,t] , then by
Lebesgue dominated convergence theorem, equation (3.13 ) implies

|Ni(un,vn)(t)−Ni(u,v)(t)| −→ 0 as n −→ ∞,
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and hence

‖N(un,vn)−N(u,v)‖Ω −→ 0 as n −→ ∞.

Consequently, N is continuous.
Let the constant R be such that:

R � max
{
L1 +L2,‖φ1‖[a−r,a] +‖φ2‖[a−r,a],‖ψ1‖[T,T+β ] +‖ψ2‖[T,T+β ]

}
, (3.15)

and define
DR = {(u,v) ∈ Ω×Ω : ‖(u,v)‖Ω � R}.

It is clear that DR is a bounded, closed and convex subset of Ω .

Step 2. N(DR) ⊂ DR .
Let (u,v) ∈ DR we show that N(u,v) = (N1(u,v),N2(u,v)) ∈ DR .
If t ∈ [a− r,a], then

|N(u,v)(t)| � ‖φ1‖[a−r,a] +‖φ2‖[a−r,a] � R,

and if t ∈ [T,T + β ], then

|N(u,v)(t)| � ‖ψ1‖[T,T+β ] +‖ψ2‖[T,T+β ] � R.

For each t ∈ I, we have

|Ni(u,v)(t)| �
∫ T

a
|G(t,s)||hi(s)|ds, i = 1,2.

By (H3) , we have

|Ni(u,v)(t)| � (p∗i +q∗i )
∫ T

a
|G(t,s)|ds

� (p∗i +q∗i )G̃ = Li

from which it follows that for each t ∈ [a− r,T + β ], we have

|Ni(u,v)(t)| � Li,

which implies that ‖Ni(u,v)‖Ω � Li, hence we get

‖N(u,v)‖Ω � L1 +L2

� R.

Consequently,
N(DR) ⊂ DR.
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Step 3 . N(DR) is bounded and equicontinuous.
By Step 2 we have N(DR) is bounded.
Let t1, t2 ∈ I = [a,T ],t1 < t2, and (u,v) ∈ DR then

|Ni(u,v)(t2)−Ni(u,v)(t1)| �
∫ T

a
|G(t2,s)−G(t1,s)||hi(s)|ds

� (p∗i +q∗i )
∫ T

a
|G(t2,s)−G(t1,s)|ds.

As t1 −→ t2 the right hand side of the above inequality tends to zero.Therefore, the
operator N(u,v) is equicontinuous. As consequence of Step 1 to Step 3, together withe
the Arzela-Ascoli theorem, we can conclude that N is continuous and completely con-
tinuous and satisfies the assumptions of Schauder’s fixed point theorem. Then N has a
fixed point, which is a solution of the problem (1.1)–(1.2).

4. An example

Consider the boundary value problem of implicit Caputo type modification of the
Erdélyi-Kober fractional differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u(t),v(t)) = (et−2 −1,2t−4), t ∈ [1,2],

1
2
c D

3
2
2+u(t) =

ln(t)

200et+2

(
1+ |ut |+ |vt |+

∣∣∣∣ 12c D
3
2
2+u(t)

∣∣∣∣+ ∣∣∣∣ 12c D
3
2
2+v(t)

∣∣∣∣) , t ∈ I = [2,e]

1
2
c D

3
2
2+v(t) =

arctan(t)

100et+2

(
1+ |ut |+ |vt |+

∣∣∣∣ 1
2
c D

3
2
2+u(t)

∣∣∣∣+ ∣∣∣∣ 1
2
c D

3
2
2+v(t)

∣∣∣∣) , t ∈ I = [2,e]

(u(t),v(t)) = (ln(t)−1,t− e), t ∈ [e,6].
(4.1)

Set

f1(t,u,v, u, v) =
ln(t)

200et+2 (1+ |ut |+ |vt |+ |u|+ |v|) ,

t ∈ [2,4], u,v ∈C([−r,β ]), u, v ∈ R,

f2(t,u,v, u, v) =
arctan(t)

100et+2 (1+ |ut |+ |vt |+ |u|+ |v|) ,

t ∈ [2,4], u,v ∈C([−r,β ]), u, v ∈ R,

v ∈ R, α =
3
2
, ρ =

5
2
, r = 1, β = 6− e.
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Condition (H2) is satisfied, indeed, for each u,v ∈C([−r,β ]) , u, v ∈ R and t ∈ [2,e] ,
we have

| f1(t,u2,v2, u2, v2)− f1(t,u1,v1, u1, v1)| � 1
200et+2 (‖u2−u1‖[−r,β ] +‖u2− v1‖[−r,β ]

+|u2− u1|+ |v2 − v1|),
and

| f2(t,u2,v2, u2, v2)− f2(t,u1,v1, u1, v1)| � π
200et+2 (‖u2−u1‖[−r,β ] +‖u2− v1‖[−r,β ]

+|u2− u1|+ |v2 − v1|).
Therefore, (H2) is verified with

Ki = Ki = Ci = Ci =

⎧⎪⎨⎪⎩
π

200e4 for i = 2,

1
200e4 for i = 1.

For each t ∈ I we have∫ T

a
|G(t,s)|ds � 1

Γ(α)

(
tρ −aρ

Tρ −aρ

)∫ T

a

∣∣∣∣∣
(

T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ds

+
1

Γ(α)

∫ t

a

∣∣∣∣∣
(

tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ds

� 2
Γ(α +1)

(
Tρ −aρ

ρ

)α
.

Therefore

G̃ � 2
Γ(α +1)

(
Tρ −aρ

ρ

)α
.

We have

G∗
1 +G∗

2 �
1

100e4 + π
100e4

((1− 1
200e4 )(1− π

200e4 )− π
(200e4)2 )

2

Γ( 5
2 )

(
e

5
2 −2

5
2

5
2

) 3
2

≈ 6.689246337.10−7

< 1.

Hence (3.8) is satisfied with T = e , a = 2 and α = 3
2 . Hence all conditions of Theorem

2 are satisfied, it follows that the problem (4.1) admit a unique solution defined on I .
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