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(Communicated by P. I. Naumkin)

Abstract. The main subject of this paper is the study of third order linear partial differential equa-
tions with analytic coefficients in a two variables domain. We aim the existence of solutions by
algorithmic means, in the real or complex analytical case. This is done by introducing methods
inspired by the classical method of Frobenius method for analytic second order linear ordinary
differential equations. We introduce a notion of Euler type partial differential equation. To such a
PDE we associate an indicial cubic, which is an affine plane curve of degree three. Points in this
curve are associate to solutions of the Euler PDE. Then comes the concept of regular singularity
for the PDE, followed by a notion of resonance and a partial classification of PDEs having such
regular singularities. Finally, we obtain convergence theorems, which must necessarily take into
account the existence of resonances and the type of PDE (parabolic, elliptical or hyperbolic). We
provide some examples of PDEs that may be treated with our methods. This is the first study
in this rich subject. Our results are a first step in the reintroduction of techniques from ordinary
differential equations in the study of classical problems involving partial differential equations.
Our solutions are constructive and computationally viable.

1. Introduction

One of the most applicable fields in mathematics is the subject of partial differen-
tial equations. Indeed, a number of phenomena as heat diffusion, waves propagation
and electromagnetic forces are modeled by these equations. All these equations be-
long, in the classical framework, to the class of second order linear equations. This
class plays a special role in the theory. Indeed, it includes the above mentioned and
several other modern problems as nuclear reactions and atomic models. Since the work
of Euler, Lagrange, Bernoulli and Fourier, among others, the techniques for solving
such equations are based on reducing, at least partially, the original PDE to a system of
ordinary differential equations and trying to solve these ODEs. This is done by sepa-
rating variables and then by using special transforms as Fourier or Laplace transforms.
Another possibility is the use of the theory of distributions and operators as the heat
kernel. All this works pretty well, but has some difficulties. One of the first to show up
is the fact that the equations must have constant coefficients or, at least, the majority of
these. Another restriction of the classical methods is the fact that not all PDEs can have
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separable variables. Indeed, already some simple perturbations of classical equations
are found to be outside of the class of equations admitting this separation.

The classical Laplace-Fourier method has some limitations. For instance, it works
well from the theoretical point of view, but very often the computation of the inverse
Laplace or Fourier transform is hard to be carried out. Another delicate point is the
class of functions where the method converges, which is essentially associate to those
having subexponential growth. In our point of view, Frobenius method has already
proved its value when compared to the Laplace-Fourier in the classical second order
ordinary differential equations case. This is one of the reasons why it is an essential
subject in any PDE course. The discover of this method was responsible for some of
the first concrete algorithmic computations of solutions of ordinary differential equa-
tions associate to important phenomena in physics. The discovery and study of Bessel
functions, Lagrange, Legendre and Chebyshev polynomials owes a lot to the pioneering
work of Frobenius for second order ordinary differential equations.

Our aim is to bring to the framework of partial differential equations some of
the techniques used in the study of ordinary differential equations in second order and
greater ([10]). Then we adapt some of these elements to the framework of third order
partial differential equations. The case of second order is described in [11]. Before
going further, let us recall the second order ordinary differential case.

1.1. The classical method of Frobenius for second order ordinary
differential equations

The classical method of Frobenius is a very useful tool in finding solutions of a
homogeneous second order linear ordinary differential equations with analytic coeffi-
cients. These are equations that write in the form a(x)y′′ +b(x)y′+ c(x)y = 0 for some
real analytic functions a(x),b(x),c(x) at some point x0 ∈ R . It is well known that if x0

is an ordinary point, i.e., a(x0) �= 0 then there are two linearly independent solutions
y1(x),y2(x) of the ODE, admitting power series expansions converging in some com-
mon neighborhood of x0 . This is a consequence of the classical theory of ODE and also
shows that the solution space of this ODE has dimension two, i.e., any solution is of the
form c1y1(x)+ c2y2(x) for some constants c1,c2 ∈ R . Second order linear homoge-
neous differential equations appear in many concrete problems in natural sciences, as
physics, chemistry, meteorology and even biology. Thus solving such equations is an
important task.

The existence of solutions for the case of an ordinary point is not enough for most
of the applications. Indeed, most of the relevant equations are connected to the singular
(non-ordinary) case. We can mention Bessel equation x2y′′ + xy′ + (x2 − ν2)y = 0,
whose range of applications goes from heat conduction, to the model of the hydrogen
atom. This equation has the origin x = 0 as a singular point. Another remarkable
equation is the Laguerre equation xy′′ + (ν + 1− x)y′ + λy = 0 where λ ,ν ∈ R are
parameters. This equation is quite relevant in quantum mechanics, since it appears
in the modern quantum mechanical description of the hydrogen atom. All these are
examples of equations with a regular singular point. The classical Frobenius method
for second order ODE is found originally found in [8] and, more recently, in [5, 6]. It
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was extended for higher order ODEs in [10].
In [10, 11] we address the problem of studying third order ordinary and second

order partial differential equations respectively, using techniques inspired by Frobenius
methods. Third order ordinary differential equations are in contrast with second order
ones in terms of the levels of energy involved. In short, third order ODEs are asso-
ciate with high energy phenomena. Using this same point of view one may ask for
applications third order PDEs. We mention that such equations are also very important,
and associate with high energy phenomena as well. Nevertheless, there are many other
fields where such equations are important.

In [11] it is addressed the problem of developing and studying a method of Frobe-
nius for second order partial differential equations. An extensive study is found therein
and we refer to it as one of the motivations of the current work. Nevertheless, the same
extension to higher order problem (considered for ODEs in [10]) persists in the case
of PDEs. Let us be more precise. We shall work with the class of third order analytic
linear homogeneous partial differential equations. Such a PDE is of the form

a(x,y)
∂ 3u
∂x3 +b(x,y)

∂ 3u
∂x2∂y

+ c(x,y)
∂ 3u

∂x∂y2 +d(x,y)
∂ 3u
∂y3 + e(x,y)

∂ 2u
∂x2

+ f (x,y)
∂ 2u

∂x∂y
+g(x,y)

∂ 2u
∂y2 +h(x,y)

∂u
∂x

+ i(x,y)
∂u
∂y

+ j(x,y)u = 0

(1.1)

where the coefficients a(x,y),b(x,y),c(x,y),d(x,y),e(x,y), f (x,y),g(x,y),h(x,y), i(x,y)
and j(x,y) are real or complex analytic functions defined in some domain U ⊂ K2

where K ∈ {R,C} .
This is a very meaningful class when it comes to classical natural phenomena

(see Examples 7.2 and 7.3 and references [3, 13, 2, 9]). We shall first introduce a
simple model for these equations based on the classical Euler equation for second order
ordinary differential equations [5, 6]. This will be a PDE of the form

Ax3 ∂ 3u
∂x3 +Bx2y

∂ 3u
∂x2∂y

+Cxy2 ∂ 3u
∂x∂y2 +Dy3 ∂ 3u

∂y3 +Ex2 ∂ 2u
∂x2

+Fxy
∂ 2u

∂x∂y
+Gy2 ∂ 2u

∂y2 +Hx
∂u
∂x

+ Iy
∂u
∂y

+ Ju = 0

(1.2)

where A,B,C,D,E,F,G,H, I,J ∈ K .
To this equation we shall associate an indicial polynomial P(r,s) = Ar(r−1)(r−

2)+Brs(r− 1)+Crs(s− 1)+Ds(s− 1)(s− 2)+Er(r− 1)+Frs+Gs(s− 1)+Hr+
Is + J which defines a cubic in the affine plane C ⊂ K2 . This indicial cubic given
by C : P(r,s) = 0 plays the role of the indicial equation for Euler ordinary differential
equations of second order [5, 6]. Indeed, as for the case of Euler type ODEs, we prove
that, for an Euler type PDE, the monomial solutions of the form xrys are in correspon-
dence with the pairs (r,s) belonging to the indicial cubic (cf. Theorem 2.1).

Motivated by this, always having in mind the classical ODE framework, we shall
introduce a notion of regular singularity for such equations, which seems a natural
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adaptation of the notion of regular singularity imported from the theory of second order
linear ordinary differential equations. We then look for solutions of the form a real or
complex monomial times a power series. Such solutions will called Frobenius type so-
lutions. This is done taking into account a notion of resonance which we shall introduce
in a quite geometric way. Having in mind the classification of the indicial cubic up to
affine change of coordinates (cf.[14]) we introduce the notions of hyperbolic, elliptic
and parabolic Frobenius type PDE. Then we finally prove Frobenius type results for the
existence and convergence of Frobenius type solutions of PDEs (cf.Theorems C,D,E).

Since it is not the scope of this paper, we just mention a couple of examples il-
lustrating the range of these techniques. A further study of examples is found in a
forthcoming work.

2. Euler equation of third order for PDEs

In the theory of ordinary differential equations the Euler equation y′′+by′+cy = 0
plays an important role as a fundamental part in the solution of second order linear
ODEs. A model for second order partial differential equations may be found in [11].
We propose the following version for third order PDEs:

DEFINITION 2.1. We shall call an Euler PDE of third order in two variables an
equation given by (1.2). To this equation we shall associate an indicial polynomial
P(r,s) = Ar(r− 1)(r− 2)+ Brs(r− 1)+Crs(s− 1)+ Ds(s− 1)(s− 2)+Er(r− 1)+
Frs+Gs(s−1)+Hr+ Is+ J which defines a cubic in the affine plane C ⊂ K2 . This
indicial cubic given by C : P(r,s) = 0.

The indicial cubic of an Euler PDE as above plays the role of the indicial equation
for Euler ordinary differential equations of second order ([5, 6]). Indeed we have:

THEOREM 2.1. Given an Euler equation (1.2) we have the following equivalence:

(i) The point (r,s) belongs to the indicial cubic C .

(ii) We have a monomial solution of the form u = xrys .

REMARK 2.1. (Euler’s trick) The proof is a straightforward computationwith par-
tial derivatives. The motivation for this result goes back to the classical Euler’s trick
for ordinary differential equations. In our case, this consists in performing the change
of variables x = ez, y = ew . By this change we may obtain a new PDE of third order
but with constant coefficients. Then we look for solutions of the form erz+sw which
will send us to an algebraic equation involving r,s , the equation of the indicial cubic
above obtained. Theorem 2.1 however does not assure the existence of monomial poly-
nomial or monomial rational solutions, since the points of the indicial cubic may be all
non-integral.
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REMARK 2.2. (why not just separate variables?) Consider the third order partial
differential equation given by

x3 ∂ 3u
∂x3 + y3 ∂ 3u

∂y3 + x2A1(x)
∂ 2u
∂x2 + y2A2(y)

∂ 2u
∂y2 + xB1(x)

∂u
∂x

+ yB2(y)
∂u
∂y

= 0.

Let us look for solutions of this equation by the method of separation of variables,
ie., solutions of the form

u(x,y) = X(x)Y (y).

Straightforward computations then give the following ODEs

x3X ′′′(x)+ x2A1(x)X ′′(x)+ xB1(x)X ′(x)+ λX(x) = 0 (2.1)

and
y3Y ′′′(y)+ y2A2(y)Y ′′(y)+ yB2(y)Y ′(y)−λY (y) = 0. (2.2)

The characteristic polynomial associate to (2.1) is given by

r(r−1)(r−2)+ r(r−1)A1(0)+ rB1(0)+ λ = 0.

The characteristic polynomial associate to (2.2) is given by

s(s−1)(s−2)+ s(s−1)A2(0)+ sB2(0)−λ = 0.

Depending on the zeros of these coupled characteristic polynomials we can find solu-
tions using Theorems F and H in [10]. Our current approach is a bit different. Rather
than working with coupled pairs of conics we shall work with the indicial cubic. From
one hand the affine classification of cubics is not as accurate as the one for conics. One
of the reasons is that not all cubics are associate with pairs of conics. Nevertheless, our
approach is still technically efficient as we shall see. Finally, not all PDEs are separable
variables (cf. Example 7.1).

3. Regular singularities and Frobenius type third order PDEs

We shall now introduce the main concept of PDE we will consider. This is a nat-
ural adaptation of the classical notion for second order ODEs with analytic coefficients
found originally in [8] and then in [5, 6].

3.1. Regular singularities

Let us consider an third order linear homogeneous PDE of the form (1.1) where
the coefficients are analytic functions at some point (x0,y0) ∈ K2 . The point (x0,y0) is
called ordinary if some of the coefficients a(x,y),b(x,y),c(x,y),d(x,y) does not vanish
at (x0,y0) . Otherwise, if a(x0,y0) = b(x0,y0) = c(x0,y0) = d(x0,y0) = 0, it will be
called a singular point. Let us assume for simplicity that (x0,y0) = (0,0) is the origin
(this can be achieved by a translation (x̃, ỹ) = (x− x0,y− y0) which does not change
the main characteristics of the PDE.
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DEFINITION 3.1. (regular singularity) The singularity (0,0) is a regular singu-
larity if the following limits exist and are finite:

lim
(x,y)→(0,0)

a(x,y)
x3 , lim

(x,y)→(0,0)

b(x,y)
x2y

, lim
(x,y)→(0,0)

c(x,y)
xy2 , lim

(x,y)→(0,0)

d(x,y)
y3 , lim

(x,y)→(0,0)

e(x,y)
x2

lim
(x,y)→(0,0)

f (x,y)
xy

, lim
(x,y)→(0,0)

g(x,y)
y2 , lim

(x,y)→(0,0)

h(x,y)
x

, lim
(x,y)→(0,0)

i(x,y)
y

.

In this case, thanks to the analytic behavior of the coefficients, we have a PDE of the
form

L[u] := A(x,y)x3 ∂ 3u
∂x3 +B(x,y)x2y

∂ 3u
∂x2∂y

+C(x,y)xy2 ∂ 3u
∂x∂y2 +D(x,y)y3 ∂ 3u

∂y3

+x2E(x,y)
∂ 2u
∂x2 + xyF(x,y)

∂ 2u
∂x∂y

+ y2G(x,y)
∂ 2u
∂y2

+xH(x,y)
∂u
∂x

+ yI(x,y)
∂u
∂y

+ J(x,y)u = 0

for some analytic functions A,B,C,D,E,F,G,H, I,J in a neighborhood of the origin.

Let us add up a more specific form. We shall say that the PDE is in the standard
Frobenius type form if it writes L[u] = 0 where L is the standard differential operator
given by

L[u] := Ax3 ∂ 3u
∂x3 +Bx2y

∂ 3u
∂x2∂y

+Cxy2 ∂ 3u
∂x∂y2 +Dy3 ∂ 3u

∂y3 + x2a(x,y)
∂ 2u
∂x2

+xyb(x,y)
∂ 2u

∂x∂y
+ y2c(x,y)

∂ 2u
∂y2 + xd(x,y)

∂u
∂x

+ ye(x,y)
∂u
∂y

+ f (x,y)u

(3.1)

with A,B,C,D∈K constants, a(x,y),b(x,y),c(x,y),d(x,y),e(x,y), f (x,y) analytic func-
tions.

Roughly saying, a regular singularity is a perturbation of an Euler type PDE in
the non-principal part. By principal part we shall mean the pure third order part of
the PDE. In general, at a regular singularity the PDE is always a perturbation of a
Frobenius type PDE by higher order terms. Since the coefficients are analytic, this
is equivalent to say that the PDE can be put, after some division by coefficients and
change of coordinates centered at (x0,y0) , into the Frobenius type form. Hence, we
shall work only with the Frobenius type form in our main results, thought they will be
valid for the general case of a regular singularity.
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For simplicity we will keep on assuming that (x0,y0) = (0,0) . In this regular
singularity case we have an associate Euler PDE which is given by

L[u] := Ax3 ∂ 3u
∂x3 +Bx2y

∂ 3u
∂x2∂y

+Cxy2 ∂ 3u
∂x∂y2 +Dy3 ∂ 3u

∂y3 + x2a(0,0)
∂ 2u
∂x2

+xyb(0,0)
∂ 2u

∂x∂y
+ y2c(0,0)

∂ 2u
∂y2 + xd(0,0)

∂u
∂x

+ ye(0,0)
∂u
∂y

+ f (0,0)u = 0.

The indicial cubic of the PDE will be the indicial cubic of the corresponding Euler
PDE. It is therefore the affine cubic C ⊂ K2 given by the zeros of the polynomial
P(r,s) = Ar(r− 1)(r− 2)+ Brs(r− 1)+Crs(s− 1)+ Ds(s− 1)(s− 2)+Er(r− 1)+
Frs+Gs(s− 1)+Hr + Is+ J . We shall say that an third order linear homogeneous
PDE with analytic coefficients defined in a neighborhood U of a regular singularity is
of Frobenius type.

The notion of regular singular point above gives rise to a version for this frame-
work of PDE of the classical method of Frobenius for finding solutions via power series.

The picture is not so straightforward, since we are dealing with a degree three
affine curve instead of a one variable degree polynomial or an affine conic as in [11].
First we shall introduce a notion of non-resonance, which extends and gives geometric
sense to the main obstruction regarding the roots of the indicial equation in the classical
Frobenius theorem for ordinary differential equations.

3.2. Resonances

The notion of resonance is quite fundamental in the singularity theory. The an-
alytic case is quite special for its richness and beauty of the results. In the case of
Frobenius theory for ordinary differential equations, this is no different. Nevertheless,
this is not clearly stated in the literature. Indeed, the entire relations between the roots
of the indicial equation are considered, but not seen as a resonance in the more general
framework. We believe that one of the gains of our work is to draw attention to this
phenomena in what follows.

DEFINITION 3.2. (resonance) An index (r,s)∈C is called resonant (with respect
to the PDE (3.1)) if there is some non-trivial positive translation of (r0,s0) by integral
numbers (r0 +q1,s0 +q2), q1,q2 ∈ Z+ which also lies on the indicial cubic.

This can be seen as follows: consider the reticulate R(r0,s0) := (r0,s0)+Z×Z ⊂
K2 centered at (r0,q0) . This means the set of all points of the form (r0 + q1,s0 + q2)
where q1,q2 ∈ Z . The positive part of the reticulate is the set of points of the form
(r0 + q1,s0 + q2) where q1,q2 ∈ N∪{0} . Then, a point (r0,s0) ∈ C of the indicial
cubic is resonant if there is some vertex of the positive part of the reticulate that lies
over the indicial cubic.

Let us denote by R the set of resonant points of (3.1). Then

R =
∞⋃

|Q|=1

RQ
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where for Q = (q1,q2) ∈ (N∪{0})2 we define

RQ := {(r,s) ∈ C ; P(q1 + r,q2 + s) = 0}.

LEMMA 3.1. The set R is nowhere dense in the indicial cubic C and in K2 . In
particular, the set of non-resonant indexes is dense in C .

Proof. The set of resonant points of (3.1) is the intersection of the indicial cubic
with a countable number of straight lines in R2,K2 . By Baire’s category theorem this
set has empty interior. It also has zero Lebesgue measure and contains no interior points
even when looked inside C . �

REMARK 3.1. (ordinary differential equations: resonances) Consider a second or-
der linear analytic ODE of the form ax2u′′ + xb(x)u′+ c(x)u = 0, with a regular singu-
larity. From the classical method of Frobenius, we know that the indicial equation is of
the form P(r) = ar(r−1)+b(0)r+c(0)= 0. If we choose the root r0 with greater real

part then there is a solution of the form u(x) = xr0
∞
∑

q=0
aqxq . We looking for other solu-

tions, the exceptional case occurs when there is another root r1 of the indicial equation
which is of the form r1 = r0 −q0 for some q0 ∈ N∪{0} . This means that the indicial
polynomial P(r) has a root r1 and another root of the form r1 +q . This is exactly the
notion of resonance we have just introduced above for the case of PDEs.

3.3. Frobenius type solutions

We consider a second order linear homogeneous PDE of the form (3.1) where the
coefficients are analytic functions at the origin (0,0) ∈ K2 . We have that (0,0) is a
regular singularity of the PDE. Let be given (r0,s0) ∈ C ⊂ K2 a point of the indicial
cubic.

DEFINITION 3.3. A Frobenius type solution of the PDE above is an expression

ψ(x,y) = xr0ys0
∞

∑
|Q|=0

dQxq1yq2 , d0,0 = 1,

which satisfies the PDE from the formal point of view, ie., L[ψ ](x,y) = 0 where L is
given by (3.1). The solution is also called recurrent if its coefficients dQ are obtained by
recurrence after replacement in the power series expression of the PDE. This is always
the case for Frobenius type solutions of analytic PDEs once they exist. The solution

is called of convergent type if the series
∞

∑
|Q|=0

dQxq1yq2 , d0,0 = 1 is convergent in the

bidisc Δ[(0,0),(R,R)] . We shall say that the solution is real if the exponent (r,s) ∈ R2

and coefficients dQ of the power series are all real. The pair (r0,s0) ∈ K2 is called
index of the solution.
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4. A general convergence theorem

We shall prove a type of general theorem, on the existence and convergence of
solutions of Frobenius type solutions for linear analytic PDEs of third order and two
variables. We start with the real case:

THEOREM A. (General convergence theorem – real positive case) Consider the
third order partial differential equation L[u] = 0 where L is the standard differential
operator (3.1) with A,B,C,D ∈ R∗ having the same signal, and where the coefficients
a(x,y) , b(x,y) , c(x,y) , d(x,y) , e(x,y) and f (x,y) are real analytic in the rectangle
Δ[(0,0),(R,R)] ⊂ R2 , R > 0 . Then for each nonresonant index (r0,s0) ∈ R2 there
exists a convergent Frobenius type solution of index (r0,s0) .

Indeed, this theorem will be a consequence of the following more general state-
ment including the complex case:

THEOREM B. (General convergence theorem) Consider the third order partial dif-
ferential equation L[u] = 0 where L is the standard differential operator (3.1) with
A,D ∈ K∗ and such that: (i) Re(AB) > 0 , (ii) Re(CD) > 0 , (iii) 2Re(AC)+‖B‖2 > 0 ,
(iv) 2Re(BD)+‖C‖2 > 0 and (v) Re(AD)+Re(BC) > 0 , where the coefficients a(x,y) ,
b(x,y) , c(x,y) , d(x,y) , e(x,y) and f (x,y) are analytic in Δ[(0,0),(R,R)] ⊂ K2 , R >
0 . Then there are recurrent Frobenius type convergent solutions. Indeed, let (r0,s0) ∈
K2 be a nonresonant index then there exists a Frobenius type solution of index (r0,s0)
that converges in the bidisc Δ[(0,0),(R,R)] .

Proof of Theorem B. Recall that the indicial cubic is given by

P(r,s) = Ar(r−1)(r−2)+Brs(r−1)+Crs(s−1)+Ds(s−1)(s−2)

+r(r−1)a(0,0)+ rsb(0,0)+ s(s−1)c(0,0)+ rd(0,0)+ se(0,0)+ f (0,0).

The nonresonance condition means that (r0,s0) /∈ R where

R =
{
(r,s) ∈ K

2; P(q1 + r,q2 + s) = 0, |Q| = 1,2, . . .
}

.

Let ϕ be a solution of L[u] = 0 of the form

ϕ(x,y) = xrys
∞

∑
|Q|=0

gQXQ (4.1)

where g0,0 �= 0. Given that a(x,y),b(x,y),c(x,y),d(x,y),e(x,y) and f (x,y) are analytic
in Δ[(0,0),(R,R)] we have that

a(x,y) =
∞

∑
|Q|=0

aQXQ, b(x,y) =
∞

∑
|Q|=0

bQXQ, c(x,y) =
∞

∑
|Q|=0

cQXQ

d(x,y) =
∞

∑
|Q|=0

dQXQ, e(x,y) =
∞

∑
|Q|=0

eQXQ, f (x,y) =
∞

∑
|Q|=0

fQXQ

(4.2)
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for all (x,y) ∈ Δ[(0,0),(R,R)] .
Then

∂ϕ
∂x

=
∞

∑
|Q|=0

(q1 + r)gQxq1+r−1yq2+s ∂ϕ
∂y

=
∞

∑
|Q|=0

(q2 + s)gQxq1+ryq2+s−1

∂ 2ϕ
∂x2 =

∞

∑
|Q|=0

(q1 + r)(q1 + r−1)gQxq1+r−2yq2+s

∂ 2ϕ
∂x∂y

=
∞

∑
|Q|=0

(q1 + r)(q2 + s)gQxq1+r−1yq2+s−1

∂ 2ϕ
∂y2 =

∞

∑
|Q|=0

(q2 + s)(q2 + s−1)gQxq1+ryq2+s−2

∂ 3ϕ
∂x3 =

∞

∑
|Q|=0

(q1 + r)(q1 + r−1)(q1 + r−2)gQxq1+r−3yq2+s

∂ 3ϕ
∂x2∂y

=
∞

∑
|Q|=0

(q1 + r)(q1 + r−1)(q2 + s)gQxq1+r−2yq2+s−1

∂ 3ϕ
∂x∂y2 =

∞

∑
|Q|=0

(q1 + r)(q2 + s)(q2 + s−1)gQxq1+r−1yq2+s−2

∂ 3ϕ
∂y3 =

∞

∑
|Q|=0

(q2 + s)(q2 + s−1)(q2 + s−2)gQxq1+ryq2+s−3

and therefore we have

Ax3 ∂ 3ϕ
∂x3 = xrys

∞

∑
|Q|=0

A(q1 + r)(q1 + r−1)(q1 + r−2)gQXQ

Bx2y
∂ 3ϕ

∂x2∂y
= xrys

∞

∑
|Q|=0

B(q1 + r)(q1 + r−1)(q2 + s)gQXQ

Cxy2 ∂ 3ϕ
∂x∂y2 = xrys

∞

∑
|Q|=0

C(q1 + r)(q2 + s)(q2 + s−1)gQXQ

Dy3 ∂ 3ϕ
∂y3 = xrys

∞

∑
|Q|=0

D(q2 + r)(q2 + s−1)(q2 + s−2)gQXQ

x2a(x,y)
∂ 2ϕ
∂x2 = xrys( ∞

∑
|Q|=0

ãQXQ), xyb(x,y)
∂ 2ϕ
∂x∂y

= xrys( ∞

∑
|Q|=0

b̃QXQ),
y2c(x,y)

∂ 2ϕ
∂y2 = xrys( ∞

∑
|Q|=0

c̃QXQ), xd(x,y)
∂ϕ
∂x

= xrys( ∞

∑
|Q|=0

d̃QXQ),
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ye(x,y)
∂ϕ
∂y

= xrys( ∞

∑
|Q|=0

ẽQXQ) and f (x,y)ϕ = xrys( ∞

∑
|Q|=0

f̃QXQ),
where

ãQ =
q1

∑
i=0

q2

∑
j=0

(i+ r)(i+ r−1)aq1−i,q2− jgi j, b̃Q =
q1

∑
i=0

q2

∑
j=0

(i+ r)( j + s)bq1−i,q2− jgi j,

c̃Q =
q1

∑
i=0

q2

∑
j=0

( j + s)( j + s−1)cq1−i,q2− jgi j, d̃Q =
q1

∑
i=0

q2

∑
j=0

(i+ r)dq1−i,q2− jgi j,

ẽQ =
q1

∑
i=0

q2

∑
j=0

( j + s)eq1−i,q2− jgi j and f̃Q =
q1

∑
i=0

q2

∑
j=0

fq1−i,q2− jgi j.

Given that ϕ is a solution of (3.1) we have

Ax3 ∂ 3ϕ
∂x3 +Bx2y

∂ 3ϕ
∂x2∂y

+Cxy2 ∂ 3ϕ
∂x∂y2 +Dy3 ∂ 3ϕ

∂y3 + x2a(x,y)
∂ 2ϕ
∂x2

+xyb(x,y)
∂ 2ϕ
∂x∂y

+ y2c(x,y)
∂ 2ϕ
∂y2 + xd(x,y)

∂ϕ
∂x

+ ye(x,y)
∂ϕ
∂y

+ f (x,y)ϕ = 0.

Therefore

xrys
∞

∑
|Q|=0

([A(q1 + r)(q1 + r−1)(q1 + r−2)+B(q1 + r)(q1 + r−1)(q2 + s)

+C(q1 + r)(q2 + s)(q2 + s−1)+D(q2+ s)(q2 + s−1)(q2 + s−2)]gQ

+ãQ + b̃Q + c̃Q + d̃Q + ẽQ + f̃Q)XQ = 0.

From this we have

[A(q1 + r)(q1 + r−1)(q1 + r−2)+B(q1 + r)(q1 + r−1)(q2 + s)

+C(q1 + r)(q2 + s)(q2 + s−1)+D(q2+ s)(q2 + s−1)(q2 + s−2)]gQ

+ãQ + b̃Q + c̃Q + d̃Q + ẽQ + f̃Q = 0, |Q| = 0,1,2, . . .

Using the definitions of ãQ, b̃Q, c̃Q, d̃Q, ẽQ and f̃Q we can write the equation above as
follows:

[A(q1 + r)(q1 + r−1)(q1 + r−2)+B(q1 + r)(q1 + r−1)(q2 + s)

+C(q1 + r)(q2 + s)(q2 + s−1)+D(q2+ s)(q2 + s−1)(q2 + s−2)]gQ

+
q1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j

+( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j + fq1−i,q2− j]gi, j = 0
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equivalently

[A(q1 + r)(q1 + r−1)(q1 + r−2)+B(q1 + r)(q1 + r−1)(q2 + s)

+C(q1 + r)(q2 + s)(q2 + s−1)+D(q2+ s)(q2 + s−1)(q2 + s−2)

+(q1 + r)(q1 + r−1)a0,0 +(q1 + r)(q2 + s)b0,0 +(q2 + s)(q2 + s−1)c0,0

+(q1 + r)d0,0 +(q2 + s)e0,0 + f0,0]gQ

+
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j

+( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j + fq1−i,q2− j]gi, j

+
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j +(q1 + r)( j + s)b0,q2− j

+( j + s)( j + s−1)c0,q2− j +(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]gq1, j = 0.

For |Q| = 0 we have

Ar(r−1)(r−2)+Brs(r−1)+Crs(s−1)+Ds(s−1)(s−2)+ r(r−1)a0,0+ rsb0,0

+s(s−1)c0,0 + rd0,0 + se0,0 + f0,0 = 0

provided that g0,0 �= 0. The third degree polynomial in two variables P given by

P(r,s) = Ar(r−1)(r−2)+Brs(r−1)+Crs(s−1)+Ds(s−1)(s−2)

+r(r−1)a0,0 + rsb0,0 + s(s−1)c0,0 + rd0,0 + se0,0 + f0,0

is called indicial cubic associate to equation (3.1). We conclude that

P(q1 + r,q2 + s)gQ +hQ = 0, |Q| = 1,2, . . . (4.3)

where

hQ =
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j

+( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j

+ fq1−i,q2− j]gi, j +
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j

+(q1 + r)( j + s)b0,q2− j +( j + s)( j + s−1)c0,q2− j

+(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]gq1, j, |Q| = 1,2, . . .

(4.4)
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Observe that hQ is linear combination of g0,0,g1,0,g0,1, . . . ,gn−1,0,g0,n−1 , whose coef-
ficients are uniquely determined in terms of functions a,b,c,d,e, f , r and s . Letting
r , s and g0,0 undetermined, we solve equations (4.3) and (4.4) in terms of g0,0 , r and
s . These solutions are represented by GQ(r,s) , and a hQ corresponding by HQ(r,s) .
Thence

H1,0(r,s) = (r(r−1)a1,0 + rsb1,0 + s(s−1)c1,0 + rd1,0 + se1,0 + f1,0)G0,0,

H0,1(r,s) = (r(r−1)a0,1 + rsb0,1 + s(s−1)c0,1 + rd0,1 + se0,1 + f0,1)G0,0,

G1,0(r,s) = − H1,0(r,s)
P(1+ r,s)

, G0,1(r,s) = − H0,1(r,s)
P(r,1+ s)

,

and in general:

HQ(r,s) =
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j+

( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j + fq1−i,q2− j]Gi, j(r,s)

+
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j +(q1 + r)( j + s)b0,q2− j +( j + s)( j + s−1)c0,q2− j

+(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]Gq1, j(r,s), |Q| = 1,2, . . .

GQ(r,s) = − HQ(r,s)
P(q1 + r,q2 + s)

, |Q| = 1,2, . . . (4.5)

The GQ thus determined, are rational functions of r and s , and the only points where
they are not well defined, are those values of r and s for which P(q1 + r,q2 + s) = 0
for some |Q| = 1,2, . . . . We shall define ϕ by:

ϕ((x,y),(r,s)) = G0,0x
rys + xrys

∞

∑
|Q|=1

GQ(r,s)xq1yq2 . (4.6)

If the series (4.6) converges in Δ[(0,0),(R,R)] , then we have:

L(ϕ)((x,y),(r,s)) = G0,0P(r,s)xrys.

Now, we have the following situation: If ϕ given by (4.1) is a solution of (3.1), then
(r,s) must be a zero of the cubic indicial polynomial P , and then the gQ ( |Q|= 1,2, . . .)
are uniquely determined in terms of g0,0 , r and s by the GQ(r,s) of (4.5), provided
that P(q1 + r,q2 + s) �= 0, |Q| = 1,2, . . . .

Conversely, if (r,s) is a zero of P and if the GQ(r,s) can be determined (i.e.,
P(q1 + r,q2 + s) �= 0 for |Q| = 1,2, . . .) then the function ϕ given by

ϕ(x,y) = ϕ((x,y),(r,s))
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is a solution of (3.1) for every choice of g0,0 , provided that the series (4.6) is convergent.

By hypothesis (r0,s0) is a point of the indicial cubic P such that (r0,s0) /∈ R ,
then P(q1 + r0,q2 + s0) �= 0 for all |Q| = 1,2, . . . . Thence, GQ(r0,s0) there exists for
all |Q|= 1,2, . . . , and putting g0,0 = G0,0(r0,s0) = 1 we have that the function ψ given
by

ψ(x,y) = xr0ys0
∞

∑
|Q|=0

GQ(r0,s0)xq1yq2 , G0,0(r0,s0) = 1, (4.7)

is a solution of (3.1), provided that the series is convergent.

We must show that the series (4.7) converges in the bidisc Δ[(0,0),(R,R)] where
the GQ(r0,s0) are given recursively by

G0,0(r0,s0) = 1,

P(q1 + r0,q2 + s0)GQ(r0,s0)
‖

−
q1−1

∑
i=0

q2

∑
j=0

[(i+ r0)(i+ r0−1)aq1−i,q2− j +(i+ r0)( j + s0)bq1−i,q2− j

+( j + s0)( j + s0−1)cq1−i,q2− j +(i+ r0)dq1−i,q2− j

+( j + s0)eq1−i,q2− j + fq1−i,q2− j]Gi, j(r0,s0)

−
q2−1

∑
j=0

[(q1 + r0)(q1 + r0−1)a0,q2− j +(q1 + r0)( j + s0)b0,q2− j

+( j + s0)( j + s0−1)c0,q2− j +(q1 + r0)d0,q2− j

+( j + s0)e0,q2− j + f0,q2− j]Gq1, j(r0,s0), |Q| = 1,2, . . .

(4.8)

Observe that

P(q1 + r0,q2 + s0) = [Aq3
1 +Bq2

1q2 +Cq1q2
2 +Dq3

2]+q2
1[3A(r0−1)+Bs0 +a0,0]

+2q1q2

[
Br0 +Cs0 +

b0,0−B−C
2

]
+q2

2[3D(s0 −1)+Cr0 + c0,0]

+q1[A(3r2
0 −6r0 +2)+ s0(B(2r0 −1)+C(s0−1)+b0,0)+ (2r0−1)a0,0 +d0,0]

+q2[D(3s2
0−6s0 +2)+ r0(C(2s0−1)+B(r0−1)+b0,0)+ (2s0−1)c0,0 + e0,0]
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consequently

‖P(q1 + r0,q2 + s0)‖ � ‖Aq3
1 +Bq2

1q2 +Cq1q2
2 +Dq3

2‖−q2
1‖3A(r0−1)+Bs0 +a0,0‖

−q2
2‖3D(s0−1)+Cr0 + c0,0‖−2q1q2

∥∥∥∥Br0 +Cs0 +
b0,0−B−C

2

∥∥∥∥
−q1

∥∥A(3r2
0 −6r0 +2)+ s0(B(2r0−1)+C(s0−1)+b0,0)+ (2r0−1)a0,0 +d0,0

∥∥
−q2

∥∥D(3s2
0−6s0 +2)+ r0(C(2s0 −1)+B(r0−1)+b0,0)+ (2s0−1)c0,0 + e0,0

∥∥ .

Given that

‖Aq3
1 +Bq2

1q2 +Cq1q2
2 +Dq3

2‖2 = ‖A‖2q6
1 +2Re(AB)q5

1q2 +[2Re(AC)+‖B‖2]q4
1q

2
2

+2[Re(AD)+Re(BC)]q3
1q

3
2

+[2Re(BD)+‖C‖2]q2
1q

4
2 +2Re(CD)q1q5

2 +‖D‖2q6
1

taking

α = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖A‖2,
Re(AB)

3
,
2Re(AC)+‖B‖2

15
,
Re(AD)+Re(BC)

10
,

2Re(BD)+‖C‖2

15
,
Re(CD)

3
,‖D‖2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

> 0

we have
‖Aq3

1 +Bq2
1q2 +Cq1q2

2 +Dq3
2‖2 �

α(q6
1 +6q5

1q2 +15q4
1q

2
2 +20q3

1q
3
2 +15q2

1q
4
2 +6q1q5

2 +q6
2)

‖Aq3
1 +Bq2

1q2 +Cq1q
2
2 +Dq3

2‖2 � α(q1 +q2)6

‖Aq3
1 +Bq2

1q2 +Cq1q
2
2 +Dq3

2‖ �
√

α(q1 +q2)3.

Let

θ = max

⎧⎪⎪⎨
⎪⎪⎩

‖3A(r0−1)+Bs0 +a0,0‖ ,‖3D(s0−1)+Cr0 + c0,0‖ ,

∥∥∥∥Br0 +Cs0 +
b0,0−B−C

2

∥∥∥∥

⎫⎪⎪⎬
⎪⎪⎭

and

β
‖

max

⎧⎨
⎩
∥∥A(3r2

0 −6r0 +2)+ s0(B(2r0 −1)+C(s0−1)+b0,0)+ (2r0−1)a0,0 +d0,0
∥∥ ,

∥∥D(3s2
0−6s0 +2)+ r0(C(2s0 −1)+B(r0−1)+b0,0)+ (2s0−1)c0,0 + e0,0

∥∥
⎫⎬
⎭
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from this we have

‖P(q1 + r0,q2 + s0)‖ �
√

α(q1 +q2)3 −θ (q1 +q2)2 −β (q1 +q2).

Consequently

‖P(q1 + r0,q2 + s0)‖ �
√

α(q1 +q2)
[
(q1 +q2)2 − θ√

α
(q1 +q2)− β√

α

]
. (4.9)

Let ρ be any number that satisfies the inequality 0 < ρ < R . Given that the series
defined in (4.2) are convergent for (x,y) = (ρ ,ρ) there exists a constant M > 0 such
that

‖aQ‖ρ |Q| � M, ‖bQ‖ρ |Q| � M, ‖cQ‖ρ |Q| � M

‖dQ‖ρ |Q| � M, ‖eQ‖ρ |Q| � M, ‖ fQ‖ρ |Q| � M |Q| = 0,1,2, . . .

(4.10)

Using (4.9) and (4.10) in (4.8) we obtain

√
α|Q|

[
|Q|2− θ√

α
|Q|− β√

α

]
‖GQ(r0,s0)‖ �

M
q1−1

∑
j=0

q2

∑
j=0

[(i+‖r0‖)(i+1+‖r0‖)

+(i+‖r0‖)( j +‖s0‖)+ ( j +‖s0‖)( j +1+‖s0‖)

+i+ j +‖r0‖+‖s0‖+1]ρ i+ j−|Q|‖Gi, j(r0,s0)‖

+M
q2−1

∑
j=0

[(q1 +‖r0‖)(q1 +1+‖r0‖)+ (q1 +‖r0‖)( j +‖s0‖)

+( j +‖s0‖)( j +1+‖s0‖)+q1 + j +‖r0‖+‖s0‖+1]ρ j−q2‖Gq1, j(r0,s0)‖.

(4.11)

Now, summing up all terms of norma |Q| = n in (4.11) we have

√
αn

[
n2− θ√

α
n− β√

α

]
∑

|Q|=n

‖GQ(r0,s0)‖ �

2M
n−1

∑
k=0

(
k+‖r0‖+‖s0‖+1

)2ρk−n
(

∑
|Q|=k

‖GQ(r0,s0)‖
)
.

(4.12)

Consider ψ̃(x) =
∞

∑
|Q|=0

‖GQ(r0,s0)‖x|Q| a the formal power series of nonnegative terms

in the variable x . We will show that ψ̃ is convergent in DR[0] , this implies that ψ
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converges in the bidisc Δ[(0,0),(R,R)] . Let gn = ∑
|Q|=n

‖GQ(r0,s0)‖ then

ψ̃(x) =
∞

∑
n=0

(
∑

|Q|=n

‖DQ(r0,s0)‖
)

xn =
∞

∑
n=0

gnx
n.

Let n0 be a natural number such that n2
0−

θ√
α

n0 >
β√
α

and let us define g̃0, g̃1, . . . in

the following way:

g̃0 = ‖G0,0(r0,s0)‖ = 1, g̃n = ∑
|Q|=n

‖GQ(r0,s0)‖, (n = 1,2, . . . ,n0−1)

and

√
αn

[
n2− θ√

α
n− β√

α

]
g̃n = 2M

n−1

∑
k=0

(
k+‖r0‖+‖s0‖+1

)2ρk−ng̃k. (4.13)

for n = n0,n0 +1, . . . . Then, comparing the definition of g̃n to (4.12), we get that

gn � g̃n, n = 0,1,2, . . . (4.14)

Thence we will show that the series

∞

∑
n=0

g̃nx
n (4.15)

is convergent for |x| < ρ .
Replacing n by n+1 in (4.13) we have:

ρ
√

α(n+1)
[
(n+1)2− θ√

α
(n+1)− β√

α

]
g̃n+1

‖
(√

αn

[
n2− θ√

α
n− β√

α

]
+2M(n+‖r0‖+‖s0‖+1)2

)
g̃n

for n = n0,n0 +1, . . . . Thence

∣∣∣∣ g̃n+1xn+1

g̃nxn

∣∣∣∣=
√

αn

[
n2− θ√

α
n− β√

α

]
+2M(n+‖r0‖+‖s0‖+1)2

ρ
√

α(n+1)
[
(n+1)2− θ√

α
(n+1)− β√

α

] |x|

converge to |x|/ρ as n → ∞ . Thus according to the quotient, the series (4.15) con-
verge for |x| < ρ . Using (4.14) and by the comparison criteria, we get that the series
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∞

∑
n=0

gnx
n, d0 = 1, converges for |x| < ρ . Given that ρ is any number that satisfies the

inequality 0 < ρ < R , we have already showed that this series converges for |x| < R .
This ends the proof of Theorem B. �

As mentioned above Theorem A is a consequence of Theorem B as we shall now
see.

Proof of Theorem A. The fact that A,B,C,D have the same signal implies (is
indeed equivalent to) the following conditions, allowing us to apply the preceding the-
orem: (i) AB > 0, (ii) CD > 0, (iii) 2(AC)+ B2 > 0, (iv) 2(BD)+C2 > 0 and (v)
(AD)+ (BC) > 0. �

5. Hyperbolic, parabolic and elliptic third order Frobenius type PDEs

Second order linear PDEs can be classified into hyperbolic, elliptic and parabolic
in regions of their domain of definition ([4]). This classification plays a key role in
their study. We shall introduce a partial classification of a class of real PDEs linear
of third order in accordance with the one of the associate indicial cubic. This is done
following the spirit of the classification proposed in [11]. This idea is also reinforced
by the above results Theorem 2.1 and the classification of cubics (see §8 Appendix and
Theorem 8.1).

5.1. Partial classification of third order real PDEs

Taking into account the content of Theorem 8.1 we introduce the following def-
inition. Given a PDE of the form L[u] = 0 where L is standard given by (3.1), we
introduce its discriminant Δ ∈ K as Δ = 27A2D2−18ABCD+4AC3.

We then have:

DEFINITION 5.1. (Partial classification of linear PDEs) A Frobenius-parabolic
normal form type third order linear PDE is a PDE of the form (3.1) with A,D,∈ K∗ ,

B =
5
2

3
√

A
2 3
√

D , C = 3 3
√

A 3
√

D
2

and Re( 3
√

A 3
√

D) > 0, a(x,y) , b(x,y) , c(x,y) , d(x,y) ,

e(x,y) and f (x,y) analytic in Δ[(0,0),(R,R)] , R > 0. In the parabolic case we have
Δ = 0.

The PDE is called of Frobenius-hyperbolic type if it is given by (3.1) with A,D ∈
K∗ such that B = 3 3

√
A2 3

√
D , C = 3 3

√
A 3
√

D2 and Re( 3
√

A 3
√

D) > 0, a(x,y) , b(x,y) ,
c(x,y) , d(x,y) , e(x,y) and f (x,y) analytic in Δ[(0,0),(R,R)] , R > 0. In the hyperbolic
normal form case we have Δ = −27A2D2 < 0 for the associate indicial cubic.

Finally, the PDE is called Frobenius-elliptic if it can be put into the diagonal form

L[u] := Ax3 ∂ 3u
∂x3 +Dy3 ∂ 3u

∂y3 + x2a(x,y)
∂ 2u
∂x2 + xyb(x,y)

∂ 2u
∂x∂y

+y2c(x,y)
∂ 2u
∂y2 + xd(x,y)

∂u
∂x

+ ye(x,y)
∂u
∂y

+ f (x,y)u = 0

(5.1)
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with A,D∈K∗ such that Re(AD)> 0, a(x,y) ,b(x,y) ,c(x,y) ,d(x,y) , e(x,y) and f (x,y)
analytic in Δ[(0,0),(R,R)] , R > 0. In this elliptic case we have Δ = 27A2D2 > 0 for
the corresponding indicial cubic. If K = R , ie., for real equations, this means that the
main part of the PDE is diagonal with positive definite terms B = C = 0, AD > 0.

6. Existence of convergent solutions: parabolic, elliptic and hyperbolic cases

Now we state and prove our main results about the existence and convergence of
Frobenius type solutions for PDEs according to the above partial classification.

6.1. Frobenius-hyperbolic case

The class of Frobenius-hyperbolic PDEs introduced in § 5 is an open class of
PDEs. After the transformation given by Euler’s trick (Remark 2.1), including the third
order wave equation (see [9] for the third order wave equation).

THEOREM C. (Frobenius-hyperbolic case) A Frobenius-hyperbolic type third or-
der linear PDE always admits non-trivial Frobenius type solutions. More precisely,
given a nonresonant index in the indicial cubic there exists a Frobenius type solution
with that index, convergent in the same bidisc of convergence of the coefficients of the
PDE.

Proof of Theorem C. This is also a consequence of our general result Theorem B.
For seeing this we shall prove the five inequality conditions required by Theorem B as
a consequence of our current hypotheses. We have A,D∈ K∗ such that B = 3 3

√
A2 3

√
D ,

C = 3 3
√

A
3
√

D2 and Re( 3
√

A 3
√

D) > 0 then:

(i) AB = ( 3
√

A
3
√

A2)(3 3
√

A2 3
√

D) = 3( 3
√

A 3
√

D)‖ 3
√

A2‖2 then

Re(AB) = 3(Re( 3
√

A 3
√

D))‖ 3
√

A2‖2 > 0.

(ii) CD = (3 3
√

A 3
√

D2)( 3
√

D 3
√

D2) = 3( 3
√

A 3
√

D)‖ 3
√

D2‖2 then

Re(CD) = 3(Re( 3
√

A 3
√

D))‖ 3
√

D2‖2 > 0.

(iii) AC = ( 3
√

A
3
√

A2)(3 3
√

A
3
√

D2) = 3
(

3
√

A 3
√

D
)2 ‖ 3

√
A‖2 then

Re(AC) = 3Re(( 3
√

A 3
√

D)2)‖ 3
√

A‖2

‖B‖2 = BB = (3 3
√

A 3
√

A 3
√

D)(3 3
√

A 3
√

A 3
√

D) = 9‖ 3
√

A 3
√

D‖2‖ 3
√

A‖2 then

2Re(AC)+‖B‖2 = 6Re(( 3
√

A 3
√

D)2)‖ 3
√

A‖2 +9‖ 3
√

A 3
√

D‖2‖ 3
√

A‖2.

Denoted z = 3
√

A 3
√

D we have

2Re(AC)+‖B‖2 = ‖ 3
√

A‖2 [6Re(z2)+9‖z2‖] .
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Given that −Re(z2) � ‖z2‖ then 6Re(z2)+6‖z2‖ � 0. Therefore

2Re(AC)+‖B‖2 � 3‖ 3
√

A‖2‖z2‖ > 0.

(iv) BD = (3 3
√

A2 3
√

D)( 3
√

D 3
√

D2) = 3
(

3
√

A 3
√

D
)2 ‖ 3

√
D‖2 then

Re(BD) = 3Re(( 3
√

A 3
√

D)2)‖ 3
√

D‖2

‖C‖2 = CC = (3 3
√

A 3
√

D 3
√

D)(3 3
√

A 3
√

D 3
√

D) = 9‖ 3
√

A 3
√

D‖2‖ 3
√

D‖2 then

2Re(BD)+‖C‖2 = 6Re(( 3
√

A 3
√

D)2)‖ 3
√

D‖2 +9‖ 3
√

A 3
√

D‖2‖ 3
√

D‖2.

Denoted z = 3
√

A 3
√

D we have

2Re(BD)+‖C‖2 = ‖ 3
√

D‖2 [6Re(z2)+9‖z2‖] .
Given that −Re(z2) � ‖z2‖ then 6Re(z2)+6‖z2‖ � 0. Therefore

2Re(BD)+‖C‖2 � 3‖ 3
√

D‖2‖z2‖ > 0.

(v) AD= ( 3
√

A 3
√

D)3 and BC = (3 3
√

A2 3
√

D)(3 3
√

A 3
√

D2)= 9( 3
√

A 3
√

D)‖( 3
√

A 3
√

D)2‖ then

Re(AD)+Re(BC) = Re(( 3
√

A 3
√

D)3)+9Re( 3
√

A 3
√

D)‖( 3
√

A 3
√

D)2‖.

Denoted z = 3
√

A 3
√

D consequently we have Re(z) > 0 and

Re(AD)+Re(BC) = Re(z3)+9Re(z)‖z2‖.
Given that Re(z3) = [Re(z)]3 −3Re(z)[Im(z)]2 and [Im(z)]2 � ‖z‖2 = ‖z2‖ then

Re(z3) = [Re(z)]3 −3Re(z)[Im(z)]2 � [Re(z)]3 −3Re(z)‖z2‖.
Therefore

Re(AD)+Re(BC) � [Re(z)]3 +6Re(z)‖z2‖ > 0. �

6.2. Elliptic case

The classical steady state heat equation is an elliptic equation in second order.
Once considered the most common higher order versions of this equation ([2]), one can
perform Euler’s trick (Remark 2.1) and, in the case of third order, obtain a Frobenius-
elliptic PDE. Next we give our main result about the existence of solutions of such
PDEs.

THEOREM D. (Elliptic case) A Frobenius-elliptic type third order linear PDE with
constant main part always admits non-trivial Frobenius type solutions. More precisely,
given a nonresonant index there exists a Frobenius-type solution of (5.1) with this index.
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Proof of Theorem D. Let ϕ be a solution of (5.1) of the form

ϕ(x,y) = xrys
∞

∑
|Q|=0

gQXQ (6.1)

where g0,0 �= 0. Given that a(x,y),b(x,y),c(x,y),d(x,y),e(x,y) and f (x,y) are analytic
in Δ[(0,0),(R,R)] we have that

a(x,y) =
∞

∑
|Q|=0

aQXQ, b(x,y) =
∞

∑
|Q|=0

bQXQ, c(x,y) =
∞

∑
|Q|=0

cQXQ

d(x,y) =
∞

∑
|Q|=0

dQXQ, e(x,y) =
∞

∑
|Q|=0

eQXQ, f (x,y) =
∞

∑
|Q|=0

fQXQ

(6.2)

for all (x,y) ∈ Δ[(0,0),(R,R)] . Given that ϕ is a solution of (5.1), proceeding as in the
proof of Theorem B, we have

[A(q1 + r)(q1 + r−1)(q1 + r−2)+D(q2 + s)(q2 + s−1)(q2 + s−2)

+(q1 + r)(q1 + r−1)a0,0 +(q1 + r)(q2 + s)b0,0

+(q2 + s)(q2 + s−1)c0,0 +(q1 + r)d0,0 +(q2 + s)e0,0 + f0,0]gQ

+
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j

+( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j + fq1−i,q2− j]gi, j

+
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j +(q1 + r)( j + s)b0,q2− j +( j + s)( j + s−1)c0,q2− j

+(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]gq1, j = 0, |Q| = 0,1,2, . . .

For |Q| = 0 we have

Ar(r−1)(r−2)+Ds(s−1)(s−2)+ r(r−1)a0,0

+rsb0,0 + s(s−1)c0,0 + rd0,0 + se0,0 + f0,0 = 0

provided that g0,0 �= 0. The third degree polynomial in two variables P given by

P(r,s) = Ar(r−1)(r−2)+Ds(s−1)(s−2)+ r(r−1)a0,0+ rsb0,0

+s(s−1)c0,0 + rd0,0 + se0,0 + f0,0
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is called indicial cubic associate to equation (5.1). We conclude that

P(q1 + r,q2 + s)gQ +hQ = 0, |Q| = 1,2, . . . (6.3)

where

hQ =
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j

+( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j

+ fq1−i,q2− j]gi, j +
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j

+(q1 + r)( j + s)b0,q2− j +( j + s)( j + s−1)c0,q2− j

+(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]gq1, j, |Q| = 1,2, . . .

(6.4)

Observe that hQ is linear combination of g0,0,g1,0,g0,1, . . . ,gn−1,0,g0,n−1 , whose coef-
ficients are uniquely determined in terms of functions a,b,c,d,e, f , r and s . Letting
r , s and g0,0 undetermined, we solve equations (6.3) and (6.4) in terms of g0,0 , r and
s . These solutions are represented by GQ(r,s) , and the hQ corresponding by HQ(r,s) .
Thence

H1,0(r,s) = (r(r−1)a1,0 + rsb1,0 + s(s−1)c1,0 + rd1,0 + se1,0 + f1,0)G0,0,

H0,1(r,s) = (r(r−1)a0,1 + rsb0,1 + s(s−1)c0,1 + rd0,1 + se0,1 + f0,1)G0,0,

G1,0(r,s) = − H1,0(r,s)
P(1+ r,s)

, G0,1(r,s) = − H0,1(r,s)
P(r,1+ s)

,

and in general:

HQ(r,s) =
q1−1

∑
i=0

q2

∑
j=0

[(i+ r)(i+ r−1)aq1−i,q2− j +(i+ r)( j + s)bq1−i,q2− j+

( j + s)( j + s−1)cq1−i,q2− j +(i+ r)dq1−i,q2− j +( j + s)eq1−i,q2− j + fq1−i,q2− j]Gi, j(r,s)

+
q2−1

∑
j=0

[(q1 + r)(q1 + r−1)a0,q2− j +(q1 + r)( j + s)b0,q2− j +( j + s)( j + s−1)c0,q2− j

+(q1 + r)d0,q2− j +( j + s)e0,q2− j + f0,q2− j]Gq1, j(r,s), |Q| = 1,2, . . .

GQ(r,s) = − HQ(r,s)
P(q1 + r,q2 + s)

, |Q| = 1,2, . . . (6.5)
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The GQ thus determined, are rational functions of r and s , and the only points where
they are not well defined, are the points r and s for which P(q1 + r,q2 + s) = 0 for
some |Q| = 1,2, . . . . We shall define ϕ by:

ϕ((x,y),(r,s)) = G0,0x
rys + xrys

∞

∑
|Q|=1

GQ(r,s)xq1yq2 . (6.6)

If the series (6.6) converges in Δ[(0,0),(R,R)] , then we have:

L(ϕ)((x,y),(r,s)) = G0,0P(r,s)xrys.

Now, we have the following situation: If ϕ given by (6.1) is a solution of (5.1), then
(r,s) must be a zero of the cubic indicial polynomial P , and then the gQ ( |Q|= 1,2, . . .)
are uniquely determined in terms of g0,0 , r and s by the GQ(r,s) of (6.5), provided
that P(q1 + r,q2 + s) �= 0, |Q| = 1,2, . . . .

Conversely, if (r,s) is a zero of P and if the GQ(r,s) can be determined (i.e.,
P(q1 + r,q2 + s) �= 0 for |Q| = 1,2, . . .) then the function ϕ given by

ϕ(x,y) = ϕ((x,y),(r,s))

is a solution of (5.1) for every choice of g0,0 , provided that the series (6.6) is convergent.
By hypothesis (r0,s0) is a point of the indicial cubic P such that (r0,s0) /∈ R ,

then P(q1 + r0,q2 + s0) �= 0 for all |Q| = 1,2, . . . . Thence, GQ(r0,s0) there exists for
all |Q|= 1,2, . . . , and putting g0,0 = G0,0(r0,s0) = 1 we have that the function ψ given
by

ψ(x,y) = xr0ys0
∞

∑
|Q|=0

GQ(r0,s0)xq1yq2 , G0,0(r0,s0) = 1, (6.7)

is a solution of (5.1), provided that the series is convergent.

We must show that the series (6.7) converges in the bidisc Δ[(0,0),(R,R)] where
the GQ(r0,s0) are given recursively by

G0,0(r0,s0) = 1,

P(q1 + r0,q2 + s0)GQ(r0,s0)
‖

−
q1−1

∑
i=0

q2

∑
j=0

[(i+ r0)(i+ r0−1)aq1−i,q2− j +(i+ r0)( j + s0)bq1−i,q2− j

+( j + s0)( j + s0−1)cq1−i,q2− j +(i+ r0)dq1−i,q2− j

+( j + s0)eq1−i,q2− j + fq1−i,q2− j]Gi, j(r0,s0)

(6.8)
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−
q2−1

∑
j=0

[(q1 + r0)(q1 + r0−1)a0,q2− j +(q1 + r0)( j + s0)b0,q2− j

+( j + s0)( j + s0 −1)c0,q2− j +(q1 + r0)d0,q2− j

+( j + s0)e0,q2− j + f0,q2− j]Gq1, j(r0,s0), |Q| = 1,2, . . .

Observe that

P(q1 + r0,q2 + s0) = Aq3
1 +Dq3

2 +q2
1[3A(r0−1)+a0,0]+2q1q2

[
b0,0

2

]

+q2
2[3D(s0−1)+ c0,0]+q1[A(3r2

0 −6r0 +2)+ s0b0,0 +(2r0−1)a0,0 +d0,0]

+q2[D(3s2
0−6s0 +2)+ r0b0,0 +(2s0−1)c0,0 + e0,0]

consequently

‖P(q1 + r0,q2 + s0)‖ � ‖Aq3
1 +Dq3

2‖−q2
1‖3A(r0−1)+a0,0‖−q2

2‖3D(s0−1)+ c0,0‖

−2q1q2

∥∥∥∥b0,0

2

∥∥∥∥−q1
∥∥A(3r2

0 −6r0 +2)+ s0b0,0 +(2r0−1)a0,0 +d0,0
∥∥

−q2
∥∥D(3s2

0−6s0 +2)+ r0b0,0 +(2s0−1)c0,0 + e0,0
∥∥ .

Given that
‖Aq3

1 +Dq3
2‖2 = ‖A‖2q6

1 +‖D‖2q6
2 +2q3

1q
3
2Re(AD)

taking α = min{‖A‖2,‖D‖2,Re(AD)} > 0 we have

‖Aq3
1 +Dq3

2‖2 � α(q6
1 +q6

2 +2q3
1q

3
2) = α(q3

1 +q3
2)

2

‖Aq3
1 +Dq3

2‖ �
√

α(q3
1 +q3

2) �
√

α
4

(q1 +q2)3.

Let

θ = max

{
‖3A(r0−1)+a0,0‖ ,‖3D(s0 −1)+ c0,0‖ ,

∥∥∥∥b0,0

2

∥∥∥∥
}

and

β = max

⎧⎨
⎩
∥∥A(3r2

0 −6r0 +2)+ s0b0,0 +(2r0−1)a0,0 +d0,0
∥∥ ,

∥∥D(3s2
0−6s0 +2)+ r0b0,0 +(2s0−1)c0,0 + e0,0

∥∥
⎫⎬
⎭

from this we have

‖P(q1 + r0,q2 + s0)‖ �
√

α
4

(q1 +q2)3 −θ (q1 +q2)2 −β (q1 +q2).

Consequently

‖P(q1 + r0,q2 + s0)‖ �
√

α
4

(q1 +q2)
[
(q1 +q2)2− 4θ√

α
(q1 +q2)− 4β√

α

]
. (6.9)
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Let ρ be any number that satisfies the inequality 0 < ρ < R . Given that the series
defined in (6.2) are convergent for (x,y) = (ρ ,ρ) there exists a constant M > 0 such
that

‖aQ‖ρ |Q| � M, ‖bQ‖ρ |Q| � M ‖cQ‖ρ |Q| � M

‖dQ‖ρ |Q| � M, ‖eQ‖ρ |Q| � M ‖ fQ‖ρ |Q| � M |Q| = 0,1,2, . . .

(6.10)

Using (6.9) and (6.10) in (6.8) we obtain
√

α
4

|Q|
[
|Q|2− 4θ√

α
|Q|− 4β√

α

]
‖GQ(r0,s0)‖ �

M
q1−1

∑
j=0

q2

∑
j=0

[(i+‖r0‖)(i+1+‖r0‖)+ (i+‖r0‖)( j +‖s0‖)

+( j +‖s0‖)( j +1+‖s0‖)+ i+ j +‖r0‖+‖s0‖+1]ρ i+ j−|Q|‖Gi, j(r0,s0)‖

+M
q2−1

∑
j=0

[(q1 +‖r0‖)(q1 +1+‖r0‖)+ (q1 +‖r0‖)( j +‖s0‖)

+( j +‖s0‖)( j +1+‖s0‖)+q1 + j +‖r0‖+‖s0‖+1]ρ j−q2‖Gq1, j(r0,s0)‖.

(6.11)

Now, summing up all terms of norm |Q| = n in (6.11) we have
√

α
4

n

[
n2− 4θ√

α
n− 4β√

α

]
∑

|Q|=n

‖GQ(r0,s0)‖ �

2M
n−1

∑
k=0

(
k+‖r0‖+‖s0‖+1

)2ρk−n( ∑
|Q|=k

‖GQ(r0,s0)‖
)
.

(6.12)

Consider ψ̃(x) =
∞

∑
|Q|=0

‖GQ(r0,s0)‖x|Q| the formal power series of nonnegative

terms in the variable x . We will show that ψ̃ is convergent in DR[0] , this implies that
ψ converges in the bidisc Δ[(0,0),(R,R)] . Let gn = ∑

|Q|=n

‖GQ(r0,s0)‖ then

ψ̃(x) =
∞

∑
n=0

(
∑

|Q|=n

‖DQ(r0,s0)‖
)

xn =
∞

∑
n=0

gnx
n.

Let n0 be a natural number such that n2
0−

4θ√
α

n0 >
4β√

α
and let us define g̃0, g̃1, . . . in

the following way:

g̃0 = ‖G0,0(r0,s0)‖ = 1, g̃n = ∑
|Q|=n

‖GQ(r0,s0)‖, (n = 1,2, . . . ,n0−1)
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and
√

α
4

n

[
n2− 4θ√

α
n− 4β√

α

]
g̃n = 2M

n−1

∑
k=0

(
k+‖r0‖+‖s0‖+1

)2ρk−ng̃k (6.13)

for n = n0,n0 +1, . . . . Then, comparing the definition of g̃n with (6.12), we get that

gn � g̃n, n = 0,1,2, . . . (6.14)

Thence we will show that the series

∞

∑
n=0

g̃nx
n (6.15)

is convergent for |x| < ρ .
Replacing n by n+1 in (6.13) we have:

ρ
√

α
4

(n+1)
[
(n+1)2− 4θ√

α
(n+1)− 4β√

α

]
g̃n+1

‖
(√

α
4

n

[
n2− 4θ√

α
n− 4β√

α

]
+2M(n+‖r0‖+‖s0‖+1)2

)
g̃n

for n = n0,n0 +1, . . . . Thence

∣∣∣∣ g̃n+1xn+1

g̃nxn

∣∣∣∣=
√

α
4

n

[
n2− 4θ√

α
n− 4β√

α

]
+2M(n+‖r0‖+‖s0‖+1)2

ρ
√

α
4

(n+1)
[
(n+1)2− 4θ√

α
(n+1)− 4β√

α

] |x|

converge to |x|/ρ as n → ∞ . Thus according to the quotient, the series (6.15) is con-
vergent for |x| < ρ . Using (6.14) and by the comparison criteria, we get that the series

∞

∑
n=0

gnx
n, d0 = 1, is convergent for |x| < ρ . Given that ρ is any number that satis-

fies the inequality 0 < ρ < R , we have already showed that this series converges for
|x| < R . �

REMARK 6.1. Note that Theorem D cannot be proved from Theorem B since
B = C = 0 and therefore does not verify (i)–(iv).

6.3. Parabolic case

The basic example of a parabolic PDE is the one-dimensional heat equation, ut =
αuxx, where u(x, t) is the temperature at time t and at position x along a thin rod,
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and α is a positive constant (the thermal diffusivity). This classical notion of parabolic
PDE can be generalized for higher dimension as follows: ut = α Δu, This would de-
scribe the flow of heat through a material body in three-dimensional space. In this case

Δu :=
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 denotes the Laplace operator acting on u . Our study is about

third order versions of this notion. We prove the following result about the existence of
solutions.

THEOREM E. (Parabolic case) A Frobenius-parabolic normal form type third or-
der linear PDE always admits non-trivial Frobenius type solutions. More precisely,
given a nonresonant index in the indicial cubic there exists a Frobenius type solution
with that index, convergent in the same bidisc of convergence of the coefficients of the
PDE.

Proof of Theorem E. This is also a consequence of our general result Theorem B.
For seeing this we shall prove the five inequality conditions required by Theorem B as a

consequence of our current hypotheses. We have A,D ∈ K∗ such that B =
5
2

3
√

A
2 3
√

D ,

C = 3 3
√

A 3
√

D
2

and Re( 3
√

A 3
√

D) > 0 then:

(i) AB = ( 3
√

A 3
√

A
2
)
(5

2
3
√

A
2

3
√

D
)

=
5
2
( 3
√

A 3
√

D)‖ 3
√

A2‖2 then

Re(AB) =
5
2
(Re( 3

√
A 3
√

D))‖ 3
√

A2‖2 > 0.

(ii) CD = (3 3
√

A 3
√

D
2
)( 3
√

D
2

3
√

D) = 3( 3
√

A 3
√

D)‖ 3
√

D2‖2 then

Re(CD) = 3(Re( 3
√

A 3
√

D))‖ 3
√

D2‖2 > 0.

(iii) AC = ( 3
√

A
3
√

A2)(3 3
√

A
3
√

D2) = 3
(

3
√

A 3
√

D
)2 ‖ 3

√
A‖2 then

Re(AC) = 3Re(( 3
√

A 3
√

D)2)‖ 3
√

A‖2

‖B‖2 = BB =
(5

2
3
√

A 3
√

A 3
√

D
)(5

2
3
√

A 3
√

A 3
√

D
)

=
25
4
‖ 3
√

A 3
√

D‖2‖ 3
√

A‖2 then

2Re(AC)+‖B‖2 = 6Re(( 3
√

A 3
√

D)2)‖ 3
√

A‖2 +
25
4
‖ 3
√

A 3
√

D‖2‖ 3
√

A‖2.

Denoted z = 3
√

A 3
√

D we have

2Re(AC)+‖B‖2 = ‖ 3
√

A‖2
[
6Re(z2)+

25
4
‖z2‖

]
.

Given that −Re(z2) � ‖z2‖ then 6Re(z2)+6‖z2‖ � 0. Therefore

2Re(AC)+‖B‖2 � 1
4
‖ 3
√

A‖2‖z2‖ > 0.
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(iv) BD =
(5

2
3
√

A2 3
√

D
)
( 3
√

D 3
√

D2) =
5
2

(
3
√

A 3
√

D
)2 ‖ 3

√
D‖2 then

Re(BD) =
5
2
Re(( 3

√
A 3
√

D)2)‖ 3
√

D‖2

‖C‖2 = CC = (3 3
√

A 3
√

D 3
√

D)(3 3
√

A 3
√

D 3
√

D) = 9‖ 3
√

A 3
√

D‖2‖ 3
√

D‖2 then

2Re(BD)+‖C‖2 = 5Re(( 3
√

A 3
√

D)2)‖ 3
√

D‖2 +9‖ 3
√

A 3
√

D‖2‖ 3
√

D‖2.

Denoted z = 3
√

A 3
√

D we have

2Re(BD)+‖C‖2 = ‖ 3
√

D‖2 [5Re(z2)+9‖z2‖] .
Given that −Re(z2) � ‖z2‖ then 5Re(z2)+5‖z2‖ � 0. Therefore

2Re(BD)+‖C‖2 � 4‖ 3
√

D‖2‖z2‖ > 0.

(v) AD = ( 3
√

A 3
√

D)3 and BC =
(5

2
3
√

A2 3
√

D
)
(3 3
√

A
3
√

D2) =
15
2

( 3
√

A 3
√

D)‖( 3
√

A 3
√

D)2‖
then

Re(AD)+Re(BC) = Re(( 3
√

A 3
√

D)3)+
15
2

Re( 3
√

A 3
√

D)‖( 3
√

A 3
√

D)2‖.

Denoted z = 3
√

A 3
√

D consequently we have Re(z) > 0 and

Re(AD)+Re(BC) = Re(z3)+
15
2

Re(z)‖z2‖.

Given that Re(z3) = [Re(z)]3 −3Re(z)[Im(z)]2 and [Im(z)]2 � ‖z‖2 = ‖z2‖ then

Re(z3) = [Re(z)]3 −3Re(z)[Im(z)]2 � [Re(z)]3 −3Re(z)‖z2‖.

Therefore

Re(AD)+Re(BC) � [Re(z)]3 +
9
2
Re(z)‖z2‖ > 0. �

7. Examples

The next example shows the efficacy of our methods when compared to the clas-
sical separation of variables methods. It is an example where the variables cannot be
separated, but fits into our approach. It is based on the heat diffusion equation in a two
dimension plaque. A perturbation is included in the equation as result of some external
influence as a source of heat for instance:
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EXAMPLE 7.1. (Heat diffusion perturbation) We shall now apply our techniques
in a PDE that cannot be solved by the usual method of separation of variables. Let us
consider the following perturbed heat diffusion equation

∂ 3z
∂x3 +

∂ 3z
∂y3 =

∂ z
∂y

+ α(x,y)
∂ z
∂x

, x > 0,y > 0 (7.1)

where α is analytic. Notice that putting Z(x,y) = X(x)Y (y) and substituting in the
PDE we obtain

Y ′′′(y)−Y ′(y)
Y (y)

= −X ′′′(x)−α(x,y)X ′(x)
X(x)

and therefore the PDE is not always separable variables equation. Let us now solve this
equation by our methods in some concrete examples.

Making the change x = lnu,y = lnv we transform the equation (7.1) in

u3 ∂ 3z̃
∂u3 + v3 ∂ 3z̃

∂v3 +3u2 ∂ 2z̃
∂u2 +3v2 ∂ 2z̃

∂v2 +u(1−α(lnu, lnv))
∂ z̃
∂u

= 0. (7.2)

For example, if we consider α(x,y) = ex+y in (7.2) we obtain

u3 ∂ 3 z̃
∂u3 + v3 ∂ 3z̃

∂v3 +3u2 ∂ 2z̃
∂u2 +3v2 ∂ 2z̃

∂v2 +u(1−uv)
∂ z̃
∂u

= 0. (7.3)

Note that equation (7.3) is Frobenius-elliptic with a regular singularity at the origin.
According to our Theorem D it admits Frobenius-type convergent solutions associate
to any nonresonant index.

Let ϕ̃ be a solution of (7.3) of the form ϕ̃(u,v) = urvs ∑∞
|Q|=0 gQuq1vq2 where

g0,0 �= 0. Then (r3 + s3 − s)g0,0 = 0, ((1 + r)3 + s3 − s)g1,0 = 0, (r3 + (1 + s)3 −
(1 + s))g0,1 = 0 and

[
(q1 + r)3 + (q2 + s)3 − (q2 + s)

]
gQ − (q1 + r− 1)gq1−1,q2−1 =

0, for every |Q| = 2,3, . . . Given that g0,0 �= 0 we have that

r3 + s3− s = 0. (7.4)

Let (r,s) be a root of (7.4) such that

(r,s) /∈
⎧⎨
⎩(r1,s1) ∈ C

2;
(q1 + r1)3 +(q2 + s1)3− (q2 + s1) = 0,

for some |Q| = 1,2, . . .

⎫⎬
⎭ . (7.5)

Thus we have g1,0 = g0,1 = 0 and gQ =
(q1+r−1)gq1−1,q2−1

(q1+r)3+(q2+s)3−(q2+s) , for every |Q|= 2,3, . . . .

Therefore gq1,q2 = 0, q1 �= q2 and

gn,n = (n−1+r)···(1+r)rg0,0

((1+r)3+(1+s)3−(1+s))((2+r)3+(2+s)3−(2+s))···((n+r)3+(n+s)3−(n+s)) , n = 1,2, . . .

Choosing g0,0 = 1 we have that

ϕ̃(u,v) = urvs +urvs
∞

∑
n=1

(n−1+r)···(1+r)r(uv)n

((1+r)3+(1+s)3−(1+s))((2+r)3+(2+s)3−(2+s))···((n+r)3+(n+s)3−(n+s))
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is solution of (7.3) where (r0,s0) verifies (7.4) and (7.5). Therefore

ϕ(x,y) = exr+ys
[
1+

∞

∑
n=1

(n−1+r)···(1+r)ren(x+y)

((1+r)3+(1+s)3−(1+s))((2+r)3+(2+s)3−(2+s))···((n+r)3+(n+s)3−(n+s))

]

is solution of
∂ 3z
∂x3 +

∂ 3z
∂y3 =

∂ z
∂y

+ ex+y ∂ z
∂x

(7.6)

where (r,s) verifies (7.4) and (7.5).

EXAMPLE 7.2. ([7], [13]) The partial differential equation and the appropriate
conditions for the Stokes’ flow of a second grade fluid are given by (see for details
[7, 13])

∂u
∂ t

= a
∂ 2u
∂y2 +b

∂ 3u
∂y2∂ t

, (7.7)

with boundary conditions u(y,0) = 0, for all y > 0, u(0,t) = U(t) , for all t > 0,
u(y,t) → 0, ∂yu(y, t) → 0, as y → ∞ , for all t > 0, where u is the velocity of a fluid
(the fluid properties will determine the parameters a and b ) due to the motion of a flat
plate at y = 0. When the flat plate is set in motion, the velocity component u, along the
wall depends on the temporal variable t, and a coordinate y perpendicular to the plate.
The data U(t) then represents the velocity of the plate at any non-negative time t . The
parameter a in equation (7.7) is the kinematic viscosity, while the parameter b is the
ratio of the stress modulus to the density of the fluid. Many authors have studied the
impulsive motion of an infinite plate by considering the boundary condition U(t) = V
for all t > 0. In such a case, the plate is assumed to start at rest at the initial time
t = 0) , and then assumes a constant velocity V > 0 for all t > 0. For this scenario,
many authors have taken U ′(t) = 0 for all t > 0, which seems reasonable given the fact
that the velocity of the plate is assumed constant for all positive values of time. After
performing the Euler’s trick we obtain a Frobenius-type PDE which may be studied by
our methods.

EXAMPLE 7.3. The problem of surface design is one of those associate to third
order PDEs. In this field a boundary is given together with some control points and
we look for a surface that is consistent with this given data ([1]). A classical method
is the technique for triangular Bézier surfaces based on the boundary information. For
a predetermined given boundary, we look for a surface as an explicit solution to an
appropriately chosen PDE. In the year 1989, Bloor and Wilson gave these types of
surface modeling techniques the name ”PDE surfaces”; see [3]. Since most information
defining a surface comes from its boundary curves, adding some boundary conditions
to the PDE allows the PDE based method to generate and control the surface shape
through very few parameters. This is a quite computational problem and with several
applications in engineering. A triangular Bézier surface satisfying a linear PDE can be
determined given some of its control points. This is a modern version of the classical
Plateau problem from minimal surfaces theory ([12]).
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EXAMPLE 7.4. (Frobenius method vs Laplace-Fourier method) Consider the dis-
turbed heat diffusion equation (7.6) of Example 7.1 with the following initial conditions

z(x,0) = 0, x ∈ R,
∂ z
∂y

(x,0) = 1, x ∈ R and
∂ 2z
∂y2 (x,0) = 0, x ∈ R. (7.8)

Denoted

Z(x,s) = L [z(x,y)](s) =
∫ +∞

0
e−syz(x,y)dy.

Now applying Laplace transform to both sides of the equation (7.6)

∂ 3Z
∂x3 (x,s)+ s3Z(x,s)− s2z(x,0)− s

∂ z
∂y

(x,0)− ∂ 2z
∂y2 (x,0)

= sZ(x,s)− z(x,0)+ ex ∂Z
∂x

(x,s−1)

and using (7.8) we get

∂ 3Z
∂x3 (x,s)+ s3Z(x,s)− s = sZ(x,s)+ ex ∂Z

∂x
(x,s−1). (7.9)

On the other hand, denoted

F(x,ω) = F [z(x,y)](ω) =
1√
2π

∫ +∞

−∞
e−iωyz(x,y)dy.

Applying Fourier transform to the equation (7.6) a

∂ 3F
∂x3 (x,ω)+ (iω)3F(x,ω) = (iω)F(x,s)+ ex ∂F

∂x
(x,ω + i)

equivalently

∂ 3F
∂x3 (x,ω)− iω3F(x,ω) = iωF(x,s)+ ex ∂F

∂x
(x,ω + i). (7.10)

Note that ODEs (7.9) and (7.10) cannot be resolved by any known method. Although,
in the Example 7.1 we saw that using the Frobenius method we can solve.

EXAMPLE 7.5. (Legendre PDE) Consider the equation

(1− x3)x3 ∂ 3u
∂x3 +3(1− x3)x2y

∂ 3u
∂x2∂y

+3(1− x3)xy2 ∂ 3u
∂x∂y2

+(1− x3)y3 ∂ 3u
∂y3 −6x5 ∂ 2u

∂x2 −12x4y
∂ 2u

∂x∂y
−6x3y2 ∂ 2u

∂y2 −6x4 ∂u
∂x

−6x3y
∂u
∂y

+ λ (λ +1)(λ +2)x3u = 0

(7.11)
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where λ ∈ R . Let ϕ be a solution of (7.11) of the form ϕ(x,y) = xrys ∑∞
|Q|=0 gQXQ

where g0,0 �= 0. Then (r + s)(r + s− 1)(r + s− 2)g0,0 = 0, (1+ r + s)(r + s)(r + s−
1)g1,0 = 0, (1+ r + s)(r + s)(r + s−1)g0,1 = 0, (2+ r + s)(r + s+1)(r + s)g2,0 = 0,
(2+ r+ s)(r+ s+1)(r+ s)g1,1 = 0, (2+ r+ s)(r+ s+1)(r+ s)g0,2 = 0 and (|Q|+ r+
s)(|Q|+ r+ s−1)(|Q|+ r+ s−2)gQ − [(|Q|+ r+ s)(|Q|+ r+ s+1)(|Q|+ r+ s+2)−
λ (λ + 1)(λ + 2)]gq1−3,q2 = 0, for every |Q| = 3,4, . . . . Given that g0,0 �= 0 we have
that

(r+ s)(r+ s−1)(r+ s−2) = 0. (7.12)

Let (r,s) point of (7.12) such that

(r,s) /∈
⎧⎨
⎩(r,s);

(|Q|+ r+ s)(|Q|+ r+ s−1)(|Q|+ r+ s−2)= 0,

for some |Q| = 1,2, . . .

⎫⎬
⎭ . (7.13)

Thus we have g1,0 = g0,1 = g2,0 = g1,1 = g0,2 = 0 and

gQ =
(|Q|+r+s)(|Q|+r+s+1)(|Q|+r+s+2)−λ (λ+1)(λ+2)]gq1−3,q2

(|Q|+r+s)(|Q|+r+s−1)(|Q|+r+s−2) , for every |Q| = 3,4 . . . .

Therefore gq1,q2 = 0 (q1,q2) �= (3n,0) and

g3n,0 = [(r+s+3n)(r+s+3n+1)(r+s+3n+2)−λ (λ+1)(λ+2)]···[(r+s+3)(r+s+4)(r+s+5)−λ (λ+1)(λ+2)]g0,0
(r+s+3n)(r+s+3n−1)(r+s+3n−2)···(r+s+3)(r+s+2)(r+s+1)

for every n = 1,2, . . . . Choosing g0,0 = 1 we have that

ϕ(x,y) = xrys+

xrys
∞

∑
n=1

[(r+s+3n)(r+s+3n+1)(r+s+3n+2)−λ (λ+1)(λ+2)]···[(r+s+3)(r+s+4)(r+s+5)−λ (λ+1)(λ+2)]x3n

(r+s+3n)(r+s+3n−1)(r+s+3n−2)···(r+s+3)(r+s+2)(r+s+1)

is solution of (7.11) where (r,s) verifies (7.12) and (7.13). Note that by (7.12) and
(7.13) we conclude that r+ s = 2 so the solution of (7.11) is given by

ϕ(x,y) = xry2−r

[
1+

∞

∑
n=1

[(3n+4)(3n+3)(3n+2)−(λ+2)(λ+1)λ ]···[(7)(6)(5)−(λ+2)(λ+1)λ ]x3n

(3n+2)(3n+1)(3n)···(5)(4)(3)

]
.

Finally, note that if λ = 3k+2 for some k = 1,2, . . . the solution of (7.11) is polyno-
mial.

8. Appendix: affine classification of real plane cubics

In this appendix we present the affine classification of plane cubics according to
[14]. This is obviously related to the classification of Frobenius PDEs and their indicial
cubics since this class of equations is preserved by affine transformations.

We shall consider an affine plane cubic K : Ax3 + Bx2y +Cxy2 + Dy3 +Ex2 +
Fxy+Gy2 +Hx+ Iy+ J = 0. We consider simplifications of the cubic by performing
the following two types of operations:
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1. Making substitutions of the form x = λ1x′ + λ2y′ + λ3, y = λ4x′ + λ5y′ + λ6 ,
where λ1λ5−λ2λ4 �= 0.

2. Multiplying the equation by μ �= 0.
In other words, we compute the orbit K under the action of Aff(R2) , the affine

group of R2 .
A complete set of equivalence class representatives is then given below:

THEOREM 8.1. ([14]) A complete set of equivalence class representatives for the
action of the affine group of R2 on the set of real plane cubic curves is given below.
The invariants are as follows:

Δ = 27A2D2 − 18ABCD+ 4AC3, P1 = 3AC−B2 P2 = 3DB−K2, Q1 = 27A2D−
9ABC+2B3, Q2 = 27D2A−9DCB+2C3 .

Different values of the parameters in the table below correspond to distinct equiv-
alence classes.

The equivalence classes are divided into groups and are as follows:

(I) Δ > 0 (elliptic class)

(a) x3 + xy2 + x2 +Hx+ Iy+ J = 0,H,J ∈ R, I � 0

(b) x3 + xy2 + y+Hx+ J = 0, H,J ∈ R

(c) x3 + xy2 + y+Hx+ J = 0, H,J ∈ R

(d) x3 + xy2 + x+ J = 0, J � 0

(e) x3 + xy2 +1 = 0

(f) x3 + xy2 = 0

(II) Δ < 0 (hyperbolic class)

(a) x3 − xy2− y2 +Hx+ Iy+ J = 0, H,J ∈ R, I � 0

(b) x3 − xy2− y+Hx+ J = 0, H > −1,J � 0

(c) x3 − xy2 +1 = 0

(d) x3 − xy2 = 0

(III) Δ = 0,P2
1 +Q2

1 +P2
2 +Q2

2 �= 0 (parabolic class, nondegenerate)

(a) x2y+ y2− x+ y+ J = 0

(b) x2y+ y2 + y+ J = 0

(c) x2y+ y2−1 = 0

(d) x2y+ y2 = 0

(e) x2y− x+ y+ J = 0, J � 0

(f) x2y− x = 0

(g) x2y− x+1 = 0

(h) x2y+ y = 0
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(i) x2y+ y+1 = 0

(j) x2y = 0

(k) x2y−1 = 0

(IV) Δ = 0, P1 = Q1 = P2 = Q2 = 0 (parabolic class degenerate)

(a) x3 − y2 + x+ J = 0,−∞ < J < ∞

(b) x3 − y2− x+ J = 0,−∞ < J < ∞

(c) x3 − y2 +1 = 0

(d) x3 − y2 = 0

(e) x3 − y2−1 = 0

(f) x3 − y = 0

(g) x3 + x+ J = 0,0 < J < ∞

(h) x3 − xy = 0

(i) x3 − xy+1 = 0

(j) x3 +1 = 0

(k) x3 = 0
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[11] V. LEÓN AND B. SCÁRDUA, On singular Frobenius for second order linear partial differential equa-
tions, available at arXiv:1907.02620v1.
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