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Abstract. In this paper, we consider a time-independent fractional equation:{
(−Δ)su = f (x)|u|2∗s −2u+g(x)|u|q−1u, x ∈ Ω;

u = 0, x ∈ RN \Ω,

where Ω is a smooth bounded domain, s ∈ (0,1) , N > 2s , 0 < q < 1 , the coefficient functions
f and g may change sign. We first obtain the existence of ground state solution by the Nehari
method under the combined effect of coefficient functions. Then we find the multiplicity of
positive solutions by Mountain pass theorem under some stronger conditions, and one of them is
a ground state solution.

1. Introduction and main results

In this paper, we consider the following critical fractional equations:{
(−Δ)su = f (x)|u|2∗s−2u+g(x)|u|q−1u, x ∈ Ω;

u = 0, x ∈ RN \Ω,
(1.1)

where Ω is a smooth bounded domain, s ∈ (0,1) , N > 2s , 0 < q < 1. Note that
2∗s = 2N

N−2s and (−Δ)s denotes a non-local fractional Laplacian operator of order s ,
which can be characterized as

(−Δ)su(x) = CN,s P. V.
∫

RN

u(x)−u(y)
|x− y|N+2s dy,

P. V. represents the Cauchy principal value, and CN,s is a positive constant depending
on N and s , see [1]. The non-local fractional Laplacian operator naturally arises in
many different areas, such as obstacle problems, financial mathematics, phase transi-
tions, anomalous diffusions, crystal dislocations, soft thin films, semipermeable mem-
branes, flame propagations, etc. For more details and applications, see [3]–[7] and the
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references therein. The solvability of problems involving the fractional Laplacian has
been widely investigated in recent years, there are plenty of works. Some existence
and nonexistence of Dirichlet problem involving the fractional Laplacian on bounded
domain have been established, see [8]–[13] and so on.

When s = 1, problem (1.1) turns out to be the classical semilinear critical problem
with concave nonlinearity, there have been large amount of works about the classical
semilinear critical problem with concave nonlinearity after the pioneering work by Am-
brosetti, Brézis and Cerami [14].

In the critical case, the main difficulty lies in the fact that Euler-Lagrange func-
tional does not satisfy the (usual in variational methods) Palais-Smale compactness
condition. The solvability and multiplicity of the critical fractional problem has paid
much attention to various authors. In particular, for the following problem{

(−Δ)su = u2∗s−1 + λuq, x ∈ Ω;

u = 0, x ∈ RN \Ω,
(1.2)

When q = 1, problem (1.2) represents a fractional counterpart of the famous Brezis-
Nirenberg problem, Servadei and Valdinoci ([15]–[18]) have showed that the problem
admits a nontrivial weak solution in the following case:

(i) n > 4s ,
(ii) n = 4s and λ is different from the eigenvalues of (−Δ)s in Ω with homoge-

neous Dirichlet boundary data,
(iii) 2s < n < 4s and λ is sufficiently large.
Later, Barrios et al. [19] studied the existence and multiplicity of solutions for

different values of λ , they treated the concave power (0 < q < 1) and the convex
power case (1 < q < 2∗s −1) separately. Then Chen et al. [20] used the Nehari manifold
method to obtain the multiplicity of solutions for the subcritical case and critical case.
If we add more general weight functions, the above problem becomes{

(−Δ)su = f (x)|u|2∗s−2u+ λg(x)|u|q−2u x ∈ Ω;

u = 0, x ∈ RN \Ω,
(1.3)

Wang [22] investigated the numbers of positive solutions for problem (1.3) with N > 4s
and f ,g are nonnegative continuous functions.

We notice that the above articles are dealing with the nonnegative coefficient func-
tion. In fact, only a few articles are concerned with the sign-changing weight function.
Chu et al. [23] supposed that f (x) , g(x) satisfy:

(g1) g(x) ∈C(Ω) and g+ = max{g,0} �= 0;
(g2) there exist positive constants β0 , δ0 and x0 ∈ Ω such that B(x0,2δ0) ⊂ Ω

and g(x) � β0 in B(x0,2δ0) ;
( f1) f (x) ∈C(Ω) and f + = max{ f ,0} �= 0;
( f2) f (x0) = ‖g‖∞ and f (x) > 0 for all x ∈ B(x0,2δ0) ;
( f3) There exists k > N such that f (x) = f (x0)+o(|x− x0|k) as x → x0 .
They shown that for λ sufficiently small, problem (1.3) has at least two positive

solutions.
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When f (x) = λ f + + f− and 1 < q < min{2,2∗s −1} , under the following condi-
tions

(H ′
1) f (x) = λ f + + f− , with f± = ±max{± f ,0} �= 0, and g are continuous in

Ω ;
(H ′

2) There exists a nonempty closed set M = {x ∈ Ω|b(x) = maxb∈Ω b ≡ 1} ⊂ Ω
and a positive number k > N−2s

2 such that f (z)− f (x) = o(|x− x0|k) holds uniformly
for z ∈ M in the limit x → z , Quaas and Xia proved the existence and multiplicity
of positive solutions of problem (1.1) by the Ljusternik-Schnirelmann category and
variational methods for λ sufficiently small, see [21].

Recently, Chen and Tang [24] considered this case in the whole space, for λ suf-
ficiently small, they proved that problem (1.3) with g(x) ≡ 1 has infinitely many small
energy solutions with the aid of the symmetric Mountain pass theorem.

Motivated by the works described above, we also focus our attention on the critical
problem with sign-changing weight functions. We try to obtain the multiplicity of posi-
tive solutions and the existence of ground state solution to problem (1.1). An interesting
study is the relevance of coefficient functions of the nonlinearity to the multiplicity of
solutions of problem (1.1).

In the present paper, we make the following assumptions:
(H1) f ∈ L∞(Ω) , g ∈ L∞(Ω) , the sets {x ∈ Ω : f (x) > 0} and {x ∈ Ω : g(x) > 0}

have positive Lebesgue measures.
First, we prove the existence of ground solution by using Nehari manifold method,

which is first introduced in [25].

THEOREM 1. Assume that (H1) holds. Then there exists T > 0 such that problem

(1.1) has a nonnegative ground state solution for all ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T .

COROLLARY 1. Assume that (H1) holds and g is nonnegative. Then there exists

T > 0 such that problem (1.1) has a positive ground state solution for all ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞

< T .

REMARK 1. Let u∗ be a nonnegative solution from Theorem 1. Since u∗ is in a
convenient subspace of Hs(RN) (see Section 2 below for details), by [19, Proposition
2.2], it follows that u ∈ L∞(Ω) . Therefore, by [29, Proposition 1.1], we get that u ∈
C0,s(RN) , here C0,s denotes the space of Hölder continuous functions. Then, by the
classical bootstrap argument, it is easy to u∗ ∈C1,α(Ω) for some 0 < α < s . Now, by
g(x) � 0, one has

(−Δ)su = f (x)u2∗s−1
∗ +g(x)uq

∗
� f (x)u2∗s−2

∗ u∗

� − f−u2∗s−2
∗ u∗

� −Cu∗,
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where f± = max{± f ,0} , and C > 0 is a constant. By the strong maximum principle
[28, Remark 4.14], it is easy to see that a nonnegative solution is a positive solution.

Next, we need more assumption to obtain the second solution by applying the
Mountain pass theorem. Assume that:

(H2) There exist x0 ∈ Ω such that f (x0) = ‖ f‖∞ and f (x)− f (x0) = O(|x−x0|σ )
for σ > N−2s

2 as x → x0 , infx∈B(x0,1) f (x) = c0 > 0.

THEOREM 2. Assume that (H1) and (H2) hold, g is nonnegative. Then there
exists 0 < T

′ � T such that problem (1.1) has at least two positive solutions for all

‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T

′
, and one of solutions is a ground state solution.

REMARK 2. To our best knowledge, up to now there is no result appeared in the
literature for the critical case with the combined effect of coefficient functions. In [23]
and [21], they considered the constraint parameter lying in the concave term. Fur-
thermore, [21] required 1 < q < min{2,2∗s − 1} , we relax the restricted condition to
1 < q < 2. Accordingly, our result is also significative.

This paper is organized as follows. In Section 2, we give some preliminaries which
will be used to prove our main result. In Section 3, using the Nehari method, we can
obtain a nonnegative ground solution for the critical case when f ,g are sign-changing
weight functions. In Section 4, we find the second solution by Mountain pass theorem
when f and g add a new condition.

2. Some preliminary results

We give some basic notations and some lemmas, which are prepared for the proof
of our main results.

The fractional Sobolev space of order s on RN is defined by

Hs(RN) =
{

u ∈ L2(RN) :
∫

RN

∫
RN

|u(x)−u(y)|2
|x− y|N+2s dxdy < ∞

}
.

In this paper, we consider the following space:

E :=
{

u ∈ Hs(RN) : u = 0 a.e in RN \Ω
}

,

then E is equipped with the inner product

〈u,v〉 =
∫

RN

∫
RN

[u(x)−u(y)][v(x)− v(y)]
|x− y|N+2s dxdy

and the norm

‖u‖ =
(∫

RN

∫
RN

|u(x)−u(y)|2
|x− y|N+2s dxdy

) 1
2

.
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We denote by ‖·‖p the usual Lp -norm. The energy functional I : E →R corresponding
to (1.1) is defined as follows:

I(u) =
1
2
‖u‖2− 1

2∗s

∫
Ω

f (x)(u+)2∗s dx− 1
q+1

∫
Ω

g(x)(u+)q+1dx,

where u± = max{±u,0} . The function u ∈ E is said to be a weak solution of the
problem (1.1), if u satisfies

∫
RN

∫
RN

[u(x)−u(y)][ϕ(x)−ϕ(y)]
|x− y|N+2s dxdy−

∫
Ω

f (x)(u+)2∗s−1ϕdx−
∫

Ω
g(x)(u+)qϕdx = 0

for all ϕ ∈ E . We define Nehari manifold N :

N ={u ∈ E : 〈I ′(u),u〉 = 0}

=
{

u ∈ E : ‖u‖2−
∫

Ω
f (x)(u+)2∗s dx−

∫
Ω

g(x)(u+)q+1dx = 0

}
.

Obviously, if a nonzero solution exists then it must lie in N . A critical point u �= 0 of
I is a ground state or a least energy critical point if I(u) = infu∈N I . In order to obtain
the multiplicity of solutions, we make splitting for N . For this purpose, we define a
fibering map Ju : t → I(tu) for all t > 0, that is,

Ju(t) =
t2

2
‖u‖2− t2

∗
s

2∗s

∫
Ω

f (x)(u+)2∗s dx− tq+1

q+1

∫
Ω

g(x)(u+)q+1dx

for u ∈ E . Simple computations show that

J
′
u(t) = t‖u‖2− t2

∗
s−1

∫
Ω

f (x)(u+)2∗s dx− tq
∫

Ω
g(x)(u+)q+1dx

and

J
′′
u (t) = ‖u‖2− (2∗s −1)t2

∗
s−2

∫
Ω

f (x)(u+)2∗s dx−qtq−1
∫

Ω
g(x)(u+)q+1dx.

Clearly,

N = {u ∈ E : J
′
u(1) = 0}.

For all u ∈ N , we have

J
′′
u (1) =(2−2∗s)

∫
Ω

f (x)(u+)2∗s dx+(1−q)
∫

Ω
g(x)(u+)q+1dx

=(2−2∗s)‖u‖2 +(2∗s −1−q)
∫

Ω
g(x)(u+)q+1dx

=(1−q)‖u‖2− (2∗s −1−q)
∫

Ω
f (x)(u+)2∗s dx.
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Then, according to [25] for the classical Laplacian and [26] for the fractional Laplacian,
it is natural to split N into there parts, i.e

N + = {u ∈ N : J
′′
u (1) > 0}

N − = {u ∈ N : J
′′
u (1) < 0}

N 0 = {u ∈ N : J
′′
u (1) = 0}.

Our approach to problem (1.1) is upon the structure of the constrained sets N + , N − ,
N 0 .

DEFINITION 1. A sequence {un} ⊂ E is called a (PS)c sequence of I if I(un)→
c and I′(un) → 0 as n → ∞ .

LEMMA 1. (see [27]) There exists a best Soblev constant S > 0 such that

S = inf
u∈Hs(RN)\{0}

‖u‖2

‖u‖2
2∗s

.

Moreover, the infimum is attained at the function

uε(x) =
ε

N−2s
2

(ε2 + |x|2)N−2s
2

for all ε > 0 .

LEMMA 2. Suppose that u0 is a local minimizer of I on N and u0 /∈N 0 . Then,
u0 is a critical point of I .

Proof. If u0 is a local minimizer for I on N , then u0 is a solution of the opti-
mization problem

minimize I(u) subject to Φ(u) = 0,

where Φ(u) = J
′
u(1) . By the theory of Lagrange multipliers, there exists θ ∈ R such

that I
′
(u0) = θΦ′

(u0) in H−1
s (RN) . Then,

〈I ′(u0),u0〉 = θ 〈Φ′
(u0),u0〉 = 0.

Since u0 /∈ N 0 , it is easy to see that

〈Φ′
(u0),u0〉 = J

′′
u0

(1) �= 0,

that is θ = 0. Thus, the proof is completed. �
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3. The proof of Theorem 1

LEMMA 3. Assume that (H1) holds, then there exists a constant T1 > 0 such that

N ± �= /0 for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T1 .

Proof. Let K = {x ∈ Ω : f (x) > 0} , it follows from (H1) that K is a positive
measure set. Then for any ε > 0 there exist a closed set F and a open set G such that
F ⊆ K ⊆ G and meas (G−F) < ε . From the arbitrariness of ε , we have meas F > 0.
We choose u ∈ C1

0(Ω) with 0 � u � 1 such that u = 1 in F and u = 0 in Ω \G .
Obviously, u∈ E \{0} . By Hölder’s inequality [31] and the assumptions of f , one has∫

Ω
f (x)(u+)2∗s dx �

∫
F

f (x)(u+)2∗s dx−
∫
G−F

| f (x)|(u+)2∗s dx

�
∫

F
f (x)dx− ε‖ f‖∞

� 1
2

∫
F

f (x)dx

> 0,

where ε =
∫
F f (x)dx
2‖ f‖∞

. Then, we define αu ∈C([0+ ∞),R) by

αu(t) = t1−q‖u‖2− t2
∗
s−1−q

∫
Ω

f (x)(u+)2∗s dx.

Since 0 < q < 1, it is easy to check that αu(0) = 0 and αu(t)→−∞ as t →+∞ . Then,
one gets

α ′
u(t) = (1−q)t−q‖u‖2− (2∗s −1−q)t2

∗
s−2−q

∫
Ω

f (x)(u+)2∗s dx.

Moreover, αu(t) achieves its maximum at t0 for α ′
u(t0) = 0, that is

t0 =
(

(1−q)‖u‖2

(2∗s −1−q)
∫

Ω f (x)(u+)2∗s dx

) 1
2∗s−2

.

It follows that

αu(t0) =
2∗s −2

2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 ‖u‖

2(2∗s−1−q)
2∗s−2(∫

Ω f (x)(u+)2∗s dx
) 1−q

2∗s−2

.

Besides, αu(t) is strictly increasing on (0,t0) and strictly decreasing on (t0,+∞) . From
Lemma 1, we have ∫

Ω
g(x)(u+)q+1dx � C0S

− q+1
2 ‖g‖∞‖u‖q+1 (3.1)

and ∫
Ω

f (x)(u+)2∗s dx � S−
2∗s
2 ‖ f‖∞‖u‖2∗s , (3.2)
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where C0 = meas(Ω)
2∗s−1−q

2∗s . Then, we have

αu(t0)−
∫

Ω
g(x)(u+)q+1dx

�
(

2∗s −2
2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 S

2∗s−1−q
2∗s−2

C0
(| f‖ 1

2∗s−2
∞ ‖g‖

1
1−q
∞

)1−q
−1

)
C0S

− q+1
2 ‖g‖∞‖u‖q+1.

Let T1 =
(

2∗s−2
2∗s−1−q

) 1
1−q

(
1−q

2∗s−1−q

) 1
2∗s−2

S
2∗s−1−q

(1−q)(2∗s−2)C
− 1

1−q
0 , when ‖ f‖

1
2∗s−2
∞ ‖g‖

1
1−q
∞ < T1 ,

we can get that

αu(t0) >

∫
Ω

g(x)(u+)q+1dx.

On one hand, when
∫

Ω g(x)(u+)q+1dx � 0, then there exists a unique t−1 satisfying
t0 < t−1 such that ∫

Ω
g(x)(u+)q+1dx = αu(t−1 ) and α ′

u(t
−
1 ) < 0.

Hence, t−1 u∈N − . On other hand, when
∫

Ω g(x)(u+)q+1dx > 0, there exist t+2 and t−2
satisfying 0 < t+2 < t0 < t−2 such that∫

Ω
g(x)(u+)q+1dx = αu(t+2 ) = αu(t−2 ) and α ′

u(t
−
2 ) < 0 < α ′

u(t
+
2 ).

So, we have t+2 u ∈ N + and t−2 u ∈ N − . Thus, the proof is completed. �

LEMMA 4. Assume that (H1) holds, then N 0 = {0} for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T1 ,

where T1 is defined in the proof of Lemma 3.

Proof. By contradiction, suppose that there exists u0 ∈ N 0 such that u �≡ 0. Ob-
viously, for u0 ∈ N 0 , it is easy to see that∫

Ω
g(x)(u+

0 )q+1dx =
2∗s −2

2∗s −1−q
‖u0‖2

and ∫
Ω

f (x)(u+
0 )2∗s dx =

1−q
2∗s −1−q

‖u0‖2.

Then, from the proof of Lemma 3, we have

0 <
2∗s −2

2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 ‖u0‖

2(2∗s−1−q)
2∗s−2(∫

Ω f (x)(u+
0 )2∗s dx

) 1−q
2∗s−2

−
∫

Ω
g(x)(u+

0 )q+1dx

=
2∗s −2

2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 ‖u0‖

2(2∗s−1−q)
2∗s−2(

1−q
2∗s−1−q‖u0‖2

) 1−q
2∗s−2

− 2∗s −2
2∗s −1−q

‖u0‖2 = 0
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for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ � T1 , this is impossible. Thus, the proof is completed. �

LEMMA 5. Assume that (H1) holds, then I is coercive and bounded from below
on N .

Proof. For u ∈ N , it follows from (3.1) that

I(u) =
1
2
‖u‖2− 1

2∗s

∫
Ω

f (x)(u+)2∗s dx− 1
q+1

∫
Ω

g(x)(u+)q+1dx

=
(

1
2
− 1

2∗s

)
‖u‖2−

(
1

q+1
− 1

2∗s

)∫
Ω

g(x)(u+)q+1dx

�
(

1
2
− 1

2∗s

)
‖u‖2−

(
1

q+1
− 1

2∗s

)
C0S

− q+1
2 ‖g‖∞‖u‖q+1.

Since 2 > q + 1, which implies that I is coercive and bounded from below on N .
Thus, the proof is completed. �

LEMMA 6. Assume that (H1) holds, let {un}⊆ E be a (PS)c sequence for I with

c <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ −M‖g‖
2

1−q
∞ ,

then there exists a subsequence of {un} , which converges strongly in E , where M is a

positive constant given by M = 1−q
2(1+q)

(
N
2s

) 1+q
1−q

(
2∗s−1−q

2∗s

) 2
1−q

S−
q+1
1−qC

2
1−q
0 .

Proof. From Lemma 5, we see that {un} is bounded in E . Then, up to a subse-
quence, still denoted by {un} , there exists u ∈ E such that⎧⎪⎨

⎪⎩
un ⇀ u weakly in E,

un → u strongly in Lr(Ω)(2 � r < 2∗s ),
un → u a.e. x ∈ Ω.

By the Vitali theorem [35], we can prove that

lim
n→∞

∫
Ω

g(x)(u+
n )q+1dx =

∫
Ω

g(x)(u+)q+1dx. (3.3)

Set wn = un−u , by Brézis-Lieb Lemma [32, Lemma 1.32], we get

‖un‖2 = ‖wn‖2 +‖u‖2 +on(1) (3.4)

and ∫
Ω

f (x)(u+
n )2∗s dx =

∫
Ω

f (x)(w+
n )2∗s dx+

∫
Ω

f (x)(u+)2∗s dx+on(1). (3.5)

Thus, one has

〈I ′(un),un〉 = ‖wn‖2−
∫

Ω
f (x)(w+

n )2∗s dx+ 〈I ′(u),u〉+on(1).
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It is easy to see that 〈I ′(un),ϕ〉→ 0 as (n→ ∞) for all ϕ ∈ E . Consequently, choosing
ϕ = u , one has

0 = lim
n→∞

〈I ′(un),u〉 = ‖u‖2−
∫

Ω
f (x)(u+)2∗s dx−

∫
Ω

g(x)(u+)q+1dx = 〈I ′(u),u〉.
Thus,

‖wn‖2−
∫

Ω
f (x)(w+

n )2∗s dx → 0

as n → ∞ . Let ‖wn‖2 → b and
∫

Ω f (x)(w+
n )2∗s dx → b as n → ∞ . If b = 0, the proof is

complete. Assuming b > 0, we get

‖wn‖2 � S‖wn‖2
2∗s (3.6)

and ∫
Ω

f (x)(w+
n )2∗s dx � ‖ f‖∞‖wn‖2∗s

2∗s . (3.7)

By (3.6) and (3.7), we have b � S
(

b
‖ f‖∞

) 2
2∗s , that is b � S

N
2s ‖ f‖−

2
2∗s−2

∞ . Since {un} is a

(PS)c sequence, using (3.3) and (3.4), one gets

lim
n→∞

(I(un)− 1
2∗s

〈I ′(un),un〉)

= lim
n→∞

(
s
N
‖wn‖2 +

s
N
‖u‖2 +

(
1
2∗s

− 1
q+1

)∫
Ω

g(x)(u+
n )q+1dx

)

=
s
N

b+
s
N
‖u‖2 +

(
1
2∗s

− 1
q+1

)∫
Ω

g(x)(u+)q+1dx

� s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +
s
N
‖u‖2 +

(
1
2∗s

− 1
q+1

)∫
Ω

g(x)(u+)q+1dx.

(3.8)

It follows from (3.8) and (3.1) that

c � s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +
s
N
‖u‖2 +

(
1
2∗s

− 1
q+1

)
S−

q+1
2 C0‖g‖∞‖u‖q+1.

Denote

γ(η) =
s
N

η2 +
(

1
2∗s

− 1
q+1

)
S−

q+1
2 C0‖g‖∞ηq+1.

Since 0 < q < 1, it is easy to check that γ(η) attains its minimum at

η0 =
(

N
2s

) 1
1−q

(
2∗s −1−q

2∗s

) 1
1−q

S
− q+1

2(1−q)C
1

1−q
0 ‖g‖

1
1−q
∞

and

γ(η0) = − 1−q
2(1+q)

(
N
2s

) 1+q
1−q

(
2∗s −1−q

2∗s

) 2
1−q

S−
q+1
1−qC

2
1−q
0 ‖g‖

2
1−q
∞ = −M‖g‖

2
1−q
∞ .
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Therefore, we have

c � s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ −M‖g‖
2

1−q
∞ ,

we get a contradiction with our hypothesis. Hence, b = 0. Thus, the proof is com-
pleted. �

LEMMA 7. Suppose that u∈N \{0} , w∈E , there exist ε > 0 and a continuous
different function l = l(w) > 0 such that

l(0) = 1, l(w)(u+w) ∈ N \ {0} for ‖w‖ < ε.

Proof. For all u ∈ N \ {0} , define G : R×E → R by

G(l,w) =〈I′(l(u+w)), l(u+w)〉
=l2‖u+w‖2− l2

∗
s

∫
Ω

f (x)[(u+w)+]2
∗
s dx− lq+1

∫
Ω

g(x)[(u+w)+]q+1dx.

Since u ∈ N \ {0} , it follows that G(1,0) = 0 and Gl(1,0) �= 0. Thus, according
the implicit function theorem, we can obtain ε > 0 and a continuous differentiable
l : B(0,ε) → R satisfying that

l(0) = 1, l(w)(u+w) ∈ N \ {0} for ‖w‖ < ε.

and for all ϕ ∈ E , 〈l′(0),ϕ〉 = 〈Gw(1,0),ϕ〉
Gl(1,0) . Thus, the proof is completed. �

Now, we give the proof of Theorem 1.

Proof of Theorem 1. Let T2 > 0 be such that T2 = ( s
MN S

N
2s )

1
2 . Notice that

s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ −M‖g‖
2

1−q
∞ = ‖ f‖−

2
2∗s−2

∞

(
s
N

S
N
2s −M

(‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞

)2
)

,

then we have

s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ −M‖g‖
2

1−q
∞ > 0

for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T2 . Denote T = min{T1,T2} . When ‖ f‖

1
2∗s−2
∞ ‖g‖

1
1−q
∞ < T , by

Lemma 5, we know that I is coercive and bounded from below on N . Therefore, we
may define

m = inf
u∈N

I(u).

First, we can claim that m < 0. In fact, for all u ∈ N + , one gets

(2∗s −1−q)
∫

Ω
g(x)(u+)q+1dx > (2∗s −2)‖u‖2.
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Then, we have

I(u) =
1
2
‖u‖2− 1

2∗s

∫
Ω

f (x)(u+)2∗s dx− 1
q+1

∫
Ω

g(x)(u+)q+1dx

=
(

1
2
− 1

2∗s

)
‖u‖2 +

(
1
2∗s

− 1
q+1

)∫
Ω

g(x)(u+)q+1dx

<

[(
1
2
− 1

2∗s

)
−

(
2∗s −2

2∗s (q+1)

)]
‖u‖2

<0,

which implies that m < 0. Since N is a closed set in E , applying Ekeland’s principle
[34] to the minimization problem infu∈N I(u) = m , there exists a sequence {un} ⊆ N
such that

(i) I(un) < m+
1
n

(ii) I(u) � I(un)− 1
n
‖u−un‖ for all u ∈ N .

Thus, using Lemma 5 again, the sequence {un} is bounded in E , then there exists
u∗ ∈ E such that ⎧⎪⎨

⎪⎩
un ⇀ u∗ weakly in E,

un → u∗ strongly in Lr(Ω)(2 � r < 2∗s ),
un → u∗ a.e. x ∈ Ω.

Let λ > 0 small enough, for each ϕ ∈ E , we choose u = un , w = λ ϕ in Lemma 7,
thus we get

|ln(λ ϕ)−1|‖un‖+ λ ln(λ ϕ)‖ϕ‖
n

� 1− l2n(λ ϕ)
2

‖un‖2 +
l2

∗
s

n (λ ϕ)−1
2∗s

∫
Ω

f (x)[(un + λ ϕ)+]2
∗
s dx

+
lq+1
n (λ ϕ)−1

q+1

∫
Ω

g(x)[(un + λ ϕ)+]q+1dx+
l2n(λ ϕ)

2
(‖un‖2−‖un + λ ϕ‖2)

+
1
2∗s

∫
Ω

f (x)[[(un+λ ϕ)+]2
∗
s−(u+

n )2∗s ]dx+
1

q+1

∫
Ω

g(x)[[(un+λ ϕ)+]q+1−(u+
n )q+1]dx.

Consequently, dividing by λ and letting λ → 0, it follows that

|〈l′n(0),ϕ〉|‖un‖+‖ϕ‖
n

� −l
′
n(0)〈I ′(un),un〉− 〈I ′(un),ϕ〉

= −〈I ′(un),ϕ〉.
Since the above mentioned inequality also holds for −ϕ , that is

|〈l′n(0),ϕ〉|‖un‖+‖ϕ‖
n

= 〈I ′(un),ϕ〉.
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By Hölder’s inequality, there exists a constant C1 > 0 such that

|〈Gw(1,0),ϕ〉|

�
∣∣∣∣2

∫
RN

∫
RN

[un(x+ z)−un(x)][ϕ(x+ z)−ϕ(x)]
|z|N+2s dzdx

∣∣∣∣
+2∗s

∣∣∣∣
∫

Ω
f (x)(u+

n )2∗s−1ϕdx

∣∣∣∣+(q+1)
∣∣∣∣
∫

Ω
g(x)(u+

n )qϕdx

∣∣∣∣
�‖ϕ‖

(
2‖un‖+2∗sS

− 2∗s
2 ‖ f‖∞‖un‖2∗s +(q+1)S−

q+1
2 C0‖g‖∞‖un‖q

)
�C1‖ϕ‖,

where C0 = meas(Ω)
2∗s−1−q

2∗s . Next, we claim that

|Gl(1,0)| =
∣∣∣∣(1−q)‖un‖2 +(2∗s −1−q)

∫
Ω

f (x)(u+
n )2∗s dx

∣∣∣∣ � C2

for C2 > 0 and n large enough. We argue by contradiction, assume that there exists a
subsequence {un} such that∣∣∣∣(1−q)‖un‖2− (2∗s −1−q)

∫
Ω

f (x)(u+
n )2∗s dx

∣∣∣∣ → 0 (3.9)

as n → ∞ . In addition (3.9), and the fact that un ∈ N , one has∫
Ω

g(x)(u+
n )q+1dx = ‖un‖2−

∫
Ω

f (x)(u+
n )2∗s dx → 2∗s −2

1−q

∫
Ω

f (x)(u+
n )2∗s dx (3.10)

as n → ∞ . From the proof of Lemma 3, we have

2∗s −2
2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 ‖u‖

2(2∗s−1−q)
2∗s−2(∫

Ω f (x)(u+)2∗s dx

) 1−q
2∗s−2

−
∫

Ω
g(x)(u+

n )q+1dx > 0

for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ � T . It follows from (3.9) and (3.10) that

2∗s −2
2∗s −1−q

(
1−q

2∗s −1−q

) 1−q
2∗s−2 ‖u‖

2(2∗s−1−q)
2∗s−2(∫

Ω f (x)(u+)2∗s dx

) 1−q
2∗s−2

−
∫

Ω
g(x)(u+

n )q+1dx

→ 2∗s −1−q
1−q

∫
Ω

f (x)(u+
n )2∗s dx− 2∗s −2

1−q

∫
Ω

f (x)(u+
n )2∗s dx

< 0

for n large enough, this is impossible. Hence, by Lemma 7, there exists a constant
C3 > 0 such that |〈l′n(0),ϕ〉| � C3 for n large enough. Therefore,
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|〈l′n(0),ϕ〉|‖un‖+‖ϕ‖
n

= 〈I ′(un),ϕ〉 → 0

as n → ∞ . Obviously, {un} is a (PS)m sequence. By Lemma 6, we can prove that
there exists u∗ ∈ E such that un → u∗ as n → ∞ . Moreover, I(u∗) = m < 0, that is
u∗ �≡ 0. Since 〈I ′(u∗),u−∗ 〉 = −‖u−∗ ‖2 = 0, it is easy to see that u∗ � 0. By Lemma 2
and I(u∗) = infu∈N I(u) , we can prove that u∗ is a nonnegative ground state solution
of problem (1.1). Thus, the proof is completed. �

4. The proof of Theorem 2

Let θ ∈C∞
0 (RN) be a radially symmetric function such that 0 � θ � 1, |∇θ |�C ,

and

θ (x) =

{
1, |x− x0| � 1

2 ,

0, |x− x0| � 1.

Denote

ũε(x) = θ (x)uε(x− x0) =
θ (x)ε

N−2s
2

(ε2 + |x− x0|2)N−2s
2

,

where uε(x) is defined in Lemma 1. By similar argument as Propositions 21 and 22 in
[15], the following estimates for ũε are proved:

‖ũε‖2 � ‖uε‖2 +O(εN−2s) (4.1)

and ∫
Ω
|ũε |2∗s dx =

∫
Ω
|uε |2∗s dx+O(εN) (4.2)

for ε small enough.

LEMMA 8. Assume that (H2) holds, then there exists ε0 > 0 such that

sup
t�0

I(u∗ + tũε) <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m

for all 0 < ε < ε0 , where u∗ is a positive solution of problem (1.1) in Corollary 1.

Proof. We can easy to obtain that

I(u∗ + tũε)

=
1
2
‖u∗+ tũε‖2− 1

2∗s

∫
Ω

f (x)|u∗ + tũε |2∗s dx− 1
q+1

∫
Ω

g(x)|u∗ + tũε |q+1dx.

Since I(u∗ + tũε)|t=0 = m < s
N S

N
2s ‖ f‖−

2
2∗s−2

∞ +m , by a continuity argument, there exist
t1 > 0 and ε1 > 0 both small enough such that

I(u∗ + tũε) <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m
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for all t ∈ (0, t1) and ε ∈ (0,ε1) . Notice that I(u∗+ tũε)→−∞ as t → ∞ for all ε > 0.
Thus, there exists t2 > 0 large enough such that

I(u∗ + tũε) <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m

for all t � t2 and ε ∈ (0,ε1) . Hence, we only need to prove that there exists ε0 ∈ (0,ε1)
such that

I(u∗ + tũε0) <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m

for all t1 � t � t2 . Since u∗ is a positive solution, we have

〈I(u∗), ũε〉 = 〈u∗, ũε〉−
∫

Ω
f (x)|u∗|2∗s−1ũεdx−

∫
Ω

g(x)|u∗|qũεdx = 0. (4.3)

Now, we give the following two elementary inequalities:

(a+b)γ � aγ + γaγ−1b, for a,b > 0,1 < γ < 2

and

(a+b)γ � aγ +bγ + γaγ−1b+C
′
abγ−1, for 0 � a � M,b > 1,γ > 2,

where C
′
and M are positive constants. Using the preceding inequalities and (4.3), we

have

I(u∗ + tũε) � 1
2
‖u∗‖2 + t〈u∗, ũε〉+ t2

2
‖ũε‖2− 1

2∗s

∫
Ω

f (x)|u∗ + tũε |2∗s dx

− 1
q+1

∫
Ω

g(x)|u∗ + tũε |q+1dx

� 1
2
‖u∗‖2 + t

∫
Ω

f (x)|u∗|2∗s−1ũεdx+ t
∫

Ω
g(x)|u∗|qũεdx

+
t2

2
‖ũε‖2− 1

2∗s

∫
Ω

f (x)|u∗|2∗s dx− t2
∗
s

2∗s

∫
Ω

f (x)|ũε |2∗s dx

− t
∫

Ω
f (x)|u∗|2∗s−1ũεdx− C

′
t2

∗
s−1

2∗s

∫
Ω

f (x)u∗ũ
2∗s−1
ε dx

− 1
q+1

∫
Ω

g(x)|u∗|q+1dx− t
∫

Ω
g(x)|u∗|qũεdx

= I(u∗)+
t2

2
‖ũε‖2− t2

∗
s

2∗s

∫
Ω

f (x)|ũε |2∗s dx− C
′
t2

∗
s−1

2∗s

∫
Ω

f (x)u∗ũ
2∗s−1
ε dx.

Let k(t) = t2
2 ‖ũε‖2− t2

∗
s

2∗s
∫

Ω f (x)|ũε |2∗s dx. It is easy to check that k(t) achieves its max-
imum at t0 , that is

t0 =
( ‖ũε‖2∫

Ω f (x)|ũε |2∗s dx

) 1
2∗s−2

.
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Consequently, one has

k(t0) =
s
N

( ‖ũε‖2(∫
Ω f (x)|ũε |2∗s dx

) 2
2∗s

) N
2s

.

Letting ε → 0+ , we claim that(∫
Ω

f (x)|ũε |2∗s dx

) 2
2∗s

= ‖ f‖
2
2∗s∞ ‖ũε‖2

2∗s +o(ε
N−2s

2 ).

In fact, for all ε > 0, it follows that∣∣∣∣
∫

Ω
f (x)|ũε |2∗s dx−‖ f‖∞

∫
Ω
|ũε |2∗s dx

∣∣∣∣ �
∫

Ω
| f (x)− f (x0)||ũε |2∗s dx

=
∫

Ω1

| f (x)− f (x0)||ũε |2∗s dx,

where Ω1 = {x ∈ Ω : |x− x0| � 1} . By (H2) , there exists ε > 0 and δ > 0 such that

| f (x)− f (x0)| � ε|x− x0|σ

for |x− x0| < δ . For all ε > 0, there exist C1 > 0 and C2 > 0 such that∣∣∣∣
∫

Ω
f (x)|ũε |2∗s dx−‖ f‖∞

∫
Ω
|ũε |2∗s dx

∣∣∣∣
� ε

∫
{x∈Ω:|x−x0|<δ}

|x− x0|σ εN

(ε2 + |x− x0|2)N dx

+2‖ f‖∞

∫
{x∈Ω:δ�|x−x0|�1}

εN

(ε2 + |x− x0|2)N dx

= ε
∫ δ

0
rσ+N−1 εN

(ε2 + r2)N dr+2‖ f‖∞

∫ 1

δ
rN−1 εN

(ε2 + r2)N dr

= εεσ
∫ δ

ε

0

rσ+N−1

(1+ r2)N dr+2‖ f‖∞

∫ 1
ε

δ
ε

rN−1

(1+ r2)N dr

= C1εσ +C2εN .

Since σ > N−2s
2 , then we have∣∣∣∣∫Ω f (x)|ũε |2∗s dx−‖ f‖∞

∫
Ω |ũε |2∗s dx

∣∣∣∣
ε N−2s

2

= C1εσ− N−2s
2 +C2ε

N+2s
2 → 0

as ε → 0. Combining with (4.2), one has(∫
Ω

f (x)|ũε |2∗s dx

) 2
2∗s

= ‖ f‖
2
2∗s∞ ‖uε‖2

2∗s +o(ε
N−2s

2 ).
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It follows from (4.1) and that

‖ũε‖2(∫
Ω f (x)|ũε |2∗s dx

) 2
2∗s

� ‖ f‖−
2
2∗s∞ S+o(ε

N−2s
2 ).

On the other hand, there exists a constant C3 > 0 such that∫
{x∈Ω:|x−x0|< 1

2 }
|ũε |2∗s−1dx =

∫
{x∈Ω:|x−x0|< 1

2 }
ε

N+2s
2

(ε2 + |x− x0|2)N+2s
2

dx

�
∫
{x∈Ω:|x−x0|<ε}

ε
N+2s

2

(ε2 + |x− x0|2)N+2s
2

dx

�
(

1
2

)N+2s
2

∫
{x∈Ω:|x−x0|<ε}

ε−
N+2s

2 dx

=
(

1
2

)N+2s
2

ε−
N+2s

2

∫ ε

0
rN−1dr

=
(

1
2

)N+2s
2

εN− N+2s
2

∫ 1

0
tN−1dt

= C3ε
N−2s

2

for ε small enough. From [19, Proposition 2.2], we know that u∗ ∈ L∞(Ω) . Since
f ,g ∈ L∞(Ω) , by [29, Proposition 1.1], we obtain that u∗ ∈ Cs(Ω) . So, using (H2) ,
there exists a constant C4 > 0 such that

C
′
t2

∗
s−1

2∗s

∫
Ω

f (x)u∗|ũε |2∗s−1dx � c0C
′
t2

∗
s−1

2∗s

∫
{x∈Ω:|x−x0|< 1

2 }
u∗|ũε |2∗s−1dx

� C4

∫
{x∈Ω:|x−x0|< 1

2 }
|ũε |2∗s−1dx

� C4C3ε
N−2s

2 ,

Therefore, for ε sufficiently small, we have

I(u∗ + tũε) � m+
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +o(ε
N−2s

2 )−C4C3ε
N−2s

2

<
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m.

Thus, the proof is completed. �

LEMMA 9. Assume that (H1) holds, let {un}⊆ E be a (PS)c sequence for I with

c <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m

then there exists a subsequence of {un} , which converges strongly in E .
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Proof. From Lemma 5, we see that {un} is bounded in E . Then, up to a subse-
quence, still denoted by {un} , there exists u ∈ E such that⎧⎪⎨

⎪⎩
un ⇀ u weakly in E,

un → u strongly in Lr(Ω)(2 � r < 2∗s ),
un → u a.e. x ∈ Ω.

Since 〈un,ϕ〉 → 0 as n → ∞ for all ϕ ∈ E , it follows that 〈un,ϕ〉 = 0 for all ϕ ∈ E ,
which implies that u is a solution and u ∈ N . As the similar proof of Lemma 6,
there exists b > 0 such that ‖wn‖2 → b and

∫
Ω f (x)(w+

n )2∗s dx → b as n → ∞ , where
wn = un − u . If b = 0, the proof is complete. Assume b > 0, by (3.6) and (3.7), we

have b � S
N
2s ‖ f‖−

2
2∗s−2

∞ . Then, we have

c = lim
n→∞

(
1
2
‖un‖2− 1

2∗s

∫
Ω

f (x)(u+
n )2∗s dx− 1

q+1

∫
Ω

g(x)(u+
n )q+1dx

)

=I(u)+ lim
n→∞

(
1
2
‖wn‖2− 1

2∗s

∫
Ω

f (x)(w+
n )2∗s dx

)

�m+
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ ,

we get a contradiction with our hypothesis. Hence, b = 0. Thus, the proof is com-
pleted. �

Proof of Theorem 2. Firstly, we claim that
(1) There exists ρ > 0 such that I(u) > m for all u ∈ E with ‖u‖ = ρ ;
(2) There exists e ∈ E with ‖e‖ > ρ such that I(e) < m .
In fact, by Lemma 1, (3.1) and (3.2), we obtain

I(u) =
1
2
‖u‖2− 1

2∗s

∫
Ω

f (x)(u+)2∗s dx− 1
q+1

∫
Ω

g(x)(u+)q+1dx

�‖u‖q+1
(

1
2
‖u‖1−q− 1

2∗s
‖ f‖∞S−

2∗s
2 ‖u‖2∗s−1−q− 1

q+1
‖g‖∞C0S

− q+1
2

)
.

Set h(t) = 1
2 t1−q− 1

2∗s
‖ f‖∞S−

2∗s
2 t2

∗
s−1−q for t > 0, we see that there exists

ρ = ‖ f‖−
1

2∗s−2
∞

(
(1−q)2∗sS

2∗s
2

2(2∗s −1−q)

) 1
2∗s−2

> 0

such that

max
t>0

h(t) = h(ρ) = ‖ f‖−
1−q
2∗s−2

∞
2∗s −2

2(2∗s −1−q)

(
(1−q)2∗sS

2∗s
2

2(2∗s −1−q)

) 1−q
2∗s−2

.

Let T3 =
(

(1−q)2∗s
2(2∗s−1−q)

) 1
2∗s−2

(
2∗s−2

2∗s−1−q

) 1
1−q

S
2∗s−1−q

(2∗s −2)(1−q)C
− 1

1−q
0 , when ‖ f‖

1
2∗s−2
∞ ‖g‖

1
1−q
∞ < T3 ,

we can prove that I(u) > 0 for ‖u‖ = ρ . By the proof of Lemma 8, there exists υ is
large enough such that I(e) < m for 0 < ε < ε0 , where e = u∗ + υ ũε . Next, we prove
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that ‖u∗‖ < ‖ f‖−
1

2∗s−2
∞

(
(1−q)2∗s S

2∗s
2

2(2∗s−1−q)

) 1
2∗s−2

. For this purpose, we claim that u∗ ∈ N + .

Obviously, u∗ ∈N . On the contrary, assume that u∗ ∈N − . From the proof of Lemma
3, there exists a positive number 0 < t+ < 1 such that t+u∗ ∈N + and I(t+u∗) < I(u∗) ,
which is a contradiction. Hence, we obtain u∗ ∈ N + . It follows that

(2−2∗s)‖u∗‖2 +(2∗s −1−q)
∫

Ω
g(x)uq+1

∗ dx > 0.

Consequently, from (3.1) one has

‖u∗‖2 <
2∗s −1−q

2∗s −2
C0‖g‖∞S−

q+1
2 ‖u∗‖q+1,

which implies that ‖u∗‖ <

(
2∗s−1−q
2∗s−2

) 1
1−q

C
1

1−q
0 ‖g‖

1
1−q
∞ S

− q+1
2(1−q) . Thus, one gets

‖u∗‖ < ‖ f‖−
1

2∗s−2
∞

(
(1−q)2∗sS

2∗s
2

2(2∗s −1−q)

) 1
2∗s−2

for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T3 . Now we set

Γ = {γ ∈C0([0,1],E),γ(0) = u∗,γ(1) = e}.
Using Lemma 8, we have

m < c1 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) <
s
N

S
N
2s ‖ f‖−

2
2∗s−2

∞ +m.

Applying the mountain pass theorem, we obtain a (PS) sequence of level c1 , and as a

consequence of Lemma 9 we can find the second critical point v∗ in E for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞

< T
′
= min{T1,T2,T3} , where T1,T2 has been defined in Lemma 3 and the proof of

Theorem 1. Since 〈I ′(v∗),v−∗ 〉 = −‖v−∗ ‖2 = 0, then v∗ � 0, it is easy to check that
v∗ is a positive solution by strong maximum principle. Therefore, we get two positive

solutions u∗ and v∗ for ‖ f‖
1

2∗s−2
∞ ‖g‖

1
1−q
∞ < T

′
, and u∗ is a ground state solution. Thus,

the proof is completed. �

5. Conclusion

By using fibering map analysis and the Nehari manifold approach, we explore
the existence and multiplicity of solutions for critical fractional equations with sign-
changing weight functions. The solution results complement the main results of Chu et
al. [23], and also generalize the result got by Quaas et al. [21].
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[26] E. COLORADO, A. DE PABLO, U. SÁNCHEZ, Perturbations of a critical fractional equation, Pacific
J. Math. 271 (2014), 65–85.

[27] A. COTSIOLIS, N. TAVOULARIS, Best constants for Sobolev inequalities for higher order fractional
derivatives, J. Math. Anal. Appl. 295 (2004), 225–236.
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