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EXISTENCE OF SOLUTIONS TO NONLINEAR
STURM-LIOUVILLE PROBLEMS WITH LARGE NONLINEARITIES
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Abstract. In this paper, we present results which allow us to establish the existence of solutions
to nonlinear Sturm-Liouville problems with unbounded nonlinearities. We consider both regular
and singular problems. Our main results rely on a variant of the Lyapunov-Schmidt used in
conjunction with topological degree theory.

1. Introduction

In this paper, we consider nonlinear Sturm-Liouville boundary value problems.
The results presented here enable us to establish the existence of solutions to both reg-
ular and singular problems. The class of unbounded nonlinearities in the differential
equation includes as a special case those which exhibit sublinear behavior. For regular
problems and for a class of singular problems, we allow weakly nonlinear boundary
conditions.

As in previous related work, boundary value problems are analyzed by formulat-
ing them as operator equations of the form Zx = .% (x) where £ is linear and .# is
nonlinear. We will be mainly interested in the case where .Z” does not have an inverse.
Using an approach similar to the Lyapunov-Schmidt procedure together with topolog-
ical degree theory we provide criteria for the solvability of boundary value problems.
For general theory regarding properties of the topological degree, the reader may con-
sult [13] and [30].

Use of the Lyapanov-Schmidt procedure in the study of nonlinear boundary value
problems appears in [3], [4], [8], [12], [13], [19], [28], and [29]. In [21], the reader
will find conditions for the solvability of nonlinear Sturm-Liouville problems where
the boundary conditions are global and the nonlinearities in the dynamics are sublin-
ear. There is often an intimate relation between discrete-time systems and differential
equations. Those interested in the connection between the present paper and previous
results on discrete-time systems are encouraged to see [9], [18], [19], and [20]. In [18]
and [20], problems with linear boundary conditions are analyzed and [19] is devoted to
the study of periodic behavior in discrete dynamical systems.
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2. Regular Sturm-Liouville problems

Let a,b € R with b > a. Let X denote the space (¢ [a,b],||-||) where |- || denotes
the supremum norm. In the following, let p : [a,b] = R, g:[a,b] = R,and f: R — R
be continuous and p(z) >0 on [a,b]. We use i and € to denote real-valued parameters,
and assume that o, 8,7 and § are constants such that o>+ 2 >0 and 7> +8% > 0. Let
G;: X — R be a nonlinear map for i = 1,2 that maps bounded sets in X into bounded
subsets of R. Let 2 C X be the collection of all twice-continuously differentiable
functions in X . Consider the following nonlinear boundary value problems on (a,b):

(p(0)x' (1)) +q(1)x(r) + px(r) = £ (x(r)) (1)

subject to
ox(a) + Bx'(a) = G (x), (2a)
8x(b) + yx'(b) = €Gy(x). (2b)

For general theory regarding Sturm-Liouville problems, the reader may consult
[5], [14], and [10]. It is well-known from general Sturm-Liouville theory that the
closely related linear problem

(P()¥ (1)) +q(0)x(t) = Ax(1)

subject to

ax(a)+ Bx'(a) =0
8x(b) + yx'(b) = 0.

has countably many simple eigenvalues {Ax)};_, with corresponding eigenfunctions
{wi}r- Without loss of generality, we will assume that ||y || =1 forall k=0,1,2,....
Define the map L: ¥ — X by

(LX) (1) = (p(1)x' (1)) + q(e)x(2) + px(2).
and £ : 9 — X x R? by

[ (1) = | Bi(x)

It is straightforward to show that if u is not an eigenvalue of the linear problem
above, . is a bijection from & onto X x R?. If u = A; for some nonnegative integer
k then the kernel of L is nontrivial and spanned by y = y;. Let ¢ be a solution to
Lx =0 such that {y, ¢} forms a basis for the solution space to Lx =0 and ||¢| = 1.
Let vi = B;(¢) and v, = Ba(¢). Then It is straightforward to show that [k, [wy,w,]] €
X x R? is in the image of L if and only if

w2

/h dt+————0.
v
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We define U : X — X by

00 = w0 [ 6 y(s)as.

Define E : X x R? — X x R? by

(h Wl,Wz (/ h dt—|———v:—22) (h,Wl,Wz)

S S
L/ (72403 1)2
bijection onto Im (L) =Im (I — U). Therefore, it follows that there exists a linear map
M:Im(I-U) — 2N Im(.Z) satisfying

where m = . Also note that the map L restricted to ZN Im () is a

LMh=nh
forall A€ Im(I—U) and
MLx=(I-U)x

for all x € . It is clear that M is a compact operator between Im (I —U) and 2.
Define F : X — X by

and .7 : X xR — X xR? by

F(x)
[Zx(1) = | €Gi(x)
8G2 (x)
We note that solving
Lx=F(x)

is equivalent to solving the system

x—MEZ (ay+x)=0
and
f_ll l[/(S)f(OCl[/(s) ( ))ds—|— SGI(O‘W+X) G (ay+x) —0.

V2

For n € [0,1] we denote Ay = {r € [—1,1] : |[yi(r)| > n} and for T C R we
denote m(T) as the Lebesgue measure of the set 7. For the sake of notation in the
following lemma, define C = 0 if y has no zeroes on [a,b]. Otherwise, let {s|,...,s;}
be the set of roots for y and let C be the constant defined by

L
<" ( |w/<sz->|>'
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For [ > 0 we will write

/1l ="sup |f(s)].

se[—1,1)

REMARK 1. We are focusing primarily on the case where u is an eigenvalue of
the corresponding linear problem, we will now discuss the case where it is not. In
this case, it is well-known from general Sturm-Liouville theory that the operator £ is
invertible and that its inverse is continuous. If there exists an » > 0 such that

[1f1l2r 1
<
ro

then there exists & such that for all |€] < & we can guarantee a solution to (1)—(2).

THEOREM 1. Suppose the following hold

1. There exists constants 2 >0 and J > 0 such that if |s| > Z then sf(s) >0 and

If ()l =J.

2. There exists n € [0,1] and r > 0 such that N > w J(1—=cn) >
enllfl2r-

Then there exists a € > 0 such that there exists a solution to (1)—(2) all € < &.

Proof. Define the operator H : Im(L) x R — Im(L) x R by

H(x,o) =

ME.Z (ay +x)
o= |1 ) f oy (1) -x(1))d + L) — el |
Note that H is compact as a consequence of the preceding lemma. We wish to show that

I— H has anonzero Leray-Schauder degree on Q, = {(x, &t) € € x R : max{||x||,|o|} <
r}. Define the map Q: [0,1] x Q, — Im(E) x R by

01(s,(x,0)
oison=[8 0]

N

B x—sME.Z (ay +x)
= (1—s)a+s [f—ll w(t) f(aw(t) +x(t))dt + scl(;xlwx) _ er(Sczu/ﬂ)]

and note that Q is a homotopy between 7 and I — H. Let (x, ) € dQ, and s € (0,1).

We will now show that O(s, (x, o)) # 0 forall (s, (x,)) € [0,1] x d(Q;). Let (x, ) €

dQ, and s € [0, 1]. First suppose that ||x|| = r. Then since |ocy(¢)+x(¢)| < 2r for all
€ [—1,1] we have that

IsMEZ (oy +x)|| < [IME||[|.7 (0w + )| < [ME|[[f]|2r < r = lxl-

Therefore QO (s, (x,0)) # 0.
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Now assume that |ct| = r holds and suppose that x = sME.Z (ay + x) for some
s € (0,1). We will first examine the case where o =r. Let t € A, with y(r) > n. We
have that oy (r) > 0, |ay(t)| > ||ME||||f]l2- = |x(¢)| and

loy(t) +x(t)| = rn — [|ME]||| f|2-
> 7

This implies then that
v(@)f(ay(t) +x(1)) > y()] = [y(0)l]

whenever 1 € Ay with y(r) > 7.
The same argument shows that for € A, with y(r) < —n,

oy(t)+x(r) < -2
and thus
w(e)f(ay(t)+x(t) > (1) (=)) = [w()|J.
If there exists k > 0 such that |y(7)| > « forall ¢ € [a,b] then

/b v(t)f(ay(t)+x(t))dt = Jx(b—a) > 0.

If not, then condition 2 implies that there exists ¢g > 0 such that

(- (Cn+ o) _ ISl
cn+op J

For 1 <i< k and s close to s; we have that |y(s)| = |y (s;)||(s—s;)| and |y (s;)||(s —
si)| < m implies that

n
s —si| < ——.
AT
Based on this, it is clear that there exists § > 0 such that if || < & then
ko2
m(Ay) — n| <o
1 ,:21 W/ (si)]
and therefore
ko2
m(Af) < n+op
1 ,:2{ W/ (si)]

Thus we have that
m(Ap) - 1—(Cn+ o)
m(Aq) Cn+ o

||fH2r
> —.
J
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Let M; = sup <, |Gi(x)| for i=1,2 and
g0 = (My +My) ™ (max{|vi |, [v2[}n ((1 = en) — en | f]l20)-
Now we have that
/ y(t)foy(r)+x(t))dt = / (1) f(oy(t) +x(t))dt
+ /A Oy () +2(0))d
n
> [ lwoldrt [yl sl +xo)dr
Aq A

> [ wlo)di—m(as)nli sl
n
= 1N(m(An)J —m(A3)|1f 1)
>n((L—cn)—cnllfll2)-
If € < gy, we have that

eGi(ay+x)  eG(ay+x)
V1 1%

<n((1—cn)—cen|lfll2r)-

and thus [”w(t) f(oy(r) +x(1))dr + SGl(a1W+X) SGZ(‘:‘WH) > 0. In the case where
o = —r, an argument similar to the one above shows that

b
| v syt +x(0)ar <o
Along with assumption 3, we have in either case that

eGi(ay+x) eGr(ay+x)
V1 1%

0x(5.(r0)) = (1-s)arts | [ W)yt
£0.

This establishes the desired result due to homotopy invariance of the Leray-Schauder
degree. [

The following corollary addresses the special case of this theorem where y is a
constant function. In this case, C = 0 in the theorem above.

COROLLARY 1. Suppose y(t) =k >0 forall t € [a,b]. Then if

1. There exists constants 2 > 0 and J > 0 such that if |s| > Z then sf(s) >0 and

|f(s)| = J.

2. There exists r > 0 such that k > %
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Then there exists a € > 0 such that there exists a solution to (1)—(2) all € < &.

The following remark illustrates that problems analyzed in [21] and [22] can be
analyzed using the framework appearing here. These papers analyze nonlinearly per-
turbed regular Sturm-Liouville problems and results required f to be sublinear.

REMARK 2. Note that if f is sublinear, then condition 2 is satisfied. This is
because of the fact that

r—oo r

This implies that there exists r such that

J___ #IMENf
U ATer+7) :

Therefore, choosing 1) to be any value between the left hand side and the right hand
side of this inequality we see that condition 2 of the theorem 2 is satisfied.

We now shift our focus to singular Sturm-Liouville problems. We then compare

our results to those appearing in [11], where closely-related problems are studied.

3. Singular Sturm-Liouville problems

3.1. CaseI: p(a)=p(b)=0

Let a,b € R with b > a. Inthe following, let u € R, p:[a,b] - R and q: [a,b] —
R, f:R — R be continuous with p(¢) >0 on (a,b).
Consider the following nonlinear boundary value problems on (a,b):

(P()X (1)) +q(6)x(t) + ux(r) = £ (x(1)) 3)

subject to the condition that the following limits exist and are finite

lim x(z), lim x(z
A i)
4)
lim X' (¢ lim x'(¢).
Qim x()  lim £ (1)

The framework in this section we will address the case where p(a) =0 = p(b).

In this section, we denote & as the collection of twice continuously differentiable
functions in X satisfying the boundary conditions above. It is well-known [1] from
general Sturm-Liouville theory that the closely related linear problem

(PO (1)) + q(1)x(t) = Ax(1)
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subject to the boundary conditions above has countably many simple eigenvalues {Ax)}7_,
with corresponding eigenfunctions {y;}i>,. Define the map L: Z — X by

[Lx](t) = (p(t)x' (1)) + q(1)x(t) + px(2).

It is straightforward to show that if y is not an eigenvalue of the linear problem
above, L is a bijection from 2 onto X. If u is an eigenvalue, or in other words if
u = A for some nonnegative integer k then the kernel of L is nontrivial and spanned
by yi. It is straightforward to show that 7 € X is in the image of L if and only if

L 11 h(t)w(t)dt = 0.

We define U : X — X to be
1
w0 =y [ xowd

Note that U is a projection onto ker(L). Define E by E =1—U. Also note that the
map L restricted to 2N Im(L) is a bijection onto Im (L) =Im (I — U). Therefore, it
follows that there exists a linear map M :Im (I — E) — 2N Im (L) satisfying
LMh=nh
forall A € Im(L) and
MLx = (I—E)x

forall x € . Define F : X — X by
We note that solving

is equivalent to solving the system

(1~ V)~ M~ U)F(ay +x) =0
and
f—ll y(s)f(oy(s)+x(s))ds =0.

We know that the map M : Im(L) — % is compact by a lemma appearing in [11].

Like in the previous section, for 1 € [0, 1] we denote Ay = {r € [—1,1] : |y (r)| >
N} and for T C R we denote m(T) as the Lebesgue measure of the set 7. For the
sake of notation in the following lemma, define C = 0 if y has no zeroes on [a,b].
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Otherwise, let {s1,...,s;} be the set of roots for y and let C be the constant defined

by
Lo
<" (2 |w/<sz->|>'

I1f1le = Sup]\f(S)\-

se[-11

For [ > 0 we will write

THEOREM 2. Suppose the following hold

1. There exists constants 2 > 0 and J > 0 such that if |s| > 2 then sf(s) >0 and

lf ()| = J.

2. There exists n € (0,1] and r > 0 such that n > % and J(1-Cn) >
cnliflzr

Then there exists a solution to (3)—(4).

Proof. Define the operator H : Im(L) x R — Im(L) x R by

Hx.a) = { MEF (oty + x) }

o= [ y(e) fley(t) +x(0))dt

Note that H is compact as a consequence of the preceding lemma. We wish to show that
I — H has anonzero Leray-Schauder degree on Q, = {(x, &t) € € x R : max{||x||,|o|} <

r}. Define the map Q: [0,1] x Q, — Im(E) x R by

[oiGs, (na)] x—sMEF (oty + x)
Ols, (v, ) = [Qz(s, (x, a))} - [(1 —s)ets [y flay() +x(r))dt} |

and note that Q is a homotopy between I and I — H. Let (x,) € dQ, and s € (0,1).
We will now show that Q(s, (x,a)) # 0 for all (s, (x,a)) € [0,1] x d(Q,). Let (x,0) €
dQ, and s € [0,1]. First suppose that ||x|| = r. Then since |ocy(¢)+x(¢)| < 2r for all
t € [—1,1] we have that

ISMEF oy +x)|| < [ME|||F(oy +x) || < [ME || fll2r <7 = |x]].

Therefore QO (s, (x,0)) # 0.

Now assume that |a:| = r holds and suppose that x = sMEF (ocy + x) for some
s € (0,1). We will first examine the case where o = r. Let t € A with y(r) > n. We
have that ary(¢) > 0, oy (2)| > [[ME| || f]|2r = [x(¢)] and

loy(t) +x(t)| = rn — [|MEJ||| f|2-
>z
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This implies then that

W (0) (o () +x(0)) > (1)) = (D)l

whenever r € Ay with y(r) > 7.
The same argument shows that for € A, with y(r) < —n,

oy (t)+x(t) < =2
and thus

w(e)f(oy(t) +x(1)) > y()(=T) = [y(O)lJ.

If there exists k > 0 such that |y(¢)| > x for all ¢ € [a,b] then
b
/ w(t) f(aw(t) +x(0))di > Ji(b—a) > 0.
a

If not, then condition 2 implies that there exists o > 0 such that

(= (Cnt o) _ ISl
Cn+op J

For 1 <i <k and s close to s; we have that |y(s)| ~ [y/(s;)||(s — ;)| and |y/(s;)]
|(s—si)| <n implies that

n

s—5i < .
s =il < T

Based on this, it is clear that there exists 6 > 0 such thatif || < 0 then

ko2
M) = 2 | < %
and therefore
C k 2
M) < 2 i1 %

Thus we have that
m(Ay) _ 1-(Cn+ o)
m(Aq) Cn+ o

||fH2r
> —.
J
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Now we have that
/ W) Flow(e) +x(1))dt = /w () +x(1))di
+ YOS (ay0) +x(0)d
>/ v+ / VO (ay@) +x(0)dr

> /A lwlo)ds =il
> n(m(Ag)J —m(AS)| £]l2r)
>0

In the case where oo = —r, the argument above shows that

[ vty x)a <o

Then we have in either case that
b
0s (s, (x,0)) = (1 =)ot +s | wlo)f(enw(e) +x(1))dr 0.

as o and ff (1) f(ay(r) +x(¢))dr have the same sign.
This establishes the desired result due to homotopy invariance of the Leray-Scha-
uder degree. [J

3.2. CaseII: p(a) >0 and p(b) =0

Let a,b € R with b > a. We again let X denote the space (€’[a,b],| -||) where
|| -|| denotes the supremum norm. In the following, let p : [a,b] — R, ¢ : [a,b] — R,
and f: R — R be continuous with p(r) > 0 on [a,b) and p(b) =0. We use u and
¢ to denote real-valued parameters, and suppose that o> + 2 > 0 and >+ 8% > 0.
Let G : X — R be a nonlinear map that maps bounded sets of X into bounded subsets
of R and let € be a real-valued parameter. We denote & as the collection of twice
continuously differentiable functions in X. Consider the following sets of nonlinear
boundary value problems on (a,b):

(p(0)X' (1)) + q(t)x(r) + px(t) = f(x(t)) (5)
subject to
x(a) = eG(x). (6)

It is well-known [1] from general Sturm-Liouville theory that the closely related
linear problem

(PO (1)) + q(1)x(t) = Ax(1)
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subject to
x(a)=0

has countably many simple eigenvalues {Ax)};", with corresponding eigenfunctions
{Wi}r - Define the map L: ¥ — X by

[Lx](r) = (p(1)X' (1)) + q(1)x(r) + px(r).
and . : 9 — X xR by
240 = | )

It is straightforward to show that if pt is not an eigenvalue of the linear problem
above, .Z is a bijection from 2 onto X. If u is an eigenvalue, or in other words if
u = A for some nonnegative integer k then the kernel of L is nontrivial and spanned by
Wi Let {y, 0} be a basis for the solution space to Lx = 0 such that || w| = ||¢|| = 1.
Let v=¢(a). Then It is straightforward to show that [4,w] € X x R is in the image of
L if and only if

[1 ) w(e)dr + 2 =0,

We define U : X — X by

w0 = v [ Ow

Define £ : X xR — X xR by
b W
E(h,w)=m (/ h(e)w(e)dt + ;) (h,w)

where m = l%rv Also note that the map L restricted to 2N Im (L) is a bijection onto
Im (L) =Im (I —U). Therefore, it follows that there exists a linear map M :Im (I —E) —
2N Im (L) satisfying

LMh=nh
forall 4 € Im(L) and
MLx= (I—E)x

for all x € 2. Note that M is a compact operator from Im (I — E) into £ by an
argument very similar to the one appearing in the previous section. Define F : X — X
by
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and .Z : X — X xR by

o= (2]

We note that solving
Lx=F(x)
is equivalent to solving the system

(I-U)x—MEF(ay+x)=0
and
I w(s) £op(s) +x(s))ds + Cev) — o,

Like we did in the previous section, for 1 € [0,1] we denote Ay, = {r € [a,]] :
|wi(t)] = n} and for T C R we denote m(T) as the Lebesgue measure of the set 7.
For the sake of notation in the following lemma, define C = 0 if y has no zeroes on
[a,b]. Otherwise, let {si,...,s;} be the set of roots for y and let C be the constant

defined by
Lo
C= — |.
(,Elw/(sm)

1fllr="sup |f(s)].

se([—1,1)

For [ > 0 we will write

THEOREM 3. Suppose the following hold

1. There exists constants £ > 0 and J > 0 such that if |s| > Z then sf(s) >0 and

If ()] =J.

2. There exists n € (0,1] and r > 0 such that n > % and J(1-Cn) >
cnlifllzr-

Then there exists & > 0 such that for all |e| < g there exists a solution to (5)—(6).
Proof. Define the operator H : Im(L) x R — Im(L) x R by

MEZ (oy +x)
o= la ~ [y teryte) +x())ar + Seren] ]

Note that H is compact as a consequence of the preceding lemma. We wish to show that
I— H has anonzero Leray-Schauder degree on Q, = {(x, ) € € x R : max{||x||, 0|} <
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r}. Define the map Q: [0,1] x Q, — Im(E) x R by

| Oi(s,(x,@))
O(s, (x,a)) = [Q;(s,(x,a))]

x—SMEZ (ay +x)
- [(1 —s)ots [fab W) f(oy(t) +x(1))dt + M} ]

and note that Q is a homotopy between I and I — H. Let (x,) € dQ, and s € (0,1).
We will now show that O(s, (x, o)) # 0 forall (s, (x,)) € [0,1] x d(Q;). Let (x, ) €
dQ, and s € [0,1]. First suppose that ||x|| = r. Then since |ocy(#) +x(¢)| < 2r for all
t € [a,b] we have that

IsMEZ (o +x)|| < [IME[[|7 (ay +x)[| < [ME|[|f]2r <= lx]].

Therefore QO (s, (x,0)) # 0.

Now assume that |¢t| = r holds and suppose that x = sME.Z (ay + x) for some
s € (0,1). We will first examine the case where o =r. Let t € A, with y(r) > n. We
have that oty () > 0, oy (2)| > [[ME| || f]|2r > [x(¢)] and

loy(t) +x(t)| = rn — [|[MEJ||| fl2-
>z

This implies then that
V() f(ay(t) +x(1) > w(t)] = [yl

whenever 1 € Ay with y(r) > 7.
The same argument shows that for € A, with y(r) < —n,

oy(r)+x(t) < —2
and thus
y(n)flay(t) +x(t) > y(t)(=J) = [y(0)J.

If there exists k > 0 such that |y(¢)| > x for all ¢ € [a,b] then
b
/ w(o) faw(t) +x(1))dt > Jx(b—a) > 0.

If not, then condition 2 implies that there exists o > 0 such that

(- (Cnto0) _ [/l
cn+op J

For 1 <i<k and s close to s; we have that [w(s)| = |y/(s;)||(s—s;)| and |y (s;)||(s —
si)| < m implies that
n

|s —si] < .
[/ (si)]
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Based on this, it is clear that there exists 6 > 0 such thatif || < 0 then

L2
Wl(A%)—l_:Z1 e <%
and therefore
c : 2
) < 2

Thus we have that

m(Ap) - 1—(Cn+ o)
m(Aq) Cn+ o
||fH2r

> .
J

Let M = supy, <, [G(x)| and &y =M~ v[n((1—cn) —enl|fll2,).-
Now we have that if |e] < g that

/h w(0)f(ay(t) +x(r))de + w

= | WO f(ay () +x(n)dr
Glay +x)

+ ] YOS (ay() +x(@))de +

> [ QW [ (@) +xo)r+

eG(ay+x)
v

eG(ay+x)
v

> [ ol mas i+

> nman)J ~ma) ) + SO

>n((1=cen)=enllfll2r) =n((L=cn) —enl|fll2)
=0.

In the case where oo = —r, an argument similar to the one above shows that
b
| v syt +xo)dr <o
a

Along with assumption 3, we have in either case that

Oa(s,(x, @) = (1 —s)ar+s [/ab w(0)f (ow(t) +x(t))dr + eG(ay +x) £0.

4
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This establishes the desired result due to homotopy invariance of the Leray-Schauder
degree. [

The following examples concern nonlinear Legendre boundary value problems,
which were analyzed in [1 1] in cases where nonlinearities were bounded.

EXAMPLE 1. Consider the following nonlinearly perturbed Legendre boundary
value problems on (—1,1)

[(1 =) (1)) + px(e) = f(x(r)

subject to the condition that the following limits exist and are finite

lim x(z), lim x(¢
H4+() Hr()

lim X' (r lim x'(¢).
t——11 ( ) t—1— ( )

If 4 =k(k+ 1) for some nonnegative integer k, the only solutions to

(1= (1)) + x(t) = 0

forall r € (—1,1) where

lim x(), lim x(¢
Jim _x(#) Jim x(¢)

lim x'(1), lim x(2).
t——1* ( ) t—1- ( )

all exist and are finite are constant multiples of the k" Legendre polynomial which we
will denote P;. Since ||P|| =1 for any k > 0 then using the general framework above
we can choose Y = P, and the constant C is straightforward to compute. The constant
Legendre polynomial Py(z) = 1 satisfies the first alternative in condition 2 of theorem
1 with ¥ = 1. The value of C for different values of k are given below.

e Ifk=1,C=1
e Ifk=2,C=2V3
e Ifk=3,Cc=%

EXAMPLE 2. Consider the following nonlinearly perturbed boundary value prob-
lemon (0,1)

[(1 =22 (1)) + 12x(1) = f(x(1))
subject to the condition that the following limits exist and are finite

lim x(¢), lim x/(¢)
t—1— t—1—
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and x(0) = 0. The solution space to

(1= AW O] +px(t) =0

forall r € (—1,1) where

lim x(z), lim x/(¢)

t—1— t—1-

exist and are finite and x(0) = 0 consists of all multiples of the 3¢ degree Legendre
polynomial that which we will denote P3. Further details can be found in [10]. Based
on the constants computed in the previous example, the second part of condition 2
applied to this case requires 1 € [0,1] such that

and
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