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(Communicated by L. Kong)

Abstract. In this paper, we present results which allow us to establish the existence of solutions
to nonlinear Sturm-Liouville problems with unbounded nonlinearities. We consider both regular
and singular problems. Our main results rely on a variant of the Lyapunov-Schmidt used in
conjunction with topological degree theory.

1. Introduction

In this paper, we consider nonlinear Sturm-Liouville boundary value problems.
The results presented here enable us to establish the existence of solutions to both reg-
ular and singular problems. The class of unbounded nonlinearities in the differential
equation includes as a special case those which exhibit sublinear behavior. For regular
problems and for a class of singular problems, we allow weakly nonlinear boundary
conditions.

As in previous related work, boundary value problems are analyzed by formulat-
ing them as operator equations of the form L x = F (x) where L is linear and F is
nonlinear. We will be mainly interested in the case where L does not have an inverse.
Using an approach similar to the Lyapunov-Schmidt procedure together with topolog-
ical degree theory we provide criteria for the solvability of boundary value problems.
For general theory regarding properties of the topological degree, the reader may con-
sult [13] and [30].

Use of the Lyapanov-Schmidt procedure in the study of nonlinear boundary value
problems appears in [3], [4], [8], [12], [13], [19], [28], and [29]. In [21], the reader
will find conditions for the solvability of nonlinear Sturm-Liouville problems where
the boundary conditions are global and the nonlinearities in the dynamics are sublin-
ear. There is often an intimate relation between discrete-time systems and differential
equations. Those interested in the connection between the present paper and previous
results on discrete-time systems are encouraged to see [9], [18], [19], and [20]. In [18]
and [20], problems with linear boundary conditions are analyzed and [19] is devoted to
the study of periodic behavior in discrete dynamical systems.
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2. Regular Sturm-Liouville problems

Let a,b∈R with b > a . Let X denote the space (C [a,b],‖·‖) where ‖·‖ denotes
the supremum norm. In the following, let p : [a,b]→ R , q : [a,b]→ R , and f : R → R

be continuous and p(t)> 0 on [a,b] . We use μ and ε to denote real-valued parameters,
and assume that α,β ,γ and δ are constants such that α2+β 2 > 0 and γ2 +δ 2 > 0. Let
Gi : X → R be a nonlinear map for i = 1,2 that maps bounded sets in X into bounded
subsets of R . Let D ⊂ X be the collection of all twice-continuously differentiable
functions in X . Consider the following nonlinear boundary value problems on (a,b) :

(p(t)x′(t))′ +q(t)x(t)+ μx(t) = f (x(t)) (1)

subject to

αx(a)+ βx′(a) = εG1(x), (2a)

δx(b)+ γx′(b) = εG2(x). (2b)

For general theory regarding Sturm-Liouville problems, the reader may consult
[5], [14], and [10]. It is well-known from general Sturm-Liouville theory that the
closely related linear problem

(p(t)x′(t))′ +q(t)x(t) = λx(t)

subject to

αx(a)+ βx′(a) = 0

δx(b)+ γx′(b) = 0.

has countably many simple eigenvalues {λk)}∞
k=0 with corresponding eigenfunctions

{ψk}∞
k=0 . Without loss of generality, we will assume that ‖ψk‖= 1 for all k = 0,1,2, . . . .

Define the map L : D → X by

[Lx](t) = (p(t)x′(t))′ +q(t)x(t)+ μx(t).

and L : D → X ×R
2 by

[L x](t) =

⎡
⎣ Lx

B1(x)
B2(x)

⎤
⎦ .

It is straightforward to show that if μ is not an eigenvalue of the linear problem
above, L is a bijection from D onto X ×R

2 . If μ = λk for some nonnegative integer
k then the kernel of L is nontrivial and spanned by ψ ≡ ψk . Let φ be a solution to
Lx = 0 such that {ψ ,φ} forms a basis for the solution space to Lx = 0 and ‖φ‖ = 1.
Let v1 = B1(φ) and v2 = B2(φ) . Then It is straightforward to show that [h, [w1,w2]] ∈
X ×R

2 is in the image of L if and only if∫ b

a
h(t)ψ(t)dt +

w1

v1
− w2

v2
= 0.
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We define U : X → X by

[Ux](t) = ψ(t)
∫ b

a
x(s)ψ(s)ds.

Define E : X ×R
2 → X ×R

2 by

E(h,w1,w2) = m

(∫ b

a
h(t)ψ(t)dt +

w1

v1
− w2

v2

)
(h,w1,w2)

where m = 1

1+
√

(v−1
1 )2+(v−1

2 )2
. Also note that the map L restricted to D∩ Im(L ) is a

bijection onto Im(L) = Im(I−U) . Therefore, it follows that there exists a linear map
M : Im(I−U)→ D∩ Im(L ) satisfying

LMh = h

for all h ∈ Im(I−U) and

MLx = (I−U)x

for all x ∈ D . It is clear that M is a compact operator between Im(I −U) and D .
Define F : X → X by

F(x)(t) = f (x(t)).

and F : X ×R → X ×R
2 by

[Fx](t) =

⎡
⎣ F(x)

εG1(x)
εG2(x)

⎤
⎦ .

We note that solving

L x = F (x)

is equivalent to solving the system⎧⎪⎨
⎪⎩

x−MEF (αψ + x) = 0

and∫ 1
−1 ψ(s) f (αψ(s)+ x(s))ds+ εG1(αψ+x)

v1
− εG2(αψ+x)

v2
= 0.

For η ∈ [0,1] we denote Aη = {t ∈ [−1,1] : |ψk(t)| � η} and for T ⊂ R we
denote m(T ) as the Lebesgue measure of the set T . For the sake of notation in the
following lemma, define C = 0 if ψ has no zeroes on [a,b] . Otherwise, let {s1, . . . ,sl}
be the set of roots for ψ and let C be the constant defined by

C =

(
l

∑
i=1

1
|ψ ′(si)|

)
.
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For l > 0 we will write

‖ f‖l = sup
s∈[−l,l]

| f (s)|.

REMARK 1. We are focusing primarily on the case where μ is an eigenvalue of
the corresponding linear problem, we will now discuss the case where it is not. In
this case, it is well-known from general Sturm-Liouville theory that the operator L is
invertible and that its inverse is continuous. If there exists an r > 0 such that

‖ f‖2r

r
<

1
‖L −1‖

then there exists ε0 such that for all |ε| < ε0 we can guarantee a solution to (1)–(2).

THEOREM 1. Suppose the following hold

1. There exists constants ẑ > 0 and J > 0 such that if |s| > ẑ then s f (s) > 0 and
| f (s)| � J .

2. There exists η ∈ [0,1] and r > 0 such that η > ẑ+‖ME‖‖ f‖2r
r , J(1 − cη) >

cη‖ f‖2r .

Then there exists a ε0 > 0 such that there exists a solution to (1)–(2) all ε < ε0 .

Proof. Define the operator H : Im(L)×R → Im(L)×R by

H(x,α) =

[
MEF (αψ + x)

α −
[∫ 1

−1 ψ(t) f (αψ(t)+ x(t))dt + εG1(αψ+x)
v1

− εG2(αψ+x)
v2

]]

Note that H is compact as a consequence of the preceding lemma. We wish to show that
I−H has a nonzero Leray-Schauder degree on Ωr = {(x,α)∈C ×R : max{‖x‖, |α|}�
r} . Define the map Q : [0,1]×Ωr → Im(E)×R by

Q(s,(x,α)) =
[

Q1(s,(x,α))
Q2(s,(x,α))

]

=

[
x− sMEF (αψ + x)

(1− s)α + s
[∫ 1

−1 ψ(t) f (αψ(t)+ x(t))dt + εG1(αψ+x)
v1

− εG2(αψ+x)
v2

]]
.

and note that Q is a homotopy between I and I−H . Let (x,α) ∈ ∂Ωr and s ∈ (0,1) .
We will now show that Q(s,(x,α)) 
= 0 for all (s,(x,α)) ∈ [0,1]×∂ (Ωr) . Let (x,α) ∈
∂Ωr and s ∈ [0,1] . First suppose that ‖x‖ = r . Then since |αψ(t)+ x(t)| � 2r for all
t ∈ [−1,1] we have that

‖sMEF (αψ + x)‖ � ‖ME‖‖F (αψ + x)‖ � ‖ME‖‖ f‖2r < r = ‖x‖.
Therefore Q1(s,(x,α)) 
= 0.
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Now assume that |α| = r holds and suppose that x = sMEF (αψ + x) for some
s ∈ (0,1) . We will first examine the case where α = r . Let t ∈ Aη with ψ(t) � η . We
have that αψ(t) > 0, |αψ(t)| > ‖ME‖‖ f‖2r � |x(t)| and

|αψ(t)+ x(t)| � rη −‖ME‖‖ f‖2r

> ẑ

This implies then that

ψ(t) f (αψ(t)+ x(t)) > ψ(t)J = |ψ(t)|J
whenever t ∈ Aη with ψ(t) � η .

The same argument shows that for t ∈ Aη with ψ(t) � −η ,

αψ(t)+ x(t) < −ẑ

and thus

ψ(t) f (αψ(t)+ x(t)) > ψ(t)(−J) = |ψ(t)|J.
If there exists κ > 0 such that |ψ(t)| � κ for all t ∈ [a,b] then∫ b

a
ψ(t) f (αψ(t)+ x(t))dt � Jκ(b−a) > 0.

If not, then condition 2 implies that there exists α0 > 0 such that

(1− (Cη + α0))
Cη + α0

>
‖ f‖2r

J

For 1 � i � k and s close to si we have that |ψ(s)| ≈ |ψ ′(si)||(s−si)| and |ψ ′(si)||(s−
si)| < η implies that

|s− si| < η
|ψ ′(si)| .

Based on this, it is clear that there exists δ > 0 such that if |η | < δ then∣∣∣∣∣m(Ac
η)−

k

∑
i=1

2
|ψ ′(si)|η

∣∣∣∣∣< α0

and therefore

m(Ac
η ) <

k

∑
i=1

2
|ψ ′(si)|η + α0.

Thus we have that

m(Aη )
m(Ac

η )
>

1− (Cη + α0)
Cη + α0

>
‖ f‖2r

J
.
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Let Mi = sup‖x‖�2r |Gi(x)| for i = 1,2 and

ε0 = (M1 +M2)−1(max{|v1|, |v2|}η((1− cη)− cη‖ f‖2r).

Now we have that∫ b

a
ψ(t) f (αψ(t)+ x(t))dt =

∫
Aη

ψ(t) f (αψ(t)+ x(t))dt

+
∫

Ac
η

ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|Jdt +

∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|Jdt−m(Ac

η)η‖ f‖2r

� η(m(Aη )J−m(Ac
η)‖ f‖2r)

> η((1− cη)− cη‖ f‖2r).

If ε < ε0 , we have that∣∣∣∣εG1(αψ + x)
v1

− εG2(αψ + x)
v2

∣∣∣∣< η((1− cη)− cη‖ f‖2r).

and thus
∫ b
a ψ(t) f (αψ(t) + x(t))dt + εG1(αψ+x)

v1
− εG2(αψ+x)

v2
> 0. In the case where

α = −r , an argument similar to the one above shows that

∫ b

a
ψ(t) f (αψ(t)+ x(t))dt < 0

Along with assumption 3, we have in either case that

Q2(s,(x,α)) = (1−s)α+s

[∫ b

a
ψ(t) f (αψ(t)+x(t))dt+

εG1(αψ+x)
v1

−εG2(αψ+x)
v2

]

= 0.

This establishes the desired result due to homotopy invariance of the Leray-Schauder
degree. �

The following corollary addresses the special case of this theorem where ψ is a
constant function. In this case, C = 0 in the theorem above.

COROLLARY 1. Suppose ψ(t) = k > 0 for all t ∈ [a,b] . Then if

1. There exists constants ẑ > 0 and J > 0 such that if |s| > ẑ then s f (s) > 0 and
| f (s)| � J .

2. There exists r > 0 such that k > ẑ+‖ME‖‖ f‖2r
r .
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Then there exists a ε0 > 0 such that there exists a solution to (1)–(2) all ε < ε0 .

The following remark illustrates that problems analyzed in [21] and [22] can be
analyzed using the framework appearing here. These papers analyze nonlinearly per-
turbed regular Sturm-Liouville problems and results required f to be sublinear.

REMARK 2. Note that if f is sublinear, then condition 2 is satisfied. This is
because of the fact that

lim
r→∞

‖ f‖2r

r
= 0

This implies that there exists r such that

J
C(‖ f‖2r + J)

>
ẑ+‖ME‖‖ f‖2r

r

Therefore, choosing η to be any value between the left hand side and the right hand
side of this inequality we see that condition 2 of the theorem 2 is satisfied.

We now shift our focus to singular Sturm-Liouville problems. We then compare
our results to those appearing in [11], where closely-related problems are studied.

3. Singular Sturm-Liouville problems

3.1. Case I: p(a) = p(b) = 0

Let a,b∈R with b > a . In the following, let μ ∈R , p : [a,b]→R and q : [a,b]→
R , f : R → R be continuous with p(t) > 0 on (a,b) .

Consider the following nonlinear boundary value problems on (a,b) :

(p(t)x′(t))′ +q(t)x(t)+ μx(t) = f (x(t)) (3)

subject to the condition that the following limits exist and are finite

lim
t→a+

x(t), lim
t→b−

x(t)

(4)

lim
t→a+

x′(t) lim
t→b−

x′(t).

The framework in this section we will address the case where p(a) = 0 = p(b) .
In this section, we denote D as the collection of twice continuously differentiable

functions in X satisfying the boundary conditions above. It is well-known [1] from
general Sturm-Liouville theory that the closely related linear problem

(p(t)x′(t))′ +q(t)x(t) = λx(t)
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subject to the boundary conditions above has countably many simple eigenvalues {λk)}∞
k=0

with corresponding eigenfunctions {ψk}∞
k=0 . Define the map L : D → X by

[Lx](t) = (p(t)x′(t))′ +q(t)x(t)+ μx(t).

It is straightforward to show that if μ is not an eigenvalue of the linear problem
above, L is a bijection from D onto X . If μ is an eigenvalue, or in other words if
μ = λk for some nonnegative integer k then the kernel of L is nontrivial and spanned
by ψk . It is straightforward to show that h ∈ X is in the image of L if and only if

∫ 1

−1
h(t)ψ(t)dt = 0.

We define U : X → X to be

[Ux](t) = ψ
∫ 1

−1
x(t)ψ(t)dt

Note that U is a projection onto ker(L) . Define E by E = I−U . Also note that the
map L restricted to D∩ Im(L) is a bijection onto Im(L) = Im(I −U) . Therefore, it
follows that there exists a linear map M : Im(I−E) → D∩ Im(L) satisfying

LMh = h

for all h ∈ Im(L) and

MLx = (I−E)x

for all x ∈ D . Define F : X → X by

F(x)(t) = f (x(t)).

We note that solving

Lx = F(x)

is equivalent to solving the system⎧⎪⎨
⎪⎩

(I−U)x−M(I−U)F(αψ + x) = 0

and∫ 1
−1 ψ(s) f (αψ(s)+ x(s))ds = 0.

We know that the map M : Im(L) → C is compact by a lemma appearing in [11].

Like in the previous section, for η ∈ [0,1] we denote Aη = {t ∈ [−1,1] : |ψk(t)|�
η} and for T ⊂ R we denote m(T ) as the Lebesgue measure of the set T . For the
sake of notation in the following lemma, define C = 0 if ψ has no zeroes on [a,b] .
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Otherwise, let {s1, . . . ,sl} be the set of roots for ψ and let C be the constant defined
by

C =

(
l

∑
i=1

1
|ψ ′(si)|

)
.

For l > 0 we will write

‖ f‖l = sup
s∈[−l,l]

| f (s)|.

THEOREM 2. Suppose the following hold

1. There exists constants ẑ > 0 and J > 0 such that if |s| > ẑ then s f (s) > 0 and
| f (s)| � J .

2. There exists η ∈ (0,1] and r > 0 such that η > ẑ+‖ME‖‖ f‖2r
r and J(1−Cη) >

Cη‖ f‖2r

Then there exists a solution to (3)–(4).

Proof. Define the operator H : Im(L)×R → Im(L)×R by

H(x,α) =
[

MEF(αψ + x)
α − ∫ 1

−1 ψ(t) f (αψ(t)+ x(t))dt

]

Note that H is compact as a consequence of the preceding lemma. We wish to show that
I−H has a nonzero Leray-Schauder degree on Ωr = {(x,α)∈C ×R : max{‖x‖, |α|}�
r} . Define the map Q : [0,1]×Ωr → Im(E)×R by

Q(s,(x,α)) =
[

Q1(s,(x,α))
Q2(s,(x,α))

]
=
[

x− sMEF(αψ + x)
(1− s)α + s

∫ 1
−1 ψ(t) f (αψ(t)+ x(t))dt

]
.

and note that Q is a homotopy between I and I−H . Let (x,α) ∈ ∂Ωr and s ∈ (0,1) .
We will now show that Q(s,(x,α)) 
= 0 for all (s,(x,α)) ∈ [0,1]×∂ (Ωr) . Let (x,α) ∈
∂Ωr and s ∈ [0,1] . First suppose that ‖x‖ = r . Then since |αψ(t)+ x(t)| � 2r for all
t ∈ [−1,1] we have that

‖sMEF(αψ + x)‖ � ‖ME‖‖F(αψ + x)‖ � ‖ME‖‖ f‖2r < r = ‖x‖.
Therefore Q1(s,(x,α)) 
= 0.

Now assume that |α| = r holds and suppose that x = sMEF(αψ + x) for some
s ∈ (0,1) . We will first examine the case where α = r . Let t ∈ Aη with ψ(t) � η . We
have that αψ(t) > 0, |αψ(t)| > ‖ME‖‖ f‖2r � |x(t)| and

|αψ(t)+ x(t)| � rη −‖ME‖‖ f‖2r

> ẑ
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This implies then that

ψ(t) f (αψ(t)+ x(t)) > ψ(t)J = |ψ(t)|J

whenever t ∈ Aη with ψ(t) � η .
The same argument shows that for t ∈ Aη with ψ(t) � −η ,

αψ(t)+ x(t) < −ẑ

and thus

ψ(t) f (αψ(t)+ x(t)) > ψ(t)(−J) = |ψ(t)|J.

If there exists κ > 0 such that |ψ(t)| � κ for all t ∈ [a,b] then

∫ b

a
ψ(t) f (αψ(t)+ x(t))dt � Jκ(b−a) > 0.

If not, then condition 2 implies that there exists α0 > 0 such that

(1− (Cη + α0))
Cη + α0

>
‖ f‖2r

J

For 1 � i � k and s close to si we have that |ψ(s)| ≈ |ψ ′(si)||(s− si)| and |ψ ′(si)|
|(s− si)| < η implies that

|s− si| < η
|ψ ′(si)| .

Based on this, it is clear that there exists δ > 0 such that if |η | < δ then

∣∣∣∣∣m(Ac
η)−

k

∑
i=1

2
|ψ ′(si)|η

∣∣∣∣∣< α0

and therefore

m(Ac
η ) <

k

∑
i=1

2
|ψ ′(si)|η + α0.

Thus we have that

m(Aη )
m(Ac

η )
>

1− (Cη + α0)
Cη + α0

>
‖ f‖2r

J
.



Differ. Equ. Appl. 13, No. 2 (2021), 193–210. 203

Now we have that∫ b

a
ψ(t) f (αψ(t)+ x(t))dt =

∫
Aη

ψ(t) f (αψ(t)+ x(t))dt

+
∫

Ac
η

ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|Jdt +

∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt

�
∫

Aη
|ψ(t)|Jdt−m(Ac

η)η‖ f‖2r

� η(m(Aη )J−m(Ac
η)‖ f‖2r)

> 0

In the case where α = −r , the argument above shows that∫ b

a
ψ(t) f (αψ(t)+ x(t))dt < 0

Then we have in either case that

Q2(s,(x,α)) = (1− s)α + s
∫ b

a
ψ(t) f (αψ(t)+ x(t))dt 
= 0.

as α and
∫ b
a ψ(t) f (αψ(t)+ x(t))dt have the same sign.

This establishes the desired result due to homotopy invariance of the Leray-Scha-
uder degree. �

3.2. Case II: p(a) > 0 and p(b) = 0

Let a,b ∈ R with b > a . We again let X denote the space (C [a,b],‖ · ‖) where
‖ · ‖ denotes the supremum norm. In the following, let p : [a,b] → R , q : [a,b] → R ,
and f : R → R be continuous with p(t) > 0 on [a,b) and p(b) = 0. We use μ and
ε to denote real-valued parameters, and suppose that α2 + β 2 > 0 and γ2 + δ 2 > 0.
Let G : X → R be a nonlinear map that maps bounded sets of X into bounded subsets
of R and let ε be a real-valued parameter. We denote D as the collection of twice
continuously differentiable functions in X . Consider the following sets of nonlinear
boundary value problems on (a,b) :

(p(t)x′(t))′ +q(t)x(t)+ μx(t) = f (x(t)) (5)

subject to

x(a) = εG(x). (6)

It is well-known [1] from general Sturm-Liouville theory that the closely related
linear problem

(p(t)x′(t))′ +q(t)x(t) = λx(t)
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subject to

x(a) = 0

has countably many simple eigenvalues {λk)}∞
k=0 with corresponding eigenfunctions

{ψk}∞
k=0 . Define the map L : D → X by

[Lx](t) = (p(t)x′(t))′ +q(t)x(t)+ μx(t).

and L : D → X ×R by

[L x](t) =
[

Lx
x(a)

]

It is straightforward to show that if μ is not an eigenvalue of the linear problem
above, L is a bijection from D onto X . If μ is an eigenvalue, or in other words if
μ = λk for some nonnegative integer k then the kernel of L is nontrivial and spanned by
ψk . Let {ψ ,φ} be a basis for the solution space to Lx = 0 such that ‖ψ‖ = ‖φ‖ = 1.
Let v = φ(a) . Then It is straightforward to show that [h,w] ∈ X ×R is in the image of
L if and only if

∫ 1

−1
h(t)ψ(t)dt +

w
v

= 0.

We define U : X → X by

[Ux](t) = ψ
∫ b

a
x(t)ψ(t)dt.

Define E : X ×R → X ×R by

E(h,w) = m

(∫ b

a
h(t)ψ(t)dt +

w
v

)
(h,w)

where m = 1
1+v . Also note that the map L restricted to D∩ Im(L) is a bijection onto

Im(L)= Im(I−U) . Therefore, it follows that there exists a linear map M : Im(I−E)→
D∩ Im(L) satisfying

LMh = h

for all h ∈ Im(L) and

MLx = (I−E)x

for all x ∈ D . Note that M is a compact operator from Im(I − E) into D by an
argument very similar to the one appearing in the previous section. Define F : X → X
by

F(x)(t) = f (x(t)).
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and F : X → X ×R by

[Fx](t) =
[

F(x)
εG(x)

]
.

We note that solving

L x = F (x)

is equivalent to solving the system⎧⎪⎨
⎪⎩

(I−U)x−MEF (αψ + x) = 0

and∫ 1
−1 ψ(s) f (αψ(s)+ x(s))ds+ G(αψ+x)

v = 0.

Like we did in the previous section, for η ∈ [0,1] we denote Aη = {t ∈ [a,b] :
|ψk(t)| � η} and for T ⊂ R we denote m(T ) as the Lebesgue measure of the set T .
For the sake of notation in the following lemma, define C = 0 if ψ has no zeroes on
[a,b] . Otherwise, let {s1, . . . ,sl} be the set of roots for ψ and let C be the constant
defined by

C =

(
l

∑
i=1

1
|ψ ′(si)|

)
.

For l > 0 we will write

‖ f‖l = sup
s∈[−l,l]

| f (s)|.

THEOREM 3. Suppose the following hold

1. There exists constants ẑ > 0 and J > 0 such that if |s| > ẑ then s f (s) > 0 and
| f (s)| � J .

2. There exists η ∈ (0,1] and r > 0 such that η > ẑ+‖ME‖‖ f‖2r
r and J(1−Cη) >

Cη‖ f‖2r .

Then there exists ε0 > 0 such that for all |ε| � ε0 there exists a solution to (5)–(6).

Proof. Define the operator H : Im(L)×R → Im(L)×R by

H(x,α) =

[
MEF (αψ + x)

α −
[∫ b

a ψ(t) f (αψ(t)+ x(t))dt + εG(αψ+x)
v

]]

Note that H is compact as a consequence of the preceding lemma. We wish to show that
I−H has a nonzero Leray-Schauder degree on Ωr = {(x,α)∈C ×R : max{‖x‖, |α|}�
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r} . Define the map Q : [0,1]×Ωr → Im(E)×R by

Q(s,(x,α)) =
[

Q1(s,(x,α))
Q2(s,(x,α))

]

=

[
x− sMEF (αψ + x)

(1− s)α + s
[∫ b

a ψ(t) f (αψ(t)+ x(t))dt + εG(αψ+x)
v

]]
.

and note that Q is a homotopy between I and I−H . Let (x,α) ∈ ∂Ωr and s ∈ (0,1) .
We will now show that Q(s,(x,α)) 
= 0 for all (s,(x,α)) ∈ [0,1]×∂ (Ωr) . Let (x,α) ∈
∂Ωr and s ∈ [0,1] . First suppose that ‖x‖ = r . Then since |αψ(t)+ x(t)| � 2r for all
t ∈ [a,b] we have that

‖sMEF (αψ + x)‖ � ‖ME‖‖F (αψ + x)‖ � ‖ME‖‖ f‖2r < r = ‖x‖.
Therefore Q1(s,(x,α)) 
= 0.

Now assume that |α| = r holds and suppose that x = sMEF (αψ + x) for some
s ∈ (0,1) . We will first examine the case where α = r . Let t ∈ Aη with ψ(t) � η . We
have that αψ(t) > 0, |αψ(t)| > ‖ME‖‖ f‖2r � |x(t)| and

|αψ(t)+ x(t)| � rη −‖ME‖‖ f‖2r

> ẑ

This implies then that

ψ(t) f (αψ(t)+ x(t)) > ψ(t)J = |ψ(t)|J
whenever t ∈ Aη with ψ(t) � η .

The same argument shows that for t ∈ Aη with ψ(t) � −η ,

αψ(t)+ x(t) < −ẑ

and thus

ψ(t) f (αψ(t)+ x(t)) > ψ(t)(−J) = |ψ(t)|J.
If there exists κ > 0 such that |ψ(t)| � κ for all t ∈ [a,b] then

∫ b

a
ψ(t) f (αψ(t)+ x(t))dt � Jκ(b−a) > 0.

If not, then condition 2 implies that there exists α0 > 0 such that

(1− (Cη + α0))
Cη + α0

>
‖ f‖2r

J

For 1 � i � k and s close to si we have that |ψ(s)| ≈ |ψ ′(si)||(s−si)| and |ψ ′(si)||(s−
si)| < η implies that

|s− si| < η
|ψ ′(si)| .
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Based on this, it is clear that there exists δ > 0 such that if |η | < δ then∣∣∣∣∣m(Ac
η)−

k

∑
i=1

2
|ψ ′(si)|η

∣∣∣∣∣< α0

and therefore

m(Ac
η ) <

k

∑
i=1

2
|ψ ′(si)|η + α0.

Thus we have that

m(Aη )
m(Ac

η )
>

1− (Cη + α0)
Cη + α0

>
‖ f‖2r

J
.

Let M = sup‖x‖�2r |G(x)| and ε0 = M−1|v|η((1− cη)− cη‖ f‖2r) .
Now we have that if |ε| < ε0 that

∫ b

a
ψ(t) f (αψ(t)+ x(t))dt +

εG(αψ + x)
v

=
∫

Aη
ψ(t) f (αψ(t)+ x(t))dt

+
∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt +

εG(αψ + x)
v

�
∫

Aη
|ψ(t)|Jdt +

∫
Ac

η
ψ(t) f (αψ(t)+ x(t))dt +

εG(αψ + x)
v

�
∫

Aη
|ψ(t)|Jdt−m(Ac

η)η‖ f‖2r +
εG(αψ + x)

v

� η(m(Aη)J−m(Ac
η)‖ f‖2r)+

εG(αψ + x)
v

> η((1− cη)− cη‖ f‖2r)−η((1− cη)− cη‖ f‖2r)
= 0.

In the case where α = −r , an argument similar to the one above shows that

∫ b

a
ψ(t) f (αψ(t)+ x(t))dt < 0

Along with assumption 3, we have in either case that

Q2(s,(x,α)) = (1− s)α + s

[∫ b

a
ψ(t) f (αψ(t)+ x(t))dt +

εG(αψ + x)
v

]

= 0.
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This establishes the desired result due to homotopy invariance of the Leray-Schauder
degree. �

The following examples concern nonlinear Legendre boundary value problems,
which were analyzed in [11] in cases where nonlinearities were bounded.

EXAMPLE 1. Consider the following nonlinearly perturbed Legendre boundary
value problems on (−1,1)

[(1− t2)x′(t)]′ + μx(t) = f (x(t))

subject to the condition that the following limits exist and are finite

lim
t→−1+

x(t), lim
t→1−

x(t)

lim
t→−1+

x′(t) lim
t→1−

x′(t).

If μ = k(k+1) for some nonnegative integer k , the only solutions to

[(1− t2)x′(t)]′ + μx(t) = 0

for all t ∈ (−1,1) where

lim
t→−1+

x(t), lim
t→1−

x(t)

lim
t→−1+

x′(t), lim
t→1−

x′(t).

all exist and are finite are constant multiples of the kth Legendre polynomial which we
will denote Pk . Since ‖Pk‖ = 1 for any k � 0 then using the general framework above
we can choose ψ = Pk and the constant C is straightforward to compute. The constant
Legendre polynomial P0(t) = 1 satisfies the first alternative in condition 2 of theorem
1 with κ = 1. The value of C for different values of k are given below.

• If k = 1, C = 1

• If k = 2, C = 2
√

3

• If k = 3, C = 15
2

EXAMPLE 2. Consider the following nonlinearly perturbed boundary value prob-
lem on (0,1)

[(1− t2)x′(t)]′ +12x(t) = f (x(t))

subject to the condition that the following limits exist and are finite

lim
t→1−

x(t), lim
t→1−

x′(t)
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and x(0) = 0. The solution space to

[(1− t2)x′(t)]′ + μx(t) = 0

for all t ∈ (−1,1) where

lim
t→1−

x(t), lim
t→1−

x′(t)

exist and are finite and x(0) = 0 consists of all multiples of the 3rd degree Legendre
polynomial that which we will denote P3 . Further details can be found in [10]. Based
on the constants computed in the previous example, the second part of condition 2
applied to this case requires η ∈ [0,1] such that

2−15η
15η

>
‖ f‖2r

J

and

η >
ẑ+‖ME‖‖ f‖2r

r
.
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Jesús Rodrı́guez
Department of Mathematics

Box 8205, NCSU
Raleigh, NC 27695-8205, USA

e-mail: rodrigu@ncsu.edu

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


