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ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS

FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH
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Abstract. This paper presents some sufficient conditions for the existence of solutions of frac-
tional differential equation with nonlocal multi-point boundary conditions involving Caputo frac-
tional derivative and integral boundary conditions. Our analysis relies on the Banach contraction
principle, Boyd and Wong fixed point theorem, Leray-Schauder nonlinear alternative. Finally,
examples are provided to illustrate our main results.

1. Introduction

Differential equations with fractional order are a powerful tool used for solving
practical problems that arise in fields like as control theory, chemical physics, eco-
nomics, heat conduction, viscoelasticity, biological science, ecology, aerodynamics,
etc., see for example, [16], [19], [18], [21], [13]. In particular, the book by Oldham
and Spanier [20] had a chronological listing on major works in the study of fractional
calculus.

In the recent years, there has been a significant development in ordinary and partial
differential equations involving fractional derivatives, see the monographs of Kilbas et
al. [13], Miller and Ross [17], [22].

By the use of techniques of nonlinear analysis, many authors have studies the
existence and uniqueness of solutions of nonlinear fractional differential equations with
a variety boundary conditions as special cases because they can accurately describe
the actual phenomena. They include two-point, three-point, multi-point and nonlocal
boundary value problems with integral boundary conditions as special cases, see [1, 3,
5, 4, 6, 9, 23, 25, 26, 28, 29, 27, 31, 30, 33, 32, 10] and references therein.

Integral boundary conditions are encountered in various applications such as pop-
ulation dynamics, blood flow models, chemical engineering, cellular systems, under-
ground water flow, heat transmission, plasma physics, thermoelasticity, etc.

Many results can be found in the literature concerning multi-point boundary value
problems with integral conditions for differential equations of fractional order [2, 11,
15, 14, 24, 12].
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For instance, in [14], Li and Qi discussed the existence of multiple positive solu-
tions to the following fractional boundary value problems⎧⎪⎨

⎪⎩
cDαx(t)+h(t)g(t,x(t)) = 0, t ∈ (0,1),
x(i)(0) = 0, i = 2, . . . ,n−1,

x′(0) = ∑m−2
i=1 bix′(ξi), x(1) = ∑m−2

i=1 aix(ξi),

where cDα is the Caputo fractional derivatives, n− 1 < α � n , n � 3 is an integer,
ai,bi � 0, ( i = 1, . . . ,m− 2), 0 � ∑m−2

i=1 ai < 1 and 0 � ∑m−2
i=1 bi < 1, 0 < ξ1 < ξ2 <

.. . < ξm−2 < 1, m > 2 is an integer, h and g are a given continuous functions. Using
the five-functional fixed-point theorem, they obtained the existence of multiple positive
solutions for the above boundary value problems.

In [24], Wang et al., investigated the following fractional differential equations that
contain both the integral boundary condition and the multi-point boundary condition⎧⎪⎨

⎪⎩
Dσ x(t)+ f (t,x(t)) = 0, t ∈ [0,1],
x(i)(0) = 0, i = 0,1, . . . ,n−2,

x(1) = ∑m−2
i=1 βi

∫ ηi
0 x(s)ds+ ∑m−2

i=1 γix(ηi),

where Dσ represents the standard Riemann-Liouville fractional derivative of order σ
satisfying n− 1 < σ � n with n � 3, 0 < η1 < η2 < .. . < ηm−2 < 1 and βi,γi > 0
with 1 � i � m−2, where m � 3 is an integer. f : [0,1]×R→R is a given continuous
function. By using suitable fixed point theorems, the authors obtained several existence
and uniqueness results of positive solutions.

In [12], Jia et al. investigated the existence and uniqueness of nontrivial solutions
to the following higher fractional differential equation{

−Dαx(t) = f (t,x(t),Dμ1x(t),Dμ2x(t), . . . ,Dμn−1x(t)), t ∈ (0,1),
x(0) = 0, Dμi x(0) = 0, Dμx(1) = ∑p−2

j=1 a jDμx(ξ j), 1 � i � n−1,

where n � 3, n ∈ N , n−1 < α � n , n− l−1 < α −μl � n− l , for l = 1,2, . . . ,n−2,
and μ − μn−1 > 0, α − μn−1 � 2, α − μ > 1, a j � 0, 0 < ξ1 < ξ2 < .. . < ξp−2 < 1,

∑p−2
j=1 a jξ α−μ−1

j �= 1, Dα is the standard Riemann-Liouville derivative, and f : [0,1]×
R

n →R is continuous. The existence results are obtained with the aid of some classical
fixed point theorems.

More recently, Agarwal et al. [2] studied the following fractional order boundary
value problem{

cDqx(t) = f (t,x(t)), 1 < q � 2, t ∈ [0,1],
x(0) = δx(σ), a cDpx(ζ1)+b cDpx(ζ2) = ∑m−2

i=1 αix(βi), 0 < p < 1.

Together with the above fractional differential equation they also investigated the
boundary conditions

x(0) = δ1

∫ σ

0
x(s)ds, a cDpx(ζ1)+b cDpx(ζ2) =

m−2

∑
i=1

αix(βi), 0 < p < 1,
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where cDq , cDp denote the Caputo fractional derivatives of orders q, p and f : [0,1]×
R−→R is a given continuous function and δ ,δ1,a,b,αi ∈ R , with 0 < σ < ζ1 < β1 <
β2 < .. . < βm−2 < ζ2 < 1. The existence and uniqueness results were proved via some
well known tools of the fixed point theory.

Motivated by the above works, in this paper, we investigate the following Caputo
fractional differential equation

cDqx(t) = f (t,x(t)), t ∈ [0,1], (1.1)

with nonlocal multi-point Caputo fractional derivative and integral boundary conditions{
cDσ x(ξ ) = ∑n

i=1 αi
cDνx(ηi),

x(1) = ∑n
i=1 βi

∫ ηi
0 x(s)ds+ ∑n

i=1 γix(ηi),
(1.2)

where cDμ is the Caputo fractional derivative of order μ ∈ {q,σ ,ν} such that 1 < q �
2, 0 < σ ,ν � 1, and f : [0,1]×R−→ R is a given continuous function, 0 < ξ < η1 <
η2 < .. . < ηn < 1 and αi , βi , γi , i = 1, . . . ,n are appropriate real constants.

2. Preliminaries

In this section, we recall some basic definitions of fractional calculus and an aux-
iliary lemma to define the solution for the problem (1.1)–(1.2) is presented.

DEFINITION 1. The Riemann-Liouville fractional integral of order q for a con-
tinuous function f is defined as

Iq f (t) =
1

Γ(q)

∫ t

0

f (s)
(t − s)1−q ds, q > 0,

provided the integral exists, where Γ(.) is the gamma function.

DEFINITION 2. For at least n -times continuously differentiable function f : [0,∞)
→ R , the Caputo derivative of fractional order q is defined as

cDq f (t) =
1

Γ(n−q)

∫ t

0

f (n)(s)
(t − s)q+1−n ds, n−1 < q < n, n = [q]+1,

where [q] denotes the integer part of the real number q .

LEMMA 1. ([13]) For q > 0 , the general solution of the fractional differential
equation cDqx(t) = 0 is given by

x(t) = c0 + c1t + . . .+ cn−1t
n−1,

where ci ∈ R , i = 0,1, . . . ,n−1 (n = [q]+1) .
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According to Lemma 1, it follows that

Iq cDqx(t) = x(t)+ c0 + c1t + . . .+ cn−1t
n−1,

for some ci ∈ R , i = 0,1, . . . ,n−1 (n = [q]+1) .

LEMMA 2. ([22], [13]) If β > α > 0 and x ∈ L1[0,1] , then
(i) cDα Iβ x(t) = Iβ−αx(t) , holds almost everywhere on [0,1] and it is valid at

any point t ∈ [0,1] if x ∈C[0,1]; cDα Iαx(t) = x(t) , for all t ∈ [0,1] .
(ii) cDα tλ−1 = Γ(λ )

Γ(λ−α) t
λ−α−1 , λ > [α] and cDα tλ−1 = 0 , λ < [α] .

LEMMA 3. Let Δ1 �= 0 , Δ2 �= 0 , and h : [0,1] −→ R be a continuous function.
Then the solution of the linear fractional differential equation

cDqx(t) = h(t),1 < q � 2, t ∈ [0,1], (2.1)

supplemented with boundary conditions (1.2) is given by

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
h(s)ds+

1
Δ2

(
−
∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds+

n

∑
i=1

βi

∫ ηi

0

(ηi − s)q

Γ(q+1)
h(s)ds

+
n

∑
i=1

γi

∫ ηi

0

(ηi − s)q−1

Γ(q)
h(s)ds

)
+

Γ(2−σ)Γ(2−ν)
(

Δ3 +2Δ2t
)

2Δ1Δ2

×
(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
h(s)ds+

n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
h(s)ds

)
,

(2.2)

where ⎧⎨
⎩

Δ1 = ξ 1−σ Γ(2−ν)−Γ(2−σ)∑n
i=1 αiη1−ν

i ,
Δ2 = 1−∑n

i=1(βiηi + γi),
Δ3 = −2+ ∑n

i=1 ηi(βiηi +2γi).
(2.3)

Proof. From Lemma 1, we may reduce (2.1) to an equivalent integral equation

x(t) = Iqh(t)+ c0 + c1t,

where c0, c1 ∈ R are arbitrary constants. Consequently, the general solution of equa-
tion (2.1) is

x(t) =
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds+ c0 + c1t, (2.4)

and
∫ ηi

0
x(s)ds =

∫ ηi

0

(∫ s

0

(s− τ)q−1

Γ(q)
h(τ)dτ

)
ds+ c0ηi + c1

η2
i

2

=
∫ ηi

0

(ηi − s)q

Γ(q+1)
h(s)ds+ c0ηi + c1

η2
i

2
, i = 1,2, . . . ,n.
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Now, in view of Lemma 2, by taking the Caputo fractional derivative of order ν and σ
to both sides of (2.4), we get

cDνx(ηi) =
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
h(s)ds+ c1

η1−ν
i

Γ(2−ν)
, i = 1,2, . . . ,n.

cDσ x(ξ ) =
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
h(s)ds+ c1

ξ 1−σ

Γ(2−σ)
.

The boundary condition cDσ x(ξ ) = ∑n
i=1 αi

cDνx(ηi) implies that

∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
h(s)ds+ c1

ξ 1−σ

Γ(2−σ)

=
n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
h(s)ds+

c1

Γ(2−ν)

n

∑
i=1

αiη1−ν
i ,

which, on solving, yields

c1 =
Γ(2−σ)Γ(2−ν)

Δ1

(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
h(s)ds+

n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
h(s)ds

)
.

The second condition of (1.1) implies that

∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds+ c0 + c1 =

n

∑
i=1

βi

∫ ηi

0

(ηi − s)q

Γ(q+1)
h(s)ds+ c0

n

∑
i=1

βiηi +
c1

2

n

∑
i=1

βiη2
i

+ c0

n

∑
i=1

γi + c1

n

∑
i=1

γiηi

+
n

∑
i=1

γi

∫ ηi

0

(ηi − s)q−1

Γ(q)
h(s)ds,

(2.5)

which, on inserting the value of c1 in (2.5), we obtain

c0 =
1

Δ2

(
−
∫ 1

0

(1− s)q−1

Γ(q)
h(s)ds+

n

∑
i=1

βi

∫ ηi

0

(ηi − s)q

Γ(q+1)
h(s)ds

+
n

∑
i=1

γi

∫ ηi

0

(ηi − s)q−1

Γ(q)
h(s)ds

)
+

Δ3Γ(2−σ)Γ(2−ν)
2Δ1Δ2

×
(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
h(s)ds+

n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
h(s)ds

)
.

Substituting the values of c0 and c1 in (2.4) we obtain the solution (2.2). This
completes the proof. �
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3. Existences results

In this section, we establish sufficient conditions for the existence of solutions
to the fractional order boundary value problem (1.1)–(1.2) using certain fixed point
theorems.

Let C = C([0,1],R) be the Banach space of all continuous functions from [0,1]
into R endowed with the norm: ‖x‖ = sup{|x(t)|, t ∈ [0,1]} . In view of Lemma 3, we
define an operator A : C → C by

(A x)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

1
Δ2

(
−
∫ 1

0

(1− s)q−1

Γ(q)
f (s,x(s))ds

+
n

∑
i=1

βi

∫ ηi

0

(ηi − s)q

Γ(q+1)
f (s,x(s))ds+

n

∑
i=1

γi

∫ ηi

0

(ηi − s)q−1

Γ(q)
f (s,x(s))ds

)

+
Γ(2−σ)Γ(2−ν)

(
Δ3 +2Δ2t

)
2Δ1Δ2

×
(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
f (s,x(s))ds

+
n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
f (s,x(s))ds

)
,

(3.1)

with Δ1 �= 0 and Δ2 �= 0, defined by (2.3). Clearly, x is a solution of problem (1.1)–
(1.2) if and only if x is a fixed point of the operator A .

For the sake of convenience, in the sequel we set

Θ =
1

Γ(q+1)
+

1
|Δ2|Γ(q+2)

(
1+q+

n

∑
i=1

ηq
i

(
ηi|βi|+(q+1)|γi|

))
(3.2)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

(
ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)
,

Ω =
1

Γ(q)
+

Γ(2−σ)Γ(2−ν)
|Δ1|

(
ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)
. (3.3)

Now we prove an existence and uniqueness result via Banach’s fixed point theo-
rem.

THEOREM 1. Let f : [0,1]×R −→ R be a continuous function and f (t,0) �≡ 0
on [0,1] satisfying the Lipschitz condition:

(H1) There exists a constant L > 0 such that | f (t,x)− f (t,y)|� L|x−y| , for each
t ∈ [0,1] and x,y ∈ R .

Then the fractional boundary value problem (1.1)–(1.2) has a unique solution on
[0,1] if

LΘ < 1, (3.4)

where Θ is given by (3.2).
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Proof. We transform the problem (1.1)–(1.2) into a fixed point problem x = A x ,
where the operator A is defined by (3.1). Applying Banach’s contraction mapping
principle, we shall show that A has a unique fixed point.

Setting sup{| f (t,0)|, t ∈ [0,1]} = M < ∞ and choose a constant ρ > 0 satisfying

ρ � ΘM(1−ΘL)−1.

First, we will show that A (Bρ) ⊂ Bρ , where Bρ = {x ∈ C : ‖x‖ � ρ} . From
(H1) , for any x ∈ Bρ , and t ∈ [0,1] , we get

| f (t,x(t))| � | f (t,x(t))− f (t,0)|+ | f (t,0)|
� L‖x‖+M

� Lρ +M.

(3.5)

Using (3.1), (3.2) and (3.5), we obtain

|(A x)(t)| �
∫ t

0

(t− s)q−1

Γ(q)
| f (s,x(s))|ds+

1
|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
| f (s,x(s))|ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
| f (s,x(s))|ds+

n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
| f (s,x(s))|ds

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
| f (s,x(s))|ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
| f (s,x(s))|ds

)

�
{∫ t

0

(t− s)q−1

Γ(q)
ds+

1
|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
ds+

n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
ds

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
ds

)}
× (L‖x‖+M

)

=

{
tq

Γ(q+1)
+

1
|Δ2|

(
1

Γ(q+1)
+

n

∑
i=1

|βi| ηq+1
i

Γ(q+2)
+

n

∑
i=1

|γi| ηq
i

Γ(q+1)

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|
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×
(

ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)}
× (L‖x‖+M

)

�
{

1
Γ(q+1)

+
1

|Δ2|Γ(q+2)

(
1+q+

n

∑
i=1

ηq
i

(
ηi|βi|+(q+1)|γi|

))

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(

ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)}
× (L‖x‖+M

)
= (Lρ +M)Θ � ρ ,

which means that ‖A x‖ � ρ . Therefore, we have, A (Bρ) ⊂ Bρ .
Now, for x,y ∈ C , and for each t ∈ [0,1] , we have

|(A x)(t)− (A y)(t)| �
∫ t

0

(t − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+
1

|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
| f (s,x(s))− f (s,y(s))|ds

+
n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
| f (s,x(s))− f (s,y(s))|ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
| f (s,x(s))− f (s,y(s))|ds

)

� L‖x− y‖
{

1
Γ(q+1)

+
1

|Δ2|Γ(q+2)

×
(

1+q+
n

∑
i=1

ηq
i

(
ηi|βi|+(q+1)|γi|

))

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(

ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)}
.
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Consequently, ‖A x−A y‖ � LΘ‖x− y‖ . As LΘ < 1, it follows that the operator A
is a contraction. By the Banach’s contraction mapping principle, A has a fixed point
in Bρ which is the unique solution of the problem (1.1)–(1.2) on [0,1] . This completes
the proof. �

Next, we give a second existence and uniqueness result based on nonlinear con-
tractions.

DEFINITION 3. Let E be a Banach space and let A : E → E be a mapping. A is
said to be a nonlinear contraction if there exists a continuous nondecreasing function
ψ : R

+ → R
+ such that ψ(0) = 0 and ψ(α) < α for all α > 0 with the property:

‖Ax−Ay‖� ψ(‖x− y‖), ∀x,y ∈ E.

LEMMA 4. (Boyd and Wong[7]) Let E be a Banach space and let A : E → E be
a nonlinear contraction. Then, A has a unique fixed point in E .

THEOREM 2. Let f : [0,1]×R−→ R be a continuous function satisfying the as-
sumption:

(H2) | f (t,x)− f (t,y)| � g(t)Φ−1 ln(1 + |x− y|) , for all t ∈ [0,1] and x,y ∈ R ,
where g : [0,1] → R

+ is continuous and the positive constant Φ is defined by

Φ =
(
1+

1
|Δ2|

)∫ 1

0

(1− s)q−1

Γ(q)
g(s)ds

+
1

|Δ2|
n

∑
i=1

∫ ηi

0

(ηi − s)q−1

Γ(q+1)

(
q|γi|+ |βi|(ηi − s)

)
g(s)ds

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
g(s)ds+

n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
g(s)ds

)
.

Then the fractional boundary value problem (1.1)–(1.2) has a unique solution on [0,1] .

Proof. Let the operator A : C → C be defined as in (3.1). Consider the continu-
ous non decreasing function ψ : R

+ → R
+ defined by

ψ(α) = ln(α +1), ∀α � 0.

Clearly, the function ψ satisfies ψ(0) = 0 and ψ(α) < α , for all α > 0.
For any x,y ∈ C and for each t ∈ [0,1] , we have

|(A x)(t)− (A y)(t)| �
∫ t

0

(t − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+
1

|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds
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+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
| f (s,x(s))− f (s,y(s))|ds

+
n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
| f (s,x(s))− f (s,y(s))|ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
| f (s,x(s))− f (s,y(s))|ds

)

� Φ−1
∫ t

0

(t− s)q−1

Γ(q)
g(s) ln

(
1+ |x(s)− y(s)|)ds

+
Φ−1

|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
g(s) ln

(
1+ |x(s)− y(s)|)ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
g(s) ln

(
1+ |x(s)− y(s)|)ds

+
n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
g(s) ln

(
1+ |x(s)− y(s)|)ds

)

+
Φ−1Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
g(s) ln

(
1+ |x(s)− y(s)|)ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
g(s) ln

(
1+ |x(s)− y(s)|)ds

)

� Φ−1ψ(‖x− y‖)
{∫ 1

0

(1− s)q−1

Γ(q)
g(s)ds+

1
|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
g(s)ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
g(s)ds+

n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
g(s)ds

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2| ×

(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
g(s)ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
g(s)

)
ds

)}
.
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Then, ‖A x−A y‖ � ψ(‖x− y‖) . Hence, A is a nonlinear contraction. Therefore, by
Lemma 4, the operator A has a unique fixed point in C , which is the unique solution
of problem (1.1)–(1.2). This completes the proof. �

Our last existence result is based on Leray-Schauder nonlinear alternative [8].

LEMMA 5. (Nonlinear alternative for single valued maps [8]) Let E be a Banach
space, E1 a closed, convex subset of E , U an open subset of E1 and 0 ∈U . Suppose
that A : U → E1 is a continuous, compact (that is A(U) is a relatively compact subset
of E1 ) map. Then either

(i) A has a fixed point in U , or
(ii) There is a x ∈ ∂U (the boundary of U in E1 ) and λ ∈ (0,1) with x = λA(x) .

THEOREM 3. Let f : [0,1]×R −→ R be a continuous function and f (t,0) �≡ 0
on [0,1] . Further, it is assumed that:

(H3) There exist a function p ∈ C([0,1],R+) and a nondecreasing function ψ :
R

+ → R
+ such that | f (t,x)| � p(t)ψ(|x|) , ∀(t,x) ∈ [0,1]×R;

(H4) There exists a constant M > 0 such that M
Θψ(M)‖p‖ > 1 , where Θ is given by

(3.2).
Then the fractional boundary value problem (1.1)–(1.2) has at least one solution

on [0,1] .

Proof. Let consider the operator A : C → C defined by (3.1). In view of the
continuity of f , the operator A is continuous. Firstly, we will show that the operator
A , maps bounded sets into bounded sets in C . For a positive number ρ , let Bρ =
{x ∈ C : ‖x‖ � ρ} be bounded set in C . Then, for t ∈ [0,1] and x ∈ Bρ together with
(H3) , we obtain

|(A x)(t)| =
∣∣∣∣∣
∫ t

0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

1
Δ2

(
−
∫ 1

0

(1− s)q−1

Γ(q)
f (s,x(s))ds

+
n

∑
i=1

βi

∫ ηi

0

(ηi − s)q

Γ(q+1)
f (s,x(s))ds+

n

∑
i=1

γi

∫ ηi

0

(ηi − s)q−1

Γ(q)
f (s,x(s))ds

)

+
Γ(2−σ)Γ(2−ν)

(
Δ3 +2Δ2t

)
2Δ1Δ2

(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
f (s,x(s))ds

+
n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
f (s,x(s))ds

)∣∣∣∣∣
�
∫ t

0

(t− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+

1
|Δ2|

(∫ 1

0

(1− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

+
n

∑
i=1

|βi|
∫ ηi

0

(ηi − s)q

Γ(q+1)
p(s)ψ(‖x‖)ds+

n

∑
i=1

|γi|
∫ ηi

0

(ηi − s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

)
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+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
p(s)ψ(‖x‖)ds

+
n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
p(s)ψ(‖x‖)ds

)

�
{

tq

Γ(q+1)
+

1
|Δ2|

(
1

Γ(q+1)
+

n

∑
i=1

|βi| ηq+1
i

Γ(q+2)
+

n

∑
i=1

|γi| ηq
i

Γ(q+1)

)

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

×
(

ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)}
‖p‖ψ(ρ)

�
{

1
Γ(q+1)

+
1

|Δ2|Γ(q+2)

(
1+q+

n

∑
i=1

ηq
i

(
ηi|βi|+(q+1)|γi|

))

+
Γ(2−σ)Γ(2−ν)

(
|Δ3|+2|Δ2|

)
2|Δ1Δ2|

(
ξ q−σ

Γ(q−σ +1)
+

n

∑
i=1

|αi| ηq−ν
i

Γ(q−ν +1)

)}

×‖p‖ψ(ρ)
= Θ‖p‖ψ(ρ).

Thus, we conclude that ‖A x‖ � Θ‖p‖ψ(ρ) . This clearly validate the uniform
boundedness of the set A (Bρ ) .

Next, we show that the operator A maps bounded sets into equicontinuous sets
of C = C([0,1],R) .

Set fmax = max(t,x)∈[0,1]×Bρ | f (t,x)| . For x ∈ Bρ and all t ∈ [0,1] , we obtain

|(A x)′(t)| =
∣∣∣∣∣
∫ t

0

(t − s)q−2

Γ(q−1)
f (s,x(s))ds

+
Γ(2−σ)Γ(2−ν)

Δ1

(
−
∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
f (s,x(s))ds

+
n

∑
i=1

αi

∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
f (s,x(s))ds

)∣∣∣∣∣
� fmax

{∫ t

0

(t− s)q−2

Γ(q−1)
ds+

Γ(2−σ)Γ(2−ν)
|Δ1|

×
(∫ ξ

0

(ξ − s)q−σ−1

Γ(q−σ)
ds+

n

∑
i=1

|αi|
∫ ηi

0

(ηi − s)q−ν−1

Γ(q−ν)
ds

)}

� Ω fmax,

where Ω is given by (3.3).
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Hence, for t1, t2 ∈ [0,1] with t1 < t2 , it follows that

|(A x)(t1)− (A x)(t2)| �
∫ t2

t1
|(A x)′(s)|ds � Ω fmax(t2 − t1).

So, we have shown that the set A (Bρ ) is equicontinuous in C . Thus, by Arzelá-
Ascoli theorem, we conclude that A is completely continuous operator.

Finally, it is to show there exists an open U ⊂ C with x �= λA (x) for any λ ∈
(0,1) and all x ∈ ∂U .

Define U = {x ∈ C : ‖x‖ < M} , and assume that there exists x ∈ ∂U such that
x = λA (x) for some λ ∈ (0,1) .

Note that the operator A : U → C is continuous and completely continuous. Us-
ing (3.1), as before for all t ∈ [0,1] , we obtain

|x(t)| = ∣∣λ (A x)(t)
∣∣� Θ‖p‖ψ(‖x‖),

which, on taking the norm for t ∈ [0,1] , yields

‖x‖
Θψ(‖x‖)‖p‖ � 1,

actually contradicts the condition (H4) . Hence x �= λA (x) for x ∈ ∂U , λ ∈ (0,1) .
Consequently, by Lemma 5, we deduce that the operator A has a fixed point in U ,
which is a desired solution of the problem (1.1)–(1.2). This completes the proof. �

4. Examples

EXAMPLE 1. Consider the following nonlocal fractional boundary value problem⎧⎪⎪⎨
⎪⎪⎩

cD
3
2 x(t) = te−πt

56+e−2t sinx+ e−cos2 t√
64+t

tan−1 x+ 1
3 , t ∈ [0,1],

cD
1
3 x( 3

5 ) = cD
1
4 x( 4

5 )+ 1
2

cD
1
4 x( 6

7 ),

x(1) = 1
3

∫ 4
5

0 x(s)ds+ 2
3

∫ 6
7

0 x(s)ds+3x( 4
5)+ 1

7x( 6
7 ),

(4.1)

where q = 3
2 , ν = 1

4 , σ = 1
3 , η1 = 4

5 , η2 = 6
7 , ξ = 3

5 , α1 = 1, α2 = 1
2 , β1 = 1

3 ,

β2 = 2
3 , γ1 = 3, γ2 = 1

7 , and f (t,x) = te−πt

56+e−2t sinx+ e−cos2 t√
64+t

tan−1 x+ 1
3 .

Since

| f (t,x)− f (t,y)| � te−πt

56+ e−2t |sinx− siny|+ e−cos2 t
√

64+ t
| tan−1 x− tan−1 y|

� 1
56

|x− y|+ 1
8
|x− y|

=
1
7
|x− y|,

then (H1) is satisfied with L = 1
7 .
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Using the given data, we find that Δ1 = −0.51192, Δ2 = − 313
105 , Δ3 = 13774

3675 , Θ =
5.70719. Hence, we get LΘ � 0.81531 < 1.

Thus all the conditions of Theorem 1 are satisfied. So, the fractional boundary
value problem (4.1) has a unique solution on [0,1] .

EXAMPLE 2. Consider a fractional boundary value problem given by⎧⎪⎪⎨
⎪⎪⎩

cD
7
6 x(t) = 1

11e−t
(

2x3

1+x2 + 7+t
2(5+cost) +1

)
, t ∈ [0,1],

cD
1
2 x( 1

5 ) = 2 cD
1
3 x( 1

4 )+3 cD
1
3 x( 2

3 ),

x(1) = 2
5

∫ 1
4

0 x(s)ds+ 1
7

∫ 2
3

0 x(s)ds+ 1
2x( 1

4 )+ x( 2
3),

(4.2)

where q = 7
6 , ν = 1

3 , σ = 1
2 , η1 = 1

4 , η2 = 2
3 , ξ = 1

5 , α1 = 2, α2 = 3, β1 = 2
5 ,

β2 = 1
7 , γ1 = 1

2 , γ2 = 1, and f (t,x) = 1
11e−t

(
2x3

1+x2 + 7+t
2(5+cost) +1

)
.

A simple computation gives

Δ1 = −2.32863, Δ2 = − 73
105

, Δ3 = − 827
2520

, Θ = 4.67261.

Clearly,

| f (t,x)| =
∣∣∣∣∣ 1
11

e−t
( 2x3

1+ x2 +
7+ t

2(5+ cost)
+1
)∣∣∣∣∣� 2

11
e−t(|x|+1).

Choosing p(t) = 2
11e−t and ψ(|x|) = |x|+1. Then, we have

M
Θψ(M)‖p‖ =

11M
2(4.67261)(M+1)

> 1,

which implies that there exists a constant M > 5.64742. Hence, by Theorem 3, the
nonlocal boundary value problem (4.2) has at least one solution on [0,1] .

EXAMPLE 3. As a third example we consider the fractional boundary value prob-
lem ⎧⎪⎪⎨

⎪⎪⎩
cD

4
3 x(t) = 1

6e−t2 ln(1+ |x|), t ∈ [0,1],
cD

4
5 x( 3

11 ) = 3
7

cD
2
3 x( 7

8 )+ 11
12

cD
2
3 x( 8

9 ),

x(1) = 1
4

∫ 7
8

0 x(s)ds+ 3
2

∫ 8
9

0 x(s)ds+ 1
10x( 7

8 )+ 2
5x( 8

9 ),

(4.3)

where q = 4
3 , ν = 2

3 , σ = 4
5 , η1 = 7

8 , η2 = 8
9 , ξ = 3

11 , α1 = 3
7 , α2 = 11

12 , β1 = 1
4 ,

β2 = 3
2 , γ1 = 1

10 , γ2 = 2
5 , and f (t,x) = 1

6e−t2 ln(1+ |x|) .
With the given values, it is found that

Δ1 = −0.496989, Δ2 = −101
96

, Δ3 =
9079
34560

.

By choosing g(t) = 1
6e−t2 , we find that Φ = 0.809777.
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Obviously,

| f (t,x)− f (t,y)| =
∣∣∣g(t)

(
ln(1+ |x|)− ln(1+ |y|)

)∣∣∣
= g(t)

∣∣∣∣∣ ln
(

1+ |x|
1+ |y|

)∣∣∣∣∣
� g(t) ln(1+ |x− y|)
� g(t)Φ−1 ln(1+ |x− y|).

Hence, by Theorem 2, the nonlocal boundary value problem (4.3) has a unique
solution on [0,1] .
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