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Abstract. In this paper, by sub-supersolution methods, Karamata regular variation theory and
perturbation method, we study the existence, uniqueness and asymptotic behavior of solutions
near the boundary to quasilinear elliptic problem⎧⎨

⎩
div(|∇u|m−2∇u) = b(x) f (u)(1+ |∇u|q(m−1)), x ∈ Ω,
u > 0, x ∈ Ω,
u|∂ Ω = +∞,

where Ω is a bounded domain with smooth boundary in RN (N � 2) , 1 < m � 2 , 0 < q �
m/(m−1) . b∈Cα (Ω)(α ∈ (0,1)) is positive in Ω , and may be vanishing on the boundary, and
f ∈ C1[0,+∞) , f (0) = 0 , is increase on (0,+∞) and normalized regularly varying at infinity
with positive index p and p+(q−1)(m−1) > 0 .

1. Introduction

In this paper, we consider the existence, uniqueness and boundary behavior of
solutions to the following quasulinear elliptic problem

⎧⎨
⎩

Δmu = b(x) f (u)(1+ |∇u|q(m−1)), x ∈ Ω,
u � 0, x ∈ Ω,
u|∂Ω = +∞.

(1.1)

where Δmu = div(|∇u|m−2∇u) , 1< m � 2, q∈ (0,m/(m−1)] , the last condition means
that u(x)→+∞ as d(x) = dist(x,∂Ω) → 0, and the solution is ‘a large solution’ or ‘an
explosive solution’, Ω is a bounded domain with smooth boundary in RN (N � 2) . f
satisfies

(H0) f ∈C1[0,+∞) , f (0) = 0, f is increase on (0,+∞) ;
(H1) There exists p > 0 such that

lim
s→+∞

f ′(s)s
f (s)

= p,

Mathematics subject classification (2020): 35J25, 35B50, 35J40.
Keywords and phrases: Blow-up, quasilinear, elliptic equations, boundary behavior.
The authors thank the referee, who made professional comments and suggestions on this article. This work is sup-

ported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJD100004).

c© � � , Zagreb
Paper DEA-13-16

281

http://dx.doi.org/10.7153/dea-2021-13-16


282 C. LIU

and b satisfies
(H2) b ∈Cα(Ω) for some α ∈ (0,1) , and is positive in Ω ;
(H3) There exists k ∈ Λ and bq,m > 0 such that

lim
d(x)→0

b(x)
(k(d(x)))1−(q−1)(m−1) = bq,m,

where Λ denotes the set of all positive nondecreasing functions in C1(0,δ0) (δ0 > 0)
which satisfy

lim
t→0+

d
dt

(K(t)
k(t)

)
:= Ck ∈ [0,+∞), K(t) =

∫ t

0
k(s)ds. (1.2)

We note that for each k ∈ Λ , Ck ∈ [0,1] and

lim
t→0+

K(t)
k(t)

= 0; lim
t→0+

K(t)k′(t)
k2(t)

= 1− lim
t→0+

d
dt

(K(t)
k(t)

)
= 1−Ck. (1.3)

The m-Laplacian operator Δm has been used in various applications to accommo-
date nonlinear diffusion. In fluid mechanics, the shear stress �v and the velocity gradient
∇mu of certain fluids obey a relation of the form �v = ∇mu , where ∇mu = |∇u|m−2∇u
and m > 1 is an arbitrary real number and the case m = 2 corresponds to a Newtonian
fluid, m < 2 and m > 2 correspond to pseudoplastic fluid and dilatant fluid, respec-
tively. The resulting equations of motion then involve div(∇mu) , that is, Δmu . The
m-Laplacian also appears in the study of torsional creep, see [1], flow through porous
media (m = 3/2, see [2]) or glacial sliding (m ∈ (1,4/3] , see [3]).

Elliptic equation with gradient terms involving m-Laplacian operator is one of the
typical models in PDEs. There are many interesting results on the existence, uniqueness
and boundary behavior of large solutions of this type of equations.

Semilinear elliptic problems involving gradient terms with boundary blow-up in-
terested many authors. For m = 2, Bandle and Giarrusso [4] developed existence and
asymptotic behavior results for large solutions of

Δu+ |∇u(x)|a = f (u)

in a bounded domain, where a > 0, and Maderna et al [5] pointed out that the simplest
case that a = 2 can be reduced to a problem without gradient terms. In the case f (u) =
p(x)uγ , and γ > max(1,a) , Lair and Wood [6, 7, 8] dealt with the above equation in a
bounded domain and the whole space. Zhang [9] considered existence and asymptotic
behavior results for large solutions of

Δu = b(x) f (u)(1+ |∇u|q) (1.4)

in a bounded domain with smooth boundary in R
N , where q ∈ (0,2] . For other exis-

tence, uniqueness and asymptotic behavior results of large solutions to elliptic problems
or that with nonlinear gradient terms, we also refer to [10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21] and the references there in.
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At the same time, people are also concerned about the corresponding research of
quasilinear elliptic equations and that with gradient terms similar to (1.1), in which
m is not only equal to 2. There are many works involving m-Laplacian operator,
which can be traced back to the works of Kazdan and Kramer [22] and Serrin [23],
and then many authors studied these problems involving m-Laplacian operator, see
[24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37] and the references there in. Especially,
Du and Guo [30] developed a comparison principle to study the quasilinear elliptic
equation

−Δmu = a|u|m−2u−b(x)|u|q−1u

in a bounded smooth domain. Yang [31] studied the existence and non-existence of
entire explosive positive radial solutions for quasilinear elliptic systems{

div(|∇u|m−2∇u) = p(|x|)g(v),
div(|∇v|n−2∇v) = q(|x|) f (u)

on R
N , where f and g are positive and non-decreasing functions on (0,+∞) satisfying

the Keller-Osserman condition (see [11, 32]). Liu and Yang [35] studied the exact
asymptotic behavior of solutions near the boundary to quasilinear elliptic problem{

div(|∇u|m−2∇u)±|∇u(x)|q(m−1) = b(x)eu(x), x ∈ Ω,
u|∂Ω = +∞,

where Ω is a bounded domain with smooth boundary in RN (N � 2) , m > 1, q � 0,
b is nonnegative and nontrivial in Ω , which may be vanishing on the boundary.

As far as the authors know, however, there are no results which contain the ex-
istence, uniqueness and exact asymptotic behavior of solutions near the boundary to
problem (1.1). In this paper, applying Karamata regular variation theory (Karamata
regular variation theory see [38, 39, 40]), perturbed method and constructing compar-
ison functions, we extend the results in [9] to problem (1.1) and show the asymptotic
behavior of solutions near the boundary, and discuss the existence and uniqueness of
solutions to problem (1.1).

Our main results are as follows.

THEOREM 1. Let 1 < m � 2 and q∈ (0,m/(m−1)) , f satisfies (H0) and (H1) ,
and b satisfies (H2) and (H3) . Suppose

p+(q−1)(m−1)> 0,

then, for any solution of problem (1.1), we have

lim
d(x)→0

u(x)
ψ(K(d(x)))

= ξ0. (1.5)

Where ξ0 :=
(1− (q−1)(m−1)+Ck(p+(q−1)(m−1))

bq,m(1+ p)

) 1
p+(q−1)(m−1)

, ψ is the unique

solution of the problem∫ ∞

ψ(t)

ds

((1− (q−1)(m−1))F(s))
1

p+(q−1)(m−1)
= t, ∀ t > 0, s � 0, (1.6)
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where F(s) =
∫ s
0 f (τ)dτ .

THEOREM 2. Let f satisfies (H0) and one of the following two conditions.
(H4) f ∈ C1([0,∞)) is non-decreasing on [0,∞) , f (s) � C1sp1(m−1) , for all

s ∈ (0,∞) and f (s) �C2sp2(m−1) for large s, with p1 � p2 > 1 and C1,C2 are positive
constants.

(H5) f ∈ C1(R) is non-decreasing on R , f (s) � C1ep1(m−1)s , for all s ∈ R
and f (s) � C2ep2(m−1)s for large |s| with 1 > p1 � p2 > 0 and C1,C2 are positive
constants.

Moreover, let b satisfy (H2) and
(H6) There exist constants C1,C2 such that C1(w(x))γ2 � b(x) � C2(w(x))γ1 ,

for all x ∈ Ω with −m < γ1 � γ2 , where w ∈C2+α(Ω)∩C1(Ω) is the unique solution
of the problem

div(|∇u|m−2∇u) = 1, u > 0, x ∈ Ω, u|∂Ω = 0,

as is well known, ∇w(x) �= 0 for x ∈ ∂Ω , see [41, 42].
Then, problem (1.1) has one solution u ∈C1(Ω)∩C(Ω) , and satisfies

M1(w(x))
−(m+γ1)

(p1−1)(m−1) � u(x) � M2(w(x))
−(m+γ2)

(p2−1)(m−1) , ∀ x ∈ Ω. (1.7)

Where Mi, i = 1,2 are positive constants with M1 � M2 .

THEOREM 3. Under the hypotheses of Theorem 1, suppose q � 1 and f (s)/s is
increasing on (0,+∞) , then problem (1.1) admits a unique solution u ∈W 1,m(Ω) .

REMARK 1. When m = 2, problem (1.1) goes back to (1.4), so Theorem 1 is a
generalization of the corresponding results in [9].

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries. In Section 3, we give the proof of Theorem 1. Finally, we discuss the
existence and uniqueness of solutions for problem (1.1) in Section 4.

2. Preliminaries

In this section, we present some bases of Karamata regular variation theory which
come from Seneta [38], Preliminaries in Resnick [39], Introductions and the appendix
in Maric [40].

DEFINITION 1. A positive measurable function f defined on [a,+∞) , for some
a > 0, is called regularly varying at infinity with index ρ , written f ∈ RVρ , if for each
ξ > 0 and some ρ ∈ R ,

lim
s→+∞

f (ξ s)
f (s)

= ξ ρ . (2.1)
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In particular, when ρ = 0, f is called slowly varying at infinity.
Clearly, if f ∈ RVρ , then L(s) := f (s)/sρ is slowly varying at infinity.
We also say that a positive measurable function g defined on (0,a) for some

a > 0, is regularly varying at zero with index ρ (denoted by g ∈ RVZρ ) if s → g(1/s)
belongs to RV−ρ .

Some basic examples of slowly varying functions at infinity are as follows.
(1) every measure function on [a,∞) which has a positive limit at infinity;
(2) (lns)β and (ln(lns))β , β ∈ R ;
(3) e(lns)p

, 0 < p < 1.

DEFINITION 2. A positive measurable function f defined on [a,+∞) , for some
a > 0, is called rapidly varying at infinity if for each p > 1

lim
s→∞

f (s)
sp = ∞. (2.2)

Some basic examples of rapidly varying functions at infinity are as follows.
(1) es and ees

;

(2) ee(lns)p
, esp

and eesp

, p > 0;
(3) (lns)β esp

and sβ esp
, p > 0, β ∈ R ;

(4) sβ e(ln s)p
and (lns)β e(ln s)p

, p > 1, β ∈ R ;

LEMMA 1. (Uniform convergence theorem) If f ∈ RVρ ,then (2.1) holds uni-
formly for ξ ∈ [c1,c2] with 0 < c1 < c2 . Moreover, if ρ < 0 , then uniform convergence
holds on intervals of the form (a1,∞) with a1 > 0 ; if ρ > 0 , then uniform convergence
holds on intervals (a1,∞) provided f is bounded on (a1,∞) for all a1 > 0 .

LEMMA 2. (Representation theorem) A function L is slowly varying at infinity if
and only if it may be written in the form

L(s) = ϕ(s)exp(
∫ s

a1

y(τ)
τ

dτ), s � a1, (2.3)

for some a1 > a, where the functions ϕ and y are measurable and for s→∞,y(s)→ 0 ,
and ϕ(s) → c0 ,with c0 > 0 .

We call that

L̂(s) = c0 exp(
∫ s

a1

y(τ)
τ

dτ), s � a1, (2.4)

is normalized slowly varying at infinity and

f (s) = c0s
ρ L̂(s), s � a1, (2.5)

is normalized regularly varying at infinity with index ρ (and written as f ∈ NRVρ ).
Similarly, g is called normalized regularly varying at zero with index ρ , written

as g ∈ NRVZρ if s → g(1/s) belongs to NRVρ .
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A function f ∈ RVρ belongs to NRVρ if and only if

f ∈C1[a1,∞), for some a1 > 0, and lim
s→∞

s f ′(s)
f (s)

= ρ . (2.6)

LEMMA 3. If functions L, L1 are slowly varying at infinity, then
(i) Lσ for every σ ∈ R , c1L+ c2L1 (c1 � 0,c2 � 0 with c1 + c2 > 0) , L ◦L1 (if

L1(s) → +∞ as s → +∞), are also slowly varying at infinity;
(ii) for every θ > 0 and s → +∞ , sθ L(s) → +∞ and s−θ L(s) → 0 ;

(iii) for ρ ∈ R and s → +∞ , ln(L(s))
lns → 0 and ln(sρ L(s))

lns → ρ .

LEMMA 4. If f1 ∈ RVρ1 , f2 ∈ RVρ2 with lim
s→+∞

f2(s) = ∞ , then f1 ◦ f2 ∈ RVρ1ρ2 .

LEMMA 5. (Asymptotic behavior) If a function L is slowly varying at infinity,
then for a > 0 and s → ∞ ,

(i)
∫ s
a tβ L(t)dt ∼= (β +1)−1s1+β L(s) , for β > −1 ;

(ii)
∫ ∞
s tβ L(t)dt ∼= (−β −1)−1s1+β L(s) , for β < −1 .

LEMMA 6. (Asymptotic behavior) If a function H is slowly varying at zero, then
for a > 0 and s → 0+ ,

(i)
∫ s
a tβ H(t)dt ∼= (β +1)−1s1+β H(s) , for β > −1 ;

(ii)
∫ ∞
s tβ H(t)dt ∼= (−β −1)−1s1+β H(s) , for β < −1 .

LEMMA 7. Let k ∈ Λ;
(i) when Ck ∈ (0,1) , k ∈ NRVZ(1−Ck)/Ck

;
(ii) when Ck = 1 , k is normalized slowly varying at zero;
(iii) when Ck = 0 , k is rapidly varying at zero.

Denote

Γ(u) =
∫ +∞

u

ds

((1− (q−1)(m−1))F(s))1/1−(q−1)(m−1) , u > 0. (2.7)

LEMMA 8. Let f satisfy (H0) and (H1) . If p+(q−1)(m−1)> 0 , then

(i)
∫ +∞
0

du

((1− (q−1)(m−1))F(u))
1

1−(q−1)(m−1)
< +∞;

(ii) lim
u→+∞

Γ(u)((1− (q−1)(m−1))F(u))
1

1−(q−1)(m−1) = +∞;

(iii) lim
u→+∞

u

Γ(u)((1− (q−1)(m−1))F(u))
1

1−(q−1)(m−1)
=

1− (q−1)(m−1)
p+(q−1)(m−1)

;

(iv) lim
u→+∞

((1− (q−1)(m−1))F(u))
1−q

1−(q−1)(m−1)

f (u)Γ(u)
=

p+(q−1)(m−1)
p+1

.
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Proof. By (H1) we know that f ∈ NRVp , then f (u) = upL̂(u) in [M0,+∞) for a
large M0 , where L̂ is normalized slowly varying at infinity. By Lemma 5, we have, for
u → +∞ ,

F(u) ∼= up+1

p+1
L̂(u),

Γ(u) ∼= − 1− (q−1)(m−1)
p+(q−1)(m−1)

(
p+1

1− (q−1)(m−1)
)

1
1−(q−1)(m−1)

(L̂(u))
−1

1−(q−1)(m−1) u
− p+(q−1)(m−1)

1−(q−1)(m−1) .

Thus (i)− (iv) hold. �

LEMMA 9. Under the hypotheses in Theorem 1. Let ψ be the solution of the
problem ∫ +∞

ψ(t)

ds

((1− (q−1)(m−1))F(u))
1

1−(q−1)(m−1)
= t, ∀ t > 0.

Then

(i) −ψ ′(t)= ((1−(q−1)(m−1))F(ψ(t)))
1

1−(q−1)(m−1) , ψ(t)> 0 , t > 0 , ψ(0) :=

lim
t→0+

ψ(t) = +∞; ψ ′′(t) = f (ψ(t))((1− (q−1)(m−1))F(ψ(t)))
q(m−1)

1−(q−1)(m−1) , t > 0 ;

(ii) lim
t→0+

ψ(t)
tψ ′(t)

=
p+(q−1)(m−1)
1− (q−1)(m−1)

, i.e., ψ ∈ NRVZ− 1−(q−1)(m−1)
p+(q−1)(m−1)

;

(iii) lim
t→0+

ψ ′(t)
tψ ′′(t)

=
p+(q−1)(m−1)

p+1
, i.e., −ψ ′ ∈ NRVZ− p+1

p+(q−1)(m−1)
;

(iv) When k ∈ Λ , we have

lim
t→0+

1

K(t)((1− (q−1)(m−1))F(ψ(K(t))))
1

1−(q−1)(m−1)
= 0.

Proof. (i) By the definition of ψ and a direct calculation, we can show (i) . (ii)
Let u = ψ(t) , by Lemma 8 we see that

lim
t→0+

ψ(t)
tψ ′(t)

= − lim
t→0+

ψ(t)

t
(
(1− (q−1)(m−1))F(ψ(t))

)1/(1−(q−1)(m−1))

= − lim
u→+∞

u

Γ(u)
(
(1− (q−1)(m−1))F(u)

)1/(1−(q−1)(m−1))

= − 1− (q−1)(m−1)
p+(q−1)(m−1)

.
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(iii) Let u = ψ(t) , by Lemma 8 we see that

lim
t→0+

ψ ′(t)
tψ ′′(t)

=− lim
t→0+

(
(1− (q−1)(m−1))F(ψ(t))

)(1−q)(m−1)/(1−(q−1)(m−1))

t f (ψ(t))

=− lim
u→+∞

(
(1− (q−1)(m−1))F(u)

)(1−q)(m−1)/(1−(q−1)(m−1))

f (u)Γ(u)

=− p+(q−1)(m−1)
p+1

.

(iv) Let u = ψ(K(t)) , by Lemma 8 we see that

lim
t→0+

K(t)
(
(1− (q−1)(m−1))F(ψ(K(t)))

)1/(1−(q−1)(m−1))

= lim
u→+∞

Γ(u)
(
(1− (q−1)(m−1))F(u)

)1/(1−(q−1)(m−1))

=∞. �

3. Proofs of the main results

Firstly, from [33, 34], we give the following lemma.

LEMMA 10. (Weak comparison principle) Let Ω be a bounded domain in RN

(N � 2) with smooth boundary ∂Ω and ϕ : (0,a) → (0,a) is continuous and non-
decreasing. Let u1,u2 ∈W 1,m(Ω) satisfy

∫
Ω
|∇u1|m−2∇u1∇ψdx+

∫
Ω

ϕu1ψdx

�
∫

Ω
|∇u2|m−2∇u2∇ψdx+

∫
Ω

ϕu2ψdx,

For all non-negative ψ ∈W 1,m
0 (Ω) . Then the inequality

u1 � u2, on ∂Ω,

implies that
u1 � u2, in Ω.

Then, we give a preliminary lemma and prove theorem 1.

Fix ε ∈ (0,bq,m min{ 1
2 ,ξ p+(q−1)(m−1)

0 /4}) , where bq,m is given in (H3) and ξ0 is
given in (1.5).

For any δ > 0, we define

Ωδ = {x ∈ Ω : d(x) < δ}.
Since Ω is C2 -smooth, choose δ1 ∈ (0,δ0) such that(see, 14.6 in [43])

d ∈C2(Ωδ1
), |∇d(x)| = 1, 
d(x) = −(N−1)H(x)+o(1), ∀ x ∈ Ωδ1

, (3.1)
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where x is the nearest point to x on ∂Ω , and H(x) denotes the mean curvature of ∂Ω
at x (see [43]).

Define

ξ1 =
(bq,mξ p+(q−1)(m−1)

0 −2ε
bq,m + ε

) 1
p+(q−1)(m−1)

,

ξ2 =
(bq,mξ p+(q−1)(m−1)

0 +2ε
bq,m + ε

) 1
p+(q−1)(m−1)

.

It follows that

4
− 1

p+(q−1)(m−1) ξ0 < ξ1 < ξ2 < 4
1

p+(q−1)(m−1) ξ0.

For r ∈ (0,δ0) and x ∈ Ωδ1
, define

G1(r,x) =
ψ ′(K(r))

K(r)ψ ′′(K(r))

(
K(r)k′(r)

k2(r)
+

K(r)
k(r)


d(x)
)

,

G2(r) = −ξ (q−1)(m−1)
2

f (ξ2ψ(K(r)))
f (ψ(K(r)))

,

G3(r) = 1+ ξ−q(m−1)
2 (K(r)(F(ψ(K(r))))

1
1−(q−1)(m−1) )−q(m−1)

(K(r)
k(r)

)q(m−1)
.

By Lemma 1, (1.3), lemma 9 and the choice of ξ2 , we see that

LEMMA 11. Under the hypotheses in Theorem 1, we have

(i) For x ∈ Ωδ1
, lim

r→0
G1(r,x) = − p+(q−1)(m−1)

p+1 (1−Ck);

(ii) lim
r→0

G2(r) = −ξ p+(q−1)(m−1)
2 ;

(iii) lim
r→0

G3(r) = 1 ;

(iv) lim
r→0

G1(r,x)+ (bq,m− ε)G2(r)+G3(r) = −2ε .

By (H2) , (H3) , Lemma 11 and K ∈C[0,δ0) with K(0) = 0, we see that there are
δ1ε , δ2ε ∈ (0,δ1/2) (which are corresponding to ε ) sufficiently small such that

(1) 0 � K(r) � 2δ1ε , r ∈ (0,2δ2ε) ;
(2) (bq,m − ε)(k(d1(x)))1−(q−1)(m−1) � (bq,m − ε)(k(d(x)))1−(q−1)(m−1) < b(x) ,

x ∈ D−
σ = Ω2δ1ε /Ωσ ;

b(x) < (bq,m + ε)(k(d(x)))1−(q−1)(m−1) � (bq,m + ε)(k(d2(x)))1−(q−1)(m−1) , x ∈
D+

σ = Ω2δ1ε−σ ; d1(x) = d(x)−σ , d2(x) = d(x)+ σ ;
(3) G1(r,x)+ (bq,m− ε)G2(r)+G3(r) < 0, ∀ (r,x) ∈ (0,2δ2ε)×Ω2δ1ε .
Set

uε = ξ2ψ(K(d1(x))), x ∈ D−
σ and uε = ξ1ψ(K(d2(x))), x ∈ D+

σ . (3.2)
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By a direct calculation, as 1 < m � 2, we see that for x ∈ D−
σ ,

div(|∇uε |m−2∇uε)−b(x) f (uε(x))(1+ |∇uε |q(m−1))

=(m−1)ξ m−1
2 (ψ ′(K(d1(x))))m−2ψ ′′(K(d1(x)))km(d1(x))

+ (m−1)ξ m−1
2 (ψ ′(K(d1(x))))m−1km−2(d1(x))k′(d1(x))

+ ξ m−1
2 (ψ ′(K(d1(x))))m−1km−1(d1(x))Δd(x)

−
(

1+ ξ q(m−1)
2 kq(m−1)(d1(x))(−ψ ′(K(d1(x))))q(m−1)

)
b(x) f (ξ2ψ(K(d1(x))))

=ξ m−1
2 f (ψ(K(d1(x))))[(1− (q−1)(m−1))F(ψ(K(d1(x))))]

q(m−1)
1−(q−1)(m−1) km(d1(x))

(ψ ′(K(d1(x))))m−2
[
m−1+

ψ ′(K(d1(x)))
K(d1(x))ψ ′′(K(d1(x)))

(
K(d1(x))k′(d1(x))

k2(d1(x))

+
K(d1(x))
k(d1(x))

Δd(x)
)
− ξ (q−1)(m−1)

2 b(x) f (ξ2ψ(K(d1(x))))
k1−(q−1)(m−1)(d1(x)) f (ψ(K(d1(x))))(ψ ′(K(d1(x))))m−2(

1+ ξ−q(m−1)
2

(
K(d1(x))((1− (q−1)(m−1))F(ψ(K(d1(x)))))

1
1−(q−1)(m−1)

)−q(m−1)

(K(d1(x))
k(d1(x))

)q(m−1)
)]

�ξ m−1
2 f (ψ(K(d1(x))))[(1− (q−1)(m−1))F(ψ(K(d1(x))))]

q(m−1)
1−(q−1)(m−1)

km(d1(x))(ψ ′(K(d1(x))))m−2
(

m−1+G1(d1(x))+ (bq,m− ε)G2(d1(x))G3(d1(x))
)

�ξ m−1
2 f (ψ(K(d1(x))))[(1− (q−1)(m−1))F(ψ(K(d1(x))))]

q(m−1)
1−(q−1)(m−1)

km(d1(x))(ψ ′(K(d1(x))))m−2
(

G1(d1(x))+ (bq,m− ε)G2(d1(x))+G3(d1(x))
)

�0,

i.e., uε = ξ2ψ(K(d1(x))) is a supersolution of equation (1.1) in D−
σ .

In a similar way, we can show that uε = ξ1ψ(K(d2(x))) is a subsolution of equa-
tion (1.1) in D+

σ .
Next, let u be an arbitrary solution to problem (1.1) and

C1ε = max
d(x)�δ1ε

u(x); C2ε = 41/p+(q−1)(m−1)ξ0ψ(K(2δ1ε)).

We see that
u � C1ε + uε , on ∂D−

σ ;

uε � u+C2ε , on ∂D+
σ .

We also see by (H0) that u(x)+C2ε and uε +C1ε are the two supersolutions of
equation (1.1) in Ω and in D−

σ . Since u < +∞ on d = σ ; uε = +∞ on d = σ ; u = +∞
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on ∂Ω , it follows by (H0) and Lemma 10 that

u � C1ε + uε , x ∈ D−
σ ; uε � u+C2ε , x ∈ D+

σ . (3.3)

Hence, letting σ → 0, we have for x ∈ Ω2δ1ε ,

1− C2ε
ξ2ψ(K(d(x)))

� u(x)
ξ2ψ(K(d(x)))

;

and
u(x)

ξ1ψ(K(d(x)))
� 1+

C1ε
ξ1ψ(K(d(x)))

.

Consequently, by ψ(0) = +∞ ,

1 � lim
d(x)→0

inf
u(x)

ξ2ψ(K(d(x)))
;

and

lim
d(x)→0

sup
u(x)

ξ1ψ(K(d(x)))
� 1.

Thus letting ε → 0, we obtain

lim
d(x)→0

u(x)
ψ(K(d(x)))

= ξ0.

This completes the proof of Theorem 1.

4. The existence and uniqueness of solutions

In this section, we consider the existence and uniqueness of solutions to problem
(1.1).

Firstly, we introduce an explosive sub-supersolution method (see [36, 44]). Con-
sider the following general problem

−div(|∇u|m−2∇u) = f (x,u,∇u), x ∈ Ω, u|∂Ω = +∞, (4.1)

where f (x,s,η) satisfies the following conditions.
(F1) f (x,s,η) is locally Hölder continuous in Ω× I×RN and continuously dif-

ferentiable with respect to the variables s and η ;
(F2) There exists increasing function h ∈C1([0,∞), [0,∞)) such that

| f (x,s,η)| � h(|s|)(1+ |η |2), ∀(x,s,η) ∈ Ω× I×RN;

(F3) f is nondecreasing in s for each (x,η)∈Ω×RN ; where I = [0,∞) or I = R .
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DEFINITION 3. A function u ∈C1(Ω)∩C(Ω) is called an explosive subsolution
of (4.1) if

div(|∇u|m−2∇u) � f (x,u,∇u), x ∈ Ω, u|∂Ω = +∞, (4.2)

similarly, A function u ∈C1(Ω)∩C(Ω) is called an explosive supersolution of (4.1) if

div(|∇u|m−2∇u) � f (x, u,∇u), x ∈ Ω, u|∂Ω = +∞. (4.3)

LEMMA 12. Suppose that (4.1) has an explosive supersolution u ∈C1(Ω)∩C(Ω)
and an explosive subsolution u ∈C1(Ω)∩C(Ω) such that u � u on Ω , and (F1)–(F3)
hold, then (4.1) has at least one solution u ∈ C1(Ω)∩C(Ω) satisfying u � u � u on
Ω .

Proof of Theorem 2. We prove Theorem 2 under the condition (H0) , (H2) , (H4)
and (H6) , similarly we can prove it while replacing (H4) with (H5) .

For convenience in the following, we denote

‖u‖∞ = max
x∈Ω

|u(x)|, u ∈C(Ω),

β1 =
m+ γ1

(p1 −1)(m−1)
, β2 =

m+ γ2

(p2−1)(m−1)
,

c0 = min
x∈Ω

[|∇w(x)|m +w(x)], C0 = max
x∈Ω

[|∇w(x)|m +w(x)],

cβ = min
x∈Ω

[(1+ β )(m−1)|∇w(x)|m +w(x)],

Cβ = max
x∈Ω

[(1+ β )(m−1)|∇w(x)|m +w(x)],

for β > 0.
Let u = M1(w(x))−β1 , where M1 is a positive constant satisfying

C1C2M
p1(m−1)
1

(
1+(M1β1)q(m−1)|w|−q(β1+1)(m−1)

∞ |∇w|q(m−1)
∞

)
� (M1β1)m−1cβ1

.

Then

div(|∇u|m−2∇u) = (M1β1)m−1[(1+ β1)(m−1)|∇w(x)|m +w(x)](w(x))−(1+β1)(m−1)−1

� (M1β1)m−1cβ1
(w(x))−(1+β1)(m−1)−1

� C1C2M
p1(m−1)
1 (w(x))γ1 (w(x))−β1 p1(m−1)

×(
1+(M1β1)q(m−1)(w(x))−q(β1+1)(m−1)(∇w(x))q(m−1))

� b(x) f (u(x))(1+ |∇u|q(m−1)), x ∈ Ω;

and from (1.1) we know that u|∂Ω = +∞. So, u = M1(w(x))−β1 is an explosive subso-
lution of (1.1).
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Let u = M2(w(x))−β2 , where M2 is a positive constant satisfying

C1C2M
(p2−1)(m−1)
2 � β m−1

2 Cβ2
.

We see that

div(|∇u|m−2∇u) = (M2β2)m−1((1+ β2)(m−1)|∇w(x)|m +w(x)
)
(w(x))−(1+β2)(m−1)−1

� (Mβ2)m−1Cβ2
(w(x))−(1+β2)(m−1)−1

� C1C2M
p2(m−1)
2 (w(x))γ2 (w(x))−β2 p2(m−1)

� b(x) f (u(x)), x ∈ Ω;

then

div(|∇u|m−2∇u) � b(x) f (u(x))(1+ |∇u|q(m−1)),

and from (1.1) we know that u|∂Ω = +∞. i.e., u = M2(w(x))−β2 is an explosive su-
persolution of (1.1), Clearly M2 � M1 , i.e., u � u on Ω . Hence the desired conclusion
follows by Lemma 12. �

Proof of Theorem 3. Let u1,u2 ∈W 1,m(Ω) be two solutions of problem (1.1). By
(1.5), we see that

lim
d(x)→0

u1(x)
u2(x)

= 1.

Hence, for any ε ∈ (0,1) , there exists δε > 0 such that

(1− ε)u2(x) := u(x) � u1(x) � u(x) := (1+ ε)u2(x), x ∈ Ωδε .

Moreover, we see by the hypotheses that for every x ∈ Ω ,

div(|∇u|m−2∇u) = (1+ ε)m−1b(x) f (u2(x))(1+ |∇u2|q(m−1))

� (1+ ε)m−2b(x) f ((1+ ε)u2(x))(1+(1+ ε)q(m−1)|∇u2|q(m−1))

� b(x) f (u(x))(1+ |∇u|q(m−1)).

Thus by Lemma 10 we have

u1(x) � (1+ ε)u2(x), ∀ x ∈ {x ∈ Ω : d(x) � δε/2}.

In the same way, we have

(1− ε)u2(x) � u1(x), ∀ x ∈ {x ∈ Ω : d(x) � δε/2}.

Then let ε → 0, we see that u1 ≡ u2 in Ω . The proof is finished. �
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