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ON PERSISTENCE AND INVADING

SPECIES IN ECOLOGICAL DYNAMICS
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Abstract. The general problem of persistence of species, amounts to define interactions between
them ensuring the survival of all the species initially present in the system. It appears that sev-
eral relevant persistence schemes induce “forbidden sets” of zero measure for topological rea-
sons. These peculiarities (without practical consequences) are nevertheless not consistent with
certain mathematical definitions of persistence, which are too much restrictive. We come back to
definitions of McGehee – Armstrong and their celebrated counter-example to the so-called “com-
petitive exclusion principle”. We develop these concepts in relation with invasion properties of
the species in a rather practical and computational framework. Several examples of commu-
nities exhibiting persistence without internal rest point (which necessarily exists according to
strict persistence definitions) are given, with explicit description of the attractors, forbidden sets
and invasion properties. Mechanisms of contamination of these properties (based on elementary
cartesian product and structural stability) are given, showing the widespreading nature of these
schemes.
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