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STABILITY OF NONAUTONOMOUS IMPULSIVE

EVOLUTION SYSTEM ON TIME SCALE
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Abstract. The main theme of this article is to discuss the existence, uniqueness and β –Ulam
type stability for nonautonamous impulsive differential systems on time scale by applying fixed
point method. The major components to proof the results are the Grönwall inequality on time
scale, abstract Grönwall lemma and Picard operator. Some suppositions are made for achieving
our results. At last, the main result is validated by the example specified in this paper.
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tions, Birkhäuser, Boston, Mass, USA, (2001).

[7] M. BOHNER AND A. PETERSON,Advances in dynamics equations on time scales, Birkhäuser, Boston,
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