ifferential
quations
& Paeplications

Volume 13, Number 4 (2021), 355-371 doi:10.7153/dea-2021-13-20

STABILITY OF NONAUTONOMOUS IMPULSIVE
EVOLUTION SYSTEM ON TIME SCALE

AKBAR ZADA, YASIR ARAFAT AND SYED OMAR SHAH*

(Communicated by K. Szymanska-Debowska)

Abstract. The main theme of this article is to discuss the existence, uniqueness and f§—Ulam
type stability for nonautonamous impulsive differential systems on time scale by applying fixed
point method. The major components to proof the results are the Gronwall inequality on time
scale, abstract Gronwall lemma and Picard operator. Some suppositions are made for achieving
our results. At last, the main result is validated by the example specified in this paper.

1. Introduction

In the real world, there are many phenomena which are subjected during their de-
velopment to the short-term external affects. The duration of these external affects are
negligible than the total duration of the observed phenomena. Therefore, we can sup-
pose that these external influences are actually in form of impulses. Now to investigate
these abrupt changes, impulsive differential equations play key rule for modeling the
physical real world problems. Such type of impulsive differential equations has argued
concerned to different application, including biological system such as blood flow, heart
beat and impulse rate, population dynamics, radio physics, electric technology, metal-
lurgy, pharmacokinetics, viscoelastic, electrodynamics, mathematical economy, theo-
retical physics, chemical engineering technology and control theory etc. [4, 5, 17, 37].

Ulam [35, 36], in 1940 asked a question: “How we relate an approximate homo-
morphism from a group Gy to a metric group Gy by an exact homomorphism?”. Hyers
[11] partially gave answer to this question for Banach spaces (%.%'s) and later, this
theory was given the name Hyers—Ulam (HU) stability. Further Rassias [21] worked
on it and generalized Hyers result which is known as Hyers—Ulam—Rassias (HUR) sta-
bility. Analysis of these stability concepts provide fruitful benefits in different applica-
tions, like numerical analysis and control theory. For more study, we refer the readers
to see [12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39,
40,41, 42, 45, 46, 47, 49, 50].

To the best of our knowledge, there are several papers dealing with Ulam’s type
stability of impulsive evolution equations. Impulsive evolution equation are also suit-
able to describe problem of population dynamics, theoretical physics, biological sys-
tem, biotechnology process, mathematical economy and so on. Recently, Yu et al. [44]
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proved B-HUR stability for non-autonomous impulsive evolution equation for both
compact and unbounded interval.

Hilger [10] in 1988, presented the theory of time scale to unify the continuous and
discrete calculus. For details on time scales, see [1, 2, 3, 6, 7, 8,9, 16, 20, 30, 31, 32,
33, 34, 43, 48] with delay and finite impulses.

Inspired by the work done in [44], we prove the existence and uniqueness (EU)
and stability of solution of nonlinear impulsive evolution equation of nonautonamous
impulsive differential systems with instantaneous impulses,

UA(v) = M(V)U(V) + Bv)o(v) + EW)E (V) + Z(v,U(v), 0(v),{(v),
veTyg =To\{Vi,V2y...,Vin},

UV -U(v) =L(U(v ), k=1,2,....m,

U(vo) = Uy,

(1.1)

and with noninstantaneous impulses of the form,

UA(v) = M(V)U(v)+B(V)o(v) +E(V)E(V) + F(v,U(v),0(v),{(V)),
v e (Ui, vip]NTs,

v

VW) = o [ (= )% il U)A, € (] 1T, i =12,
(OC) Vi
U(vo) = Uy,

(1.2)
where o € (0,1), M(v), B(v) and E(v) are m x m regressive square matrices (piece-
wise continuous), Ts" := Vo, VflTg, Vo=Ho < Vi < U1 < Vo < ... <V < Uy <
Vi1 = vy are pre—fixed numbers and @, { : Ts — R, Z : Ts" x R" x R" x R" —
R", F: (ui,v,url}ﬁ’]l‘s XxR'XR'xR*—=R", i=0,1,2,....m, I : R* - R", g;:
(vi, ) N Tg x R" — R", i = 1,2,...,m, are continuous functions. Also U(v, ) =
lim, o+ U(vx — v) and U(v;') = lim, o+ U(v, + v) are left and right side limits of
U(v) at v; respectively.

2. Preliminares

Any non-empty arbitrary closed subset of real numbers is called time scale denoted
by Ts. @ : Tg— T and p : Tg — T are respectively the forward and backward jump
operators defined as:

o(s)=inf{ve Ts:v>s}, p(s) =sup{veTs:v <s}.
The graininess operator 1 : Tg — [0,e0) defined as n(s) = @(s) — s, s € Tg, is used

to find the distance between two consecutive points. For a time scale, the derived form
is denoted by Tg* and is defined as:

T = Ts\(p(supTs),supTs], if supTs < oo,
’]I‘& if sup’]I‘S = oo,
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The function 77 : Tgs — R is called right-dense (rd) continues if it is continuous at
every right- dense point on Ty and if its left-sided limit exists at every left-dense point
on Tg. The function 57 : Ty — R is said to be regressive (respectively positively
regressive) if 14 1 (t)2(t) # 0, (respectively 1+ 1n(t)s2(t) > 0) for all t € Ts*.
The collection of all rd—continuous regressive functions (respectively rd—continuous
positively regressive functions) is represented by Ze (Ts) (resp. %« (Ts)t). For the
function % : Tg¢ — R defined as

po - am 2O =T @)
v—l, VB (V) CU(V) —u

, veTs,
b
[ #war=y6)-y@, Vabers,

where y* = % on Ts%, represents respectively delta derivative and A— integral.

@)/ (v, Vo) which is the fundamental matrix represents the solution for the equa-
tion UA(v) = M(v)U(v),U(vy) = Uy, v € Ts".

REMARK 1. Throughout this paper, we consider that T ¢ Z, where T is a time
scale and Z is the set of integers. Also, the impulses V(1) on the isolated points are
assumed to be zero. Also for all constants depend upon 8, we use 3 with subscript
and superscipt.

3. Basic Concepts and Remarks

Let C(Ts% R") (resp. Pc(Ts%,R")) be 4.7 of piecewise continuous functions
with norm [[U|.. = sup, .y 0 [[U(v)||. We denote PL(T", R") = {U € Pc(T", R :
VS € Pe(T", R}, the A7 U] = max{|[Ul|o, [U]}. Here [lx] = 2, |
for x = (x1,...,x,) € R". Consider V to be a vector space over some field K. A
function |[|.[[g :— [0,0) is called B-norm if (i) [|U[|g = O if and only if U =0,
(i) [|yUllg = |7Il[U]| for each y € K and U € V (iii) U+ yllp < [[Ullg + [Iyllg-
Then (V,]|.]] ﬁ) is known as 3 —norm space. Our space will be P —-2%.% with norm
10| pp = sup,, 0 |U(V)||P , where v €I = [vy,vs]NTs and 0 < B < 1. To define
PB-AB., we consider the space PC(D,R") and choose another interval v € D =
[V(),Vf] NTs, v£vi,k=1,2,...m.

Consider,

ku) MOV () — B () — E()E () —ﬁ(mwu),w(uxcm))” <e

peTy,

V() - VG ) | < k=120
3.1
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"VA(M—M(uW(u)—B(u)w(u)—E(u)C(u)—ﬁ(ﬁhV(u%w(u%C(u))" < wi):
u € Ty,

HAW(,uk)—Ik(V(uk))ng,k:l,z,...,m

(32)
|[VA () = M(u)V (1) = B(u)o(p) — E(u)E (1) = Z (1, V(p),0(u), S (w)|| <e,
ue (W, vip]NTs, i=0,1,...,m
V) — o [ (=) v VAV <2, e (v T
V=g, ’ ’
i=1,2,...,m

(3.3)
VA () =M (@) V () - (#)@(H)—E(#)C(#)—ﬁ(%V(#)»(D(u%C(u))ll <y(u),
ue (IJ:,V;HWTS, i=0,1,..
1

V() - s /”(u—v)“*g-w V(V)AV]| <k, w1 e (v N
r(a) ’Ji 1 ) ~ ) 1y 1 )

i=1,2,...,m

(3.4)
where y : Ts" — R represents rd-continuous and increasing.

DEFINITION 1. Eq. (1.1) is called B—HU stable on Ts° if for every y €
PL(Ts% R") satisfying (3.1), there exists solution yp € PL(Ts% R") of (1.1) such
that ||Up(u) —U(u)||f < Cpep, 6p >0, is true forall u € Ts°.

DEFINITION 2. Eq. (1.1) is known as B—HUR stable on T if for every U €
PL(Ts% R") satisfying (3.2), there exists Ug € P} (’IFSO,]R") of (1.1) with ||Ug(u) —
Uu)|P < C@”ﬁu/ﬁ(u) ©p >0, is true for all p € Ts".

DEFINITION 3. Eq. (1.2) is known as B—HU stable, if for every € >0 and U €
PC!(D,IR") satisfying (3.3), there exist y € PC'(D,R") of (1.2) such that ||y(v) —
UW)|f < Cpep, 6p >0, is true forall ve D.

DEFINITION 4. Eq. (1.2) is known 3 —HUR stable, if forevery (p, k) € PC(D,R™")
x R> 0 and for each U € PC!(D,R") satisfying (3.4), there exist U; € PC!(D,RR")
of (1.2) such that the inequality ||U(v)— U (v)||f < Cp vB(v), ©p > 0, is true for all
veDl.

LEMMA 1. [16] Let ® € Ts", z, ve Zy(T¢), p € Ry ((T§)T and ¢, vi e R,
k=1,2,..., then

V<ot [ pazmau+ ¥ wav)

O<VE<v
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implies

)<e J] (+vep(v,m), v o.
W<VE<V

REMARK 2. A function V € P} (’]I‘S ,R") satisfies (3.1) if and only if there exist
he ]Pc(’]I‘S ,R") such thatasequence i with [[R(V)|| < e, VveTs?, || <e, Vik=
1,2,...,m, and;

VA( V) =MV)V(v)+B(v)o(v)+EV)E(1)+F (v, V(v),0(v),5(V))
+h(v), v(vo) =w, v €T,
+

V(v) =V(v) = V() = k(V (v, ) + s
LEMMA 2. Each solution V € ]Pé(’IFSO,lR”) for inequality (3.1) further hold :
m
V)= @ulv¥o - 3 LV()

J=1

- :®M<v7w<u>>3<u>w<umu— / :cbmv,w(u))E(u)cm)Au

-/ :cbmwww))ﬁ(mwu),w(uxcww" < e,

for v € (vi, vir1] C Ts%, ||@y(v,@(1))|| <C and 8 = (m+C (v, — w)).

Proof. 1If V € PL(Ts", R") satisfies (3.1), then by Remark 2, we have

VAV) =M(v)V(v) +B(V)o(v) + E(V){ (V) +.Z (v,V(v),0(v),{ (V)
+h(v), V(v) =V, veTy,
W(Vk) ZIk(V(Vk_)) +h, k=1,2,....m

Then

V(v) = @M(V’VOWHilj(v(vjf))+ih,-+/V¢M(v,w(u))3(u)w(u)Au
| i=1 Vo
N / Dy (v, @ () E (1) (1) A
+/vvq>M(v,a(u))f(u,wu),w(u),C(u))Au

+f OV@M(ww(u))h(u)Au.
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So,

V0 =) ¥o = 3 1(v)) ~ [ @ulv. 0B 000
Jj=

~ [ty o) B a0 - / ®M(v,w(u))ﬂ(u,‘\’(u)7w(u),C(u))Au"

/ |@ur (v @)l m+ 3 |
i=1

Similar approach for inequality (3.2). O

REMARK 3. A function V € PC'(D,R") satisfies inequality (3.3) (resp. in-
equality (3.4)) if and only if there exist a finite sequence {h;:k=1,2,...,m} C R"
and a function i € PC'(D,R") such that ||| < & (resp. ||| < k) for every i =
1,2,...,m and ||a(v)| < & forall v €D and

VA(V) = M(V)V(v) +B(v)o(v) +E(V)E(v) +F(v,V(v),0(v),{(v)) +h(v),
V(vo) =V, ve ([,L,',Vi_;_l]ﬂrlfs, i=0,1,....m

1 v
V(V):—/ (v_.u)ailgi(u’aw(.u))A”—'—hia VG(VZ',.LLJH’]I‘S, i:1727"'7m
I(a) Jv,

LEMMA 3. If V€ PCY(D,R") satisfies inequality (3.3) (resp. inequality (3.4)),
then the following inequalities

l

V(V) = @u(v, 1) Vo~ [ @ulv@(u)Br) o)Ak

i
1%

[ on(v. o) EW (A

v
[ (v, 7 .V ) 000, 00 |
< (Cvgp—Cui+m)e, v e (Ui, vip|NTs, i=1,2,...,m

V) = Fgs (=10 .V () Aw | < e (resp. ).

€ (vi,ui]NTs, i=1,2,...,m

are true.
Proof. If V € PC!(D,R”) satisfies (3.3), so by Remark 3,

VA(V) = M(V)V(v) +B(v)o(v) + E(V)E(v) + F(v,V(v),0(v),§(v) +h(v),
\AS (,u,-,viH} NTs, i=0,1,...,m

1 v
V(v)= m/\/ (v—w)* e, V(u)Au +hiy v e (vi, ] NTs, i =1,2,...,m
' (3.5)
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Clearly for (3.5), the solution is given as

V(v) = @u(v,vo) V(o) + “,vch(v,w(u» (F((mv(u),w(u)@(u)) +h(u))Au

+f "Dy (v, @ (1)) B0 (1) A + / "Dy (v, @ (1)) E ()& (1) A

1 v _ u .
+—/ (v_‘u)oc lgl(“7v(“))Au+zhl7 ve(nuiavi-‘rl]mrESa l:1727
F(Oﬂ) Vv i=1

For v € (W, vi1)NTs, i=1,2,...,m, we get

HV(V)—@M(V,VO)V(VO)— /V:GDM(v,w(u))B(u)w(u)Au

—/VOV Dy (v, @ (1)) E () E(1)An — y.v Oy (v, @ (1)) F (1, V (1), o(p), S (1)) Au
1 1%

e /] (v—u)a—lgiw,wmmu”

\% m
< ; [ Ppr (v, @)1 (R) A+ |17
i i=1

< (Cvp—Cui+m)e.
As above, we see
\%

IV(v)— ﬁ = i,V () < me,

ve (vi,wNTs, i=1,2,...,m.

For inequality (3.4), we use the similar approach. []

4. Analysis of Equation (1.1)

In this part, we are going to establish the EU and stability results for the solution
of Eq. (1.1). For this we use some conditions to overcome the difficulties of the proof.
These conditions are:

(C1) .7 : Ts” x R” x R" x R" — R” satisfies the Lipschitz condition

3
|7 (v, 11, a2, 113) — F (v, vi,va, v3) || < YL e — vl
i=1

L>0,Y veTs and y;,vi e R", i€ {1,2,3};
(02) I, : R" — R" satisfies ||Ik([.11) —Ik(Vz)H < zizleiH.LLi — ViH, M; >0,V
i€{1,2,...,m} and y;,v, € R";

(C3) < ;-"ZIMJ'—FCL(Vf—V())) <1 and (2;”=1Mj/3 +CI3LI3(Vf—V0)) <1:
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(C4) y:Ts® — R* is increasing such that

/u/ ),e>0.

THEOREM 1. If (Cl) — (C4) satisfies, then Eq. (1.1) has only one solution in
1 0 pn
]PC(TS aR )

Proof. Define an operator Z : Pc (T, R") — P¢(Ts%, R") by

(v, v)Uo + | "Dy (v, @ (1) B() () A
+ "Dy (v, @ () E () (1) A

+/V¢M(v,w(u))%‘(u,w(u),w(m,é(u))Au, v € (vo,vil,
(EU)(v) = i )+ @)U+ [ Du(v. BB () A

/ D (v, @ (1)) E ()¢ (1) A
+ / Oy (v, (1) F (11, U (), 0(1), ()AL, v E (Viy Vi1
i=1,..., m.

For v € (v;,vi11] and Uy, U, € ]PC(’]I‘SOJR”), simple calculation shows that

) ) - 2 L)

( WU (), (), £ (1))
—f(M,Uz(u%w(u),C(u)))AuH

< 10 v)) -0l + [ owtv. |2

J=1

U (1), (1), (1)
—ﬁ(u,Uz(u),w(u),C(u»‘ ‘Au

< S MU ()) =02l + [ CLIU () U

< 305 sup [01() - G+ L sup [01) - W)l
j=1 VET5

V€T5
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MN.

< Y Mj|[U1 = Vgl + [ U1 = Vs /CLAu

1

~.
Il

2 iU = Uszlleo + [ Uy — Uz[CL(V — vo)
Z iUt = Uzleo + [ Us = Uz ||-CL(vf — Vo)

< v, —U2w<2Mj+CL(Vf—V0)>~

j=1

From (C3), E is strictly contractive and a Picard operator (IPO) with only one FIP
which is the only one solution of (1.1) in ]PIC(TSO, R"). O

THEOREM 2. [f conditions (C1) — (C4) hold, then Eq. (1.1) has B—HU stability
on Ts°.

Proof. Suppose Uy € PL(Ts% R”) satisfies (3.1). The solution U € PL(Ts% R")
of Eq. (1.1) is given by

@ (v, ) Uo + [ @ (v, @) B 0(k) A
+ /v:¢M<v,w<u>>E<u>c<u>Au
+ / (v, @ (1)) 7 (1, U (), (1), S (), v E (vo, v

)+ D (v, v9)Up

2
; / Dy (v, (1)) B () (1) A + /v:¢M<v,w<u>>E<u>c<u>Au

+ / (v, 0 (1)) F (0,010, (), £ (1)

Ve (vi7vi+l}7 i= 17'”7m

For v € (Vin, Vin+1], using Lemma 2, we have

[U(v) -0 ()P

< |0 = .10 3100 ;)= [ v, 0 0 U1 )
j= 0

- /VOV@M(v,w(u))E(u)cm)Au

v B
- ¢M(V,w(u))ﬁ(u,wl(u),w(u),é(u))Au"
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i

B
ity >>H

vi)=Uiv;)

B
<(5e)ﬁ+2Mf U( H
Jj=1

B
(f(u,lU(u),w(u),C(u))—f(u,Ul(u),w(m,C(u)))H Au

m B v
<SPy My, w,-)—wl(v,-)' + [P U~ Ui au
=1 "

<5ﬂsﬁ+2MﬁH —Uy(v; ’ﬁ+/v:CﬁLﬁHIU(/,L)—Ul(u)HﬁAu

Further define an operator 7 : Pc(Ts?, RT) — Pe(Ts, R*) as

i v
(Tw)(v) = { 8BeP + ZMjﬁw(vj’) +/ CpLgw()Au, v € (vi,Vir1], i=1,...,m.
j=1 Yo
4.1

For v € (Vin, Vin+1] and wy, wy € Pe(Ts?, RY), we have,
1(Tw)(v) = (Twn) ()] < 2 lwi (V) = wa(vy) P
+[ ol wi () —wa(a)|Pam
< ilM,-ﬁwl —wallB -+ [y — w2 |BCa L (v — vo)

< [m —Wz”ﬁ(EMjﬁ +CﬁLl3(Vf— Vo)) .
j=1

Now clearly from condition (C4), the operator is contractive on P¢(Ts’, R*). Also
T is PO with only one FPP w* € Pc(Ts",R*) i.e.

m Vv
W (V) = Speg + 3 Migw(v7) +/v CLw (1) A
j=1 0
Using Gronwall’s inequality,

:6ﬁ£ﬁ H <1+Mjﬁ>ep(V7V())

Vo<v;<V
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where P = CL. Select w(v) = |o(v) — (V)| and w(v) < (Tw)(v) from (4.1), by
abstract Gronwall(AG) lemma [27], we get

lor(v) —ax(V)|IP < 8pes ] (l—i—M,»/;)ep(v,vo). O

Vo<v;<V
THEOREM 3. If (C1) — (C4) hold, then Eq. (1.1) has B—HUR stable on T".

5. Analysis of Equation (1.2)

In this part, we prove the EU and stability results for the solution of Eq. (1.2). To
prove our desired results, we assume the following conditions:

(@) F: (Ui, Vig1]NTg x R x R" — R” is continuous with the Lipschitz con-
dition: ||F (v, 1, 2, 13) — F(v,vi,v2,v3)|| < Z3_; L|| it — V|, for some L >0, v €
(,u,-,v,-+1] NTg, i=0,1,...,m and W, vy € R*, k € {1,2,3};

(@) gi: (Vi, i) NTgx R" — R" satisfies [|gi(u, t1) — gi(1, ko) || < Myl —
Wll, My >0,V ke {1,2,....m}, u e (vi,;] NTs and py, 1 € R,

() (ﬁ Jo (v =)' A+ CL(vy ~ m)) <1and

(ﬁ fvvi(v—u)a—lc’ﬁAu+c,3Lﬁ) <1,i=1,2,...,m;
(o) y e PC(J,RT) is increasing with

\%
/v v(pw)Au < ey(v),e > 0.
0

THEOREM 4. If conditions (/1) — (a#3) hold, then Eq. (1.2) has precisely a
unique solution in PC'(D,R").

Proof. Define an operator Z : PC'(D,R") — PC'(D,R") by

1 v _ .
m/\/ (v_“)a lgl(IVL?U(“))A‘LL7 VE (viuui]mrESa L= 1727"'7m7

®M<v,vo>wo+ﬁ = it U A

+ /vv ou (v, @ (1)) B()o(p)Au + /vv O (v, @ (1) E(R)E(1)AR

/. Oy (v, @ (1)) F (1, U(w), 0 (u), § (1)) Au,

ve (U, vip ]NTs, i=1,2,...,m.
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Forany Uy, U, € PCY(D,R"), v € (u;,vi11]NTs,i=1,2,...,m, we have

>—<_1U2>< 1
H - ) e, 0w~ s |

+/ﬂ_ [Pas (v, @ () [[F (1, Un (), (), §(w) — F(p, Uz (), o), S (1)) [|Ap

14

i

(v —u)‘“gi(uﬂz(u))AuH

< Hﬁ /vv(v —1)* ! (gi(u, Uy () —g:-(uﬂz(#)))AuH

i

Vv
), CL| Uy (u) = Ua ()| A

< ﬁ/v,.v(v = 1) Hlgi (e, U (1)) — gi(k, Ua(u)) | A

v
+ | CL
Hi

1

< e o =) - T -+ [ ) - O

i

Wu)—wz(u)HAu

< CL(V — W)

oo

].Ul—IUQ IUI_IU2

o [ v

i

oo

v /
< (L/ (v—w)*'c A.“"'CL(Vf_“i))
Vi

—U,

I'a)

oo

Clearly from condition (.<%), Z is contractive and thus a PO on PC!(D,R"). So it
has only one IFIP and this FIP is actually the only one solution of Eq. (1.2). [

THEOREM 5. The Eq. (1.2) has B—HU stablity on D if (<)) — (4) hold.

Proof. Let (3.3) has a solution U; € PC!(D,R”). The only one solution of Eq.
(1.2)is

ﬁ/v,.v(V—u)“”gi(u,U(u>>Au» ve i, unTs, i=12,...m
Dy (v,vo)Up + ﬁ/‘;(V—#)a_lgi(%w(#))A#

Uv)=19 4 u_van(v,as(u))B(u)w(u)A(u)+ u_vd>M(v,w(u>>E(u>C(u>A(u>
+ V(I)M(V,ZD([.[))F([.[,U([.[),(:)([,L)7C([,L))A[,LV € (”ivvﬂrl}n’]rs?

Hi
i=1,2,....m
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We examine that for all v € (y;, vi1]NTys, i =1,2,...,m, applying Lemma 3, we get
Uy (v) = U(v)|P
\%

<o - eutvve- [ outv.awisiows

- [, @ulv. o) EwWE (A
~ [ . @) .01 1), 0. )

1 B
T H

+Hﬁ /v.v(v — ) i, Uy () Ap — ﬁ /Viv(v —u)“gi(uﬂ(u))AuH

+/uv 1@ (v, @ ()P I F (1,01 (), @), (1) = F (1, U (), (), & ()P A

[ = e U )au
B

B v o 5
< ((m+Cvf—Cui)s) +W/v~ (v—=m)* gi(u, Ur(u)) — gi(p, U(w))[|” A

i

v B
19,0012 [P0, 1), 000 )~ F 1, U0 00, EGu)| | A

< (m+-Cvp—Cuf el + s [ (v )™ 1P () - V) P

v
+ [ LU () - TP au

< n-+-Cvy— Cupey + g [ (v )™ P01 w) ~ ()P

\%
+ [ CoLplU ) U Pau.
Consider the operator 7 : PC(D,R*) — PC(D,R™) given below

(T8)(¥) = (et Cvy—Cupey s [ (v=m)* ' CPeu)au+Caly [ elu)an.

For any g1, g2 € PC(D,R"), v € (4;,viz1]NTs,i = 1,2,...,m and by using same

process as in Theorem 4, we get

I(Te1)(v) — (Tg) ()P < (ﬁ [ =P +cﬁLﬁ)||g1 —alb.

So from condition (@A), T is PO with unique FIP g* € PC(D,R™) i.e.

. 1 \Y Ly \Y
g(v) = (m+CVf—Cuf)p8ﬁ+m/v_ (v—u)* ' CPg(u)Au+CpLy /u g(w)Ap
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By using Lemma 1, we achieve that

g (v) < (m+Cvp—Cu;)pep 11 (1 + %@/V_V(V—u)“‘IC,ﬁAu)eq(V,ui),

Wi<u<v

where g = CgLg. If we set g = ||U;(v) — U(v)||B, then by applying AG lemma [27],
we get

U1 (v) =T (W)|IP
< (m+c"f—cﬂi)ﬁ8ﬁ H <l+ mrl(OC) /v (v_”)a_lclﬁA”>eq(v7”i)' O

Wi<p<v

THEOREM 6. The Eq. (1.2) has B—HUR stablity on D if (<)) — (<) hold.

EXAMPLE 1. Consider the dynamic equation

t
AU(ve) =U(v, ) +L(v,U(v, ), k=1,

{m(v):_Llwm+e,,(v,as(w(v)))+w(v>+g(v>, ve2deMik o

and its related inequality

{ [UR(V) — UL (V) — (v, B0 (V) — 0(v) ~ S| < 1, v € 0,2 \{1),
|IU1(V,:_) —IUl(Vk_) —Ik(V7IU1(Vk_))| <1, k=1.

5.2)
By setting Ts' = [0,2]p \{1}, vi = 1 and p(v) = 715 . Denote F(v,U(v),o(v),{(v))
=e,(v,o(U(v))) 4+ o(v)+ {(v) where w(v) and {(v) are control functions for
v e Ty and put g5 = 1. If U; € PC'([0]n,,R) satisfies the inequality (5.2), then

there exist f € PC'([0,2]1,,R) and fy € R such that |f(v)| <1 for v € T and
|fo] < 1. So we have

{Wv) = L U/(V) 4oV, B(UI(V) + o) + (V) + FV), veT,

t
Ui (vi) = Ui(vy) = (v, Ui (V) + fo, k=1.
So the solution of (5.1) is
U(v) = 1(U(vy))+ep(v,0)

[ entv. 0000 (en0. 001 () + 0(a) + 1) ) 2

According to our theoretical results, we showed unique solution for Eq. (5.1) in
PC'([0]r,,R) and is f—HU stable on Ty’ .
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Conclusion

In this paper, we have proved B-HU stability of equations (1.1) and (1.2) by

using FIP method, AG lemma and Lemma 1. The concept of 3—HU stability is very
important when the exact solution is very tiresome.
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