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THREE DIMENSIONAL SYSTEM OF GLOBALLY MODIFIED

MAGNETOHYDRODYNAMICS EQUATIONS WITH INFINITE DELAYS

G. DEUGOUE ∗ , J. K. DJOKO AND A. C. FOUAPE

(Communicated by Š. Nečasová)

Abstract. Existence and uniqueness of strong solutions for three dimensional system of glob-
ally modified magnetohydrodynamics equations containing infinite delays terms are established
together with some qualitative properties of the solution in this work. The existence is proved
by making use of Galerkin’s method, Cauchy-Lipshitz’s theorem, a priori estimates, the Aubin-
Lions compactness theorem. Moreover, we study the asymptotic behavior of the solution.

1. Introduction and statement of the problem

Let Ω ⊂ R
3 be an open bounded set with regular boundary Γ = ∂Ω, and N > 0

be fixed. We define FN : (0,+∞) → (0,1] by

FN(r) = min

{
1,

N
r

}
, r ∈ R

+

and consider the following system of globally modified magnetohydrodynamics equa-
tions (GMMHDE)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

+FN(‖u‖V1)[(u ·∇)u]− 1
Re

Δu−SFN (‖(u,B)‖V ) [(B ·∇)B]

+∇
(

p+S
|B|2
2

)
= f 1(t) in (τ,T )×Ω,

∂B

∂ t
+FN(‖(u,B)‖V ) [(u ·∇)B− (B ·∇)u]+

1
Rm

curl(curlB) = f 2(t) in (τ,T )×Ω,

div u = 0, div B = 0 in(τ,T )×Ω,

u(τ,x) = u0(x), B(τ,x) = B0(x) for all x ∈ Ω,

u = 0, B ·n = 0 and curlB×n = 0 on Γ,
(1.1)

where u , B and p represent respectively the fluid velocity, the magnetic field and the
pressure. f 1 and f 2 are given external forces fields. Re and Rm are the so-called

Mathematics subject classification (2020): 26D15, 26A51, 32F99, 41A17.
Keywords and phrases: Magnetohydrodynamics equations, globally modified, strong solutions, infi-

nite delays.
∗ Corresponding author.

c© � � , Zagreb
Paper DEA-13-21

373

http://dx.doi.org/10.7153/dea-2021-13-21


374 G. DEUGOUE, J. K. DJOKO AND A. C. FOUAPE

Reynolds and magnetic Reynolds numbers, respectively and S = M2

ReRm
is a positive

constant, where M is the Hartman number. |B |2 = B · B and represents the length of
the magnetic field, n is the unit outward normal on Γ and τ the initial time. It is
manifest that the system of equations in (1.1) does not represent the MHD model due
to un-physical terms introduced such as FN(‖u‖V1),FN (‖(u , B)‖V ) . These terms can
find their existence in the original model of globally modified Navier Stokes introduced
in [5]. As clearly demonstrated in [5], FN(‖u‖V1) prevent the rapid grow of velocity
gradient and help to obtain uniqueness of weak solution in 3d, property which is lacking
for Navier Stokes in 3d. Hence Mathematically, there is a merit of studying this system.
Recently globally modified Navier Stokes coupled with the magnetic field or the heat
equation have been proposed and analysed in [13, 14, 15]. It is clearly observed in
those later works that the “perturbation terms” added play a crucial role in describing
the unique solvability of the system. Just like the MHD model (cf. [9]), the expressions
describing the coupling between the velocity and magnetic fields are represented. The
question we would like to investigate in this work is simple and summarizes as follows:
The system of equations (1.1) has a unique strong solution and stable, what happens if
there is a delay?

This question has been answered in [14] where finite delays were considered.
Many problems in applied science, physics, and engineering are modeled mathe-

matically by delay differential equations. The reason of introducing the time delay in
(1.1) followed the work of [28], but we also note the contribution in [2, 3, 4, 29, 32, 38].
It is observed that delays terms may appear when we want to control the system by ap-
plying a force which takes into account not only the present state but the complete
history of the system. In this paper, we introduce the following system of 3d globally
modified magnetohydrodynamics equations with infinite delays terms (GMMHDED)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

+FN(‖u‖V1)[(u ·∇)u]− 1
Re

Δu−SFN (‖(u,B)‖V ) [(B ·∇)B]

+∇
(

p+S |B|2
2

)
= f 1(t)+g1(t,(ut ,Bt)) in (τ,T )×Ω,

∂B

∂ t
+FN(‖(u,B)‖V ) [(u ·∇)B− (B ·∇)u]+

1
Rm

curl(curlB)

= f 2(t)+g2(t,(ut ,Bt)) in (τ,T )×Ω,

div u = 0, div B = 0 in(τ,T )×Ω,

u = 0, B ·n = 0 and curlB×n = 0 on Γ,

u(τ + s,x) = φ1(s,x), B(τ + s,x) = φ2(s,x), s ∈ (−∞,0], x ∈ Ω,

(1.2)

where g1(t,(ut , Bt)) and g2(t,(ut , Bt)) are another external forces containing some
hereditary characteristic (delays terms), where ut and Bt are functions defined on
(−∞,0] by the relations ut(s) = u(t + s) and Bt(s) = B(t + s) respectively. φ1 and
φ2 are given functions defined in the interval (−∞,0]. Since the initial time is τ, we
deduce from the last line of (1.2) that (u(τ), B(τ)) = (φ1(0),φ2(0)) . This system as we
see is a modification of the magnetohydrodynamics (MHD) equations with delays, for
an incompressible resistive viscous fluid subjected to a Lorentz force due to the pres-
ence of a magnetic field. The GMMHDED (1.2) is inspired from the globally modified
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Navier-Stokes equations (GMNSE) with infinite delays studied in [28]. Such models
(with delays) have been intensively investigated for many years ( see [2, 3, 4, 29, 32, 38],
just to cite some); but globally modified MHD with delays remain to be explored. This
work follow our initial works [13, 14, 15] where the focus is on dynamics of glob-
ally modified Navier-Stokes coupled with magnetic field or the heat. We should also
mentioned that the inspiration from this work comes from the work of J. Real and the
coauthors in [28]. It is worth mentioning that our work differ from the one of J. Real and
co-authors because we are dealing here with more equations, and there are more nonlin-
earities in our context, implying that the investigations are more involved even though
some of the Proofs presented here are inspired from the works in [2, 3, 4, 28, 29, 32, 38].
This work is mainly concerned about the existence and uniqueness of solution of system
(1.2) and its long term behavior when the forcing terms are independent of time.

The rest of the paper is structured as follows: in section 2, we recall some spaces
useful for the variational formulation of problem (1.2). We also present some math-
ematical properties and estimates related to the operators involved in the model. In
section 3 we establish the existence and the uniqueness of the solutions of the model.
Section 4 (the last one) is devoted to the asymptotic behavior of that solution.

2. Preliminaries

In order to write down in mathematical terms (1.2), some notations and preliminar-
ies need to be introduced. The material is borrowed mainly from [1, 43]. We recall the
abstract spaces for model (1.2) and its abstract formulation. Bold notations will denote
a vector or a tensor. We consider the well known Hilbert spaces L2(Ω),Hm(Ω),Hm

0 (Ω)
and we set

L
2(Ω) := (L2(Ω))3, H

m(Ω) := (Hm(Ω))3, H
m
0 (Ω) := (Hm

0 (Ω))3,L2
0(Ω) := (L2

0(Ω))3

(2.1)

where L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x)dx = 0

}
. It is noted that for a vector w we set

‖w‖r
Lr(Ω) =

∫
Ω
|w(x)|rdx ,

where | · | denotes the Euclidean norm |w |2 = w · w . We shall frequently use Sobolev
imbedding: for a real number p ∈ R , 1 � p � 6, the space H

1(Ω) is imbedded into
L

p(Ω) . In particular, there exists a constant cp (that depends only on p , Ω and d = 3)
such that

for all v ∈ H
1
0, ‖v‖Lp(Ω) � cp‖∇v‖ . (2.2)

When p = 2, this is Poincare’s inequality and c2 is Poincare’s constant. In the case of
the maximum norm, the following imbedding holds

for all r > d = 3, W
1,r(Ω) ⊂ L

∞(Ω)

in particular, for each r > d = 3, there exists c∞,r such that

for all v ∈ H
1
0(Ω)∩W

1,r, ‖v‖L∞(Ω) � c∞,r‖∇v‖Lr(Ω) . (2.3)
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Owing to Poincare’s inequality, the semi-norm | · | is a norm on H
1
0(Ω) , equivalent to

the full norm. As it is directly related gradient operator, we take this semi-norm as norm
on H

1
0(Ω) , and we use it to define the dual norm on its dual space H

−1(Ω) :

for all f ∈ H
−1(Ω), ‖ f ‖

H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
|v | ,

where 〈·〉 is the duality pairing between H
−1(Ω) and H

1
0(Ω) . As usual for handling

time dependent problems, it is convenient to consider functions defined on a time in-
terval (a,b) with values in a functional space, say Y . More precisely, we denote by
‖ · ‖Y the norm on Y and for any number r with 1 � r � ∞ , we define

Lr(a,b;Y ) = {w measurable in (a,b) ;
∫ b

a
‖w(t)‖r

Y dt < ∞}

equipped with the norm

‖w‖r
Lr(a,b;Y ) =

∫ b

a
‖w(t)‖r

Y dt

with the usual modification if r = ∞ . It is a Banach space if Y is a Banach space, and
when r = 2, it is a Hilbert space if Y is also a Hilbert space.

We also introduce the following spaces

V1 =
{
u ∈ (C ∞

c (Ω))3 : divu = 0
}

,
V1 = the closure of V1 in H

1
0(Ω),

H1 =
{
u ∈ L

2(Ω) : divu = 0 and u ·n = 0 on Γ
}

,
V2 =

{
B ∈ (C ∞(Ω))3 : divB = 0, B ·n = 0 on Γ

}
,

V2 =
{

B ∈ H
1(Ω) : divB = 0; B ·n = 0 on Γ

}
,

H2 = the closure of V2 in L
2(Ω) .

(2.4)

Thus H2 = H1 . We endow Hi , i = 1,2 with the inner product of L
2(Ω) and the norm

of L
2(Ω) denote respectively by (., .)L2 and |.|L2 .
We equip V1 with the following inner product

((u , v))1 =
3

∑
i=1

(
∂ u
∂xi

,
∂ v
∂xi

)
L2

. (2.5)

We equip V2 with the scalar product

((u , v))2 = (curlu ,curlv)L2 . (2.6)

Where curlu = ∇∧ u . We note that by Poincaré’s inequality, the scalar product
((., .))1 defined in (2.5) coincides with the well known inner product in H

1
0(Ω) . The

norm generated by ((., .))2 is equivalent to the norm induced by H
1(Ω) on V2 (see [16,

Chapter VII]). Hereafter, we set

H = H1×H2, V = V1×V2 . (2.7)
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The dual space of V is denoted by V ′ . We endow H with the inner products defined
as: for all ϕ = (u , B), ψ = (v , C ) ∈ H .

(ϕ ,ψ) = (u,v)L2 +(B,C)L2 ,

[ϕ ,ψ ] = (u,v)L2 +S(B,C)L2 .

They generate equivalent norms (for 0 < S < ∞)

|ϕ |2H = (ϕ ,ϕ) = |u |2L2 + |B |2L2 , [ϕ ]2H = [ϕ ,ϕ ] = |u |2L2 +S|B |2L2 . (2.8)

We also endow V with the inner products

((ϕ ,ψ)) =
1
Re

((u , v))1 +
1

Rm
((B , C ))2, [[ϕ ,ψ ]] =

1
Re

((u , v))1 +
S

Rm
((B , C ))2 , (2.9)

which in turn generate the equivalent norms on V

‖ϕ‖2
V = ((ϕ ,ϕ)), [[ϕ ]]2V = [[ϕ ,ϕ ]] . (2.10)

In order to give an abstract formulation of problem (1.2) , we introduce the opera-
tors A1 ∈ L (V1,V ′

1), A2 ∈ L (V2,V ′
2) , and A ∈ L (V,V ′) defined by

〈A1u,v〉 = ((u,v))1, for all u,v ∈V1 ,
〈A2B,C〉 = ((B,C))2, for all B,C ∈V2 ,
〈A ϕ ,ψ〉 = ((ϕ ,ψ)), for all ϕ ,ψ ∈V .

(2.11)

with domains
D(A1) = {u ∈V1 : A1u ∈ H1} ,

D(A2) = {u ∈V2 : A2u ∈ H2} ,

D(A ) = D(A1)×D(A2) .

By the regularity of Γ, D(A ) = H
2 ∩V. From the continuity of the embedding of Vi

into Hi , i = 1,2, there exists constant κi , i = 1,2 such that

|u|L2 � κ1‖u‖V1 for all u ∈V1, |B|L2 � κ2‖B‖V2 for all B ∈V2 . (2.12)

The best constant κi is equal to 1√
λ i

1

, where λ i
1 is the first eigenvalue of the

compact operator A −1
i from Hi into itself. As in [36], we introduce the trilinear form

B0 on V ×V ×V by

B0(ϕ1,ϕ2,ϕ3) = b(u1, u2, u3)−Sb(B1, B2, u3)+b(u1, B2, B3)−b(B1, u2, B3) ,
(2.13)

for all ϕi = (u i, Bi) ∈ V (i = 1,2,3) , where b(·, ·, ·) is a continuous trilinear form de-
fined on H

1(Ω)×H
1(Ω)×H

1(Ω) by

b(u , v , w) =
3

∑
i, j=1

∫
Ω

ui
∂v j

∂xi
wjdx,
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and satisfies the following standard relations,

b(u,v,v) = 0, ∀u ∈V1, v ∈ H
1(Ω),

b(u,v,w) = −b(u,w,v), ∀u ∈V1, v,w ∈ H
1(Ω),

|b(u,v,w)| � c‖u‖1/2
V1

|A1u|1/2
L2 ‖v‖V1 |w|L2 , ∀u ∈ D(A1),v ∈V1,w ∈ H1

|b(b1,b2,u)| � c|b1|1/4
L2 ‖b1‖3/4

V2
‖u‖V1‖b2‖V2 , ∀b1,b2 ∈V2,u ∈V1,

|b(b1,b2,u)| � c‖b1‖V2 |A2b2|L2 |u|L2 , ∀b1 ∈V2,b2 ∈ D(A2),u ∈ H1,

|b(b1,u1,b2)| � c‖b1‖V2 |A1u1|L2 |b2|L2 , ∀b1 ∈V2,u1 ∈ D(A1),b2 ∈ H2.

|b(u,v,w)| � |u|L6 |∇v|L2 |w|1/2
L2 |w|1/2

L6 , ∀u,v,w ∈ H
1(Ω) .

(2.14)

REMARK 1. Using the inclusion of H
1(Ω) in L

p(Ω) for 1 � p � 6, we infer that
trilinear form b(·, ·, ·) also satisfies

|b(u , v , w)| � ‖u‖V1‖v‖V1 |w |1/2
L2 ‖w‖1/2

V1
, ∀u , v , w ∈V1 . (2.15)

From (2.14), we infer that

B0(ϕ1,ϕ2,ϕ2) = 0, ∀ϕ1,ϕ2 ∈V,

B0(ϕ1,ϕ2,ϕ3) = −B0(ϕ1,ϕ3,ϕ2), ∀ϕi ∈V, i = 1,2,3.
(2.16)

Now we introduce the continuous bilinear form B : V ×V →V ′ by

〈B(ϕ1,ϕ2),ϕ3〉 = B0(ϕ1,ϕ2,ϕ3) . (2.17)

We also introduce a diagonal matrix M= (mi j)1�i, j�6 ∈ M6(R) defined by:⎧⎪⎨⎪⎩
mii = 1 if 1 � i � 3,

mii = S if 4 � i � 6,

mi j = 0 if i �= j.

(2.18)

Note that

B0(ϕ1,ϕ2,Mϕ2) = b(u1, u2, u2)+Sb(u1, B2, B2)−S[b(B1, B2, u2)+b(B1, u2, B2)] .
(2.19)

It follows from (2.14) and (2.19) that

B0(ϕ1,ϕ2,Mϕ2) = 0 ∀ϕ1,ϕ2 ∈V,

B0(ϕ1,ϕ2,Mϕ3) = −B0(ϕ1,ϕ3,Mϕ2), ∀ϕi ∈V, i = 1,2,3.
(2.20)

We recall that (see [36] ) B0 and B satisfy the following estimates

|B0(ϕ1,ϕ2,ϕ3)| � c‖ϕ1‖V‖ϕ2‖1/2
V |A ϕ2|1/2

H |ϕ3|H , ∀ϕ1 ∈V,ϕ2 ∈ D(A ),ϕ3 ∈ H,

‖B(ϕ ,ϕ)‖V ′ � c|ϕ |1/2
H ‖ϕ‖3/2

V .
(2.21)
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Hereafter we set

BN
0 (ϕ1,ϕ2,ϕ3) =FN(‖u2‖V1)b(u1,u2,u3)−SFN(‖(u2,B2)‖V )b(B1,B2,u3)

+FN(‖(u2,B2)‖V )b(u1,B2,B3)−FN(‖(u2,B2)‖V )b(B1,u2,B3) ,〈
BN(ϕ1,ϕ2),ϕ3

〉
=BN

0 (ϕ1,ϕ2,ϕ3), ∀ϕi = (ui,Bi) ∈V, i = 1,2,3.
(2.22)

Arguing similarly as in the proof of (2.21), we can check that the following inequalities
hold

|BN
0 (ϕ1,ϕ2,ϕ3)| � cN‖ϕ1‖1/2

V |A ϕ1|1/2
H |ϕ3|H

+cSN‖ϕ1‖1/2
V |A ϕ1|1/2

H |ϕ3|H , ∀ϕ1 ∈V,ϕ2 ∈ D(A ),ϕ3 ∈ H .
(2.23)

Secondly

|BN
0 (ϕ1,ϕ1,ϕ2)| � cN|ϕ1|1/4

H |A ϕ1|3/4
H |ϕ2|H

+cSN|ϕ1|1/4
H |A ϕ1|3/4

H |ϕ2|H , ∀ϕ1 ∈ D(A ), ϕ2 ∈ H ,
(2.24)

thirdly

‖BN(ϕ1,ϕ2)‖V ′ � c|ϕ1|1/4
H ‖ϕ1‖3/4

V |ϕ2|1/4
H ‖ϕ2‖3/4

V

+cS|ϕ1|1/4
H ‖ϕ1‖3/4

V |ϕ2|1/4
H ‖ϕ2‖3/4

V , ∀ϕi = (ui,Bi) ∈V ,
(2.25)

next
‖BN(ϕ1,ϕ2)‖V ′ � cN‖ϕ1‖V + cNS‖ϕ1‖V , (2.26)

and finally

|BN
0 (ϕ1,ϕ1,ϕ2)| � cN‖ϕ1‖1/2

V |A ϕ1|1/2
H |ϕ2|H

+c‖ϕ1‖3/2
V |A ϕ1|1/2

H |ϕ2|H , ∀ϕ1 ∈ D(A ), ϕ2 ∈ H .
(2.27)

The analysis of (1.2) will also require the following version of Gronwall’s lemma
(see [35])

LEMMA 1. Let T > 0 and let κ be a non-negative function in L1(0,T ) . Let c > 0
be a constant and ψ ∈ C 0(0,T ) a function that satisfies

for all t ∈ [0,T ], 0 � ψ(t) � c+
∫ t

0
κ(s)ψ(s)ds,

then ψ satisfies the bound

ψ(t) � ce

∫ t

0
κ(s)ds

.

Here, C 0(0,T ) denotes the set of continuous functions on [0,T ].
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Let X a Banach space, we define BX(a,r) as an open ball of center a and the
radius r in the space X .

One possibility to deal with infinite delays is to follow [28, 29, 30]), which entails
to consider, for any γ > 0, the space

Cγ (H) =
{

ϕ ∈ C ((−∞,0];H) : such that lim
s→−∞

eγsϕ(s) is well defined,

and an element of H
}
.

This is a Banach space with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs |ϕ(s)|H .

Following [28], more assumptions are required. For that purpose, we assume for i =
1, 2 and for some fixed γ > 0 that gi : (τ,T )×Cγ(H) → L

2(Ω) satisfies
(h1) For any ξ = (ξ1,ξ2) ∈ Cγ (H), the mapping

gi(.,ξ ) : (τ,T ) → L
2(Ω)

t �→ gi(t,ξ ) is measurable .

(h2) gi(t,0) = 0 for all t ∈ (τ,T ).
(h3) there exists a constant Lgi

> 0 such that for any t ∈ (τ,T ) and for all ξ ,η ∈
Cγ (H),

|gi(t,ξ )− gi(t,η)|L2 � Lgi
‖ξ −η‖γ .

REMARK 2. (h2) and (h3) imply that for all ξ ∈ Cγ (H) |gi(t,ξ )|L2 � Lg i
‖ξ‖γ

so that |gi(.,ξ )| ∈ L∞(τ,T ).
If we set g = (g1, g2) , then from (h3), g(t, .) is Lipschitz-continuous on Cγ (H).

Using the notations above, we can rewrite (1.2) in the form{ dy
dt

+A y+BN(y,y) = F +Gt on D ′(τ,T ;V ′),
y(τ + s,x) = φ(s,x), s ∈ (−∞,0], x ∈ Ω

(2.28)

where y = (u , B), F = ( f 1, f 2), φ = (φ1,φ2) and Gt = (g 1(t,(yt)), g2(t,(yt))) with
yt = (ut , Bt). We can now define a concept of solution associated to (2.28).

DEFINITION 1. We suppose (u(τ), B(τ))∈H , f i ∈L2(τ,T ;V ′
i ) and gi : (τ,T )×

Cγ (H)) → L
2(Ω) satisfies (h1)–(h3) for some fixed γ > 0, = 1, 2.

A weak solution of (2.28) is any pair y = (u , B) ∈ L2(τ,T ;V ) such that{ dy
dt

+A y+BN(y,y) = F +Gt on D ′(τ,T ;V ′)
y(τ + s,x) = φ(s,x), s ∈ (−∞,0], x ∈ Ω

(2.29)
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or equivalently for all ϕ = (v , C ) ∈V⎧⎨⎩
(

dy
dt

,ϕ
)

+((y,ϕ))+BN
0 (y,y,ϕ) = 〈 f 1,v〉+ 〈 f 2,C〉+ 〈g1(t,yt),v〉+ 〈g2(t,yt),C〉 ,

y(τ + s,x) = φ(s,x), s ∈ (−∞,0], x ∈ Ω .
(2.30)

REMARK 3. Definition 1 provides also the variational formulation of problem
(1.2).

If y = (u , B) ∈ L2(τ,T ;V ′) satisfies (2.29)1 , it follows from (2.26),(2.27) and

(h1) that
dy
dt

∈ L2(τ,T ;V ′) , and consequently (see [41]), y ∈ C ([τ,T );H) so that y(τ)
exists.

In addition, by taking ϕ = My in (2.30)1 and using (2.20)1 we infer that y
satisfies the following energy equality

|u(t)|2
L2 +S|B(t)|2

L2 + 2
Re

∫ t

τ
‖u(ξ )‖2

V1
dξ +

2S
Rm

∫ t

τ
‖B(ξ )‖2

V2
dξ

= |u0|2L2 +S|B0|2L2 +2
∫ t

τ
( f 1(ξ ),u(ξ ))dξ +2S

∫ t

τ
( f 2(ξ ),B(ξ ))dξ

+2
∫ t

τ

(
g1(ξ ,(uξ ,Bξ )),u(ξ )

)
dξ +2S

∫ t

τ

(
g2(ξ ,(uξ ,Bξ )),B(ξ )

)
dξ .

(2.31)

3. Existence and uniqueness result

In this section, we prove that problem (2.29) has a unique weak solution which
is, under some conditions a strong solution. Before doing this, we recall from [5, 34,
37] the following properties of FN , where the proof can be found in [5, 34]. These
properties are the main tools in the proof of the uniqueness result. We first recall that;

|FN(p)−FN(r)| � |p−r|
r , ∀p,r ∈ R

+, r �= 0,

|FN(‖u‖V1)−FN(‖v‖V1)| �
‖u−v‖V1
‖v‖V1

, u,v ∈V1, v �= 0,

|FM(p)−FN(r)| � |M−N|
r + |p−r|

r , ∀p,r,M,N ∈ R
+,r �= 0

|FN(‖u‖V1)−FN(‖v‖V1)| � 1
N FN(‖u‖V1)FN(‖v‖V1)‖u− v‖V1 , u,v ∈V1 .

(3.1)

In the rest of this paper we will denote by c , a generic positive constant (possibly
depending on S,Re,Rm,κ1,κ2,Ω,Lg 1

,Lg 2
), which can vary even within the same line.

However, this constant is always independent of time and initial data. We start by
proving the uniqueness result; for this purpose, we have the following.

THEOREM 1. There exists at most one weak solution (u , B) of (2.29) in the sense
of definition 1.

Proof. Let yi = (ui, Bi) , i = 1,2 be weak solutions to (2.29) that belong to
L2(0,T ;V ) . We set δy = (δ u ,δ B) = y1−y2, uit(s) = ui(t +s), Bit(s) = Bi(t +s), s∈



382 G. DEUGOUE, J. K. DJOKO AND A. C. FOUAPE

(−∞,0] . Then (δ u ,δ B) satisfies⎧⎨⎩
dδy
dt

+A δy = −(
BN(y1,y1)−BN(y2,y2)

)
+(G(t,(u1t ,B1t))−G(t,(u2t ,B2t))) ,

δy(τ) = 0.
(3.2)

Taking the scalar product in H of (3.2) with Mδy , we obtain

dY

dt
+

2
Re

‖δu‖2
V1

+
2S
Rm

‖δB‖2
V2

= −2(BN(y1,y1)−BN(y2,y2),Mδy)

+2(G(t,(u1t ,B1t))−G(t,(u2t ,B2t)),Mδy)
(3.3)

with Y = |δu|2
L2 + S|δ B |2

L2 and 2(−BN(y1,y1)+BN(y2,y2),Mδy) satisfies the fol-
lowing (see [13] for the details)

2
(−BN(y1,y1)+BN(y2,y2), My

)
�

(
cN4 + cN8)Y . (3.4)

Using (3.4) and hypothesis (h3) in (3.3), we obtain

dY

dt
+

2
Re

‖δ u‖2
V1

+
2S
Rm

‖δ B‖2
V2

�
(
cN4 + cN8)Y +2

{
Lg 1

+SLg 2

}‖δyt‖γ |δy|H
(3.5)

Observe that δy(s) = (0,0) if s � τ,

‖δyt‖γ = sup
s∈(−∞,0]

eγs |δy(t + s)|H � sup
s∈[τ−t,0]

|δy(t + s)|H . (3.6)

Dropping momentarily the term 2
Re
‖δ u‖2

V1
+ 2S

Rm
‖δ B‖2

V2
in (3.5), we have

Y (t) �
(
cN4 + cN8

)∫ t

τ
Y (ξ )dξ +2η

∫ t

τ
sup

s∈[τ−ξ ,0]
|δy(ξ + s)|H |δy|H dξ

�
(
cN4 + cN8

)∫ t

τ
Y (ξ )dξ +2η

∫ t

τ
sup

s∈[τ,ξ ]
|δy(s)|2H dξ

�
(
(cN4 + cN8)max{1,S}+2η

)∫ t

τ
sup

s∈[τ,ξ ]
|δy(s)|2H dξ ,

(3.7)

where η = Lg 1
+SLg 2

.
From (3.7), we have for any t ∈ [τ,T ]

min{1,S} sup
s∈[τ,t]

|δy(s)|2H �
(
(cN4 + cN8)max{1,S}+2η

)∫ t

τ
sup

s∈[τ,ξ ]
|δy(s)|2H dξ .

(3.8)
The use of Lemma 1 leads to sup

s∈[τ,t]
|δy(s)|2H � 0 from which we infer that u1 = u2

and B1 = B2. �
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REMARK 4. It is worth mentioning that the uniqueness of solution is one of the
important property of this model because precisely we do not have that property for the
corresponding 3d magnetohydrodynamics version. We can now thing about a complete
study of attractor in classical way [42]. This by the way is the object of our next
investigation.

Now, we state the existence result.

THEOREM 2. We suppose (u(τ), B(τ)) = (φ1(0),φ2(0)) ∈ H, f i ∈ L2(τ,T ;Hi)
and gi : (τ,T )×Cγ(H)) → L

2(Ω) satisfies (h1)–(h3) for some fixed γ > 0, i = 1, 2.
Let φ = (φ1,φ2) ∈ Cγ(H) be given, with R := ‖φ‖γ . Then there exists a unique weak
solution (u , B) of (2.29), which is in fact a strong solution in the sense that it belongs
to

C (τ,T ;V )∩L2(τ + ε,T ;D(A1)×D(A2)) for all 0 < ε < T − τ. (3.9)

Moreover, if (φ1(0),φ2(0)) ∈V , then (u , B) satisfies

(u , B) ∈ C (τ,T ;V )∩L2(τ,T ;D(A1)×D(A2)). (3.10)

Proof. We split it in several steps.
Step 1: A Galerkin scheme. Since the injection V ⊂ H is compact, let {(wi,ψi),

i = 1,2, . . .} ⊂ V be an orthonormal basis of H , where {wi, i = 1,2, . . .} , {ψi, i =
1,2, . . .} are eigenfunctions of A1 and A2 , respectively. We set Vn=Hn=span{(w1,ψ1),
. . . ,(wn,ψn)} and denote by Pn = (P1

n ,P2
n ) , the orthogonal projector from H onto Vn

for the scalar product (., .) defined by (2.8)1 . Note that Pn is also the orthogonal pro-
jector from D(A ),V,V ′ onto Vn . We look for yn = Pn(u , B) = (un, Bn) ∈ Hn solution
to the ordinary differential equations with delay{ dyn

dt
+A yn +PnB

N(yn,yn) = PnF +PnGt

yn(τ + s) = Pn(φ1(s),φ2(s)) = (P1
n φ1(s),P2

n φ2(s)), s ∈ (−∞,0].
(3.11)

According to (h1)–(h3), the above system of the ordinary differential equations
with infinite delay satisfies the conditions for existence and uniqueness of solution yn

on an interval [τ,Tn], Tn � T (see Theorem 1.1 of [17]). It will follow from a priori
estimates that yn exists on the interval [τ,T ] .

Step 2: A priori estimates. As in remark 3, yn satisfies the following energy
inequality:

d
dt
|un(t)|2L2 +S

d
dt
|Bn(t)|2L2 +

2
Re

‖un(t)‖2
V1

+
2S
Rm

‖Bn(t)‖2
V2

� 2(P1
n f 1(t),un(t))+2S(P1

n f 2(t),Bn(t))+2(P1
n g1(t,(un,t ,Bn,t)),un(t))

+2S(P2
n g2(t,(un,t ,Bn,t)),Bn(t)) .

(3.12)

We need to estimate the terms on the right hand side of (3.12). First by Young’s and
Cauchy-Schwartz’s inequalities, we have

2|(P1
n f 1(t),un(t))| � 2‖ f 1(t)‖V ′

1
‖un(t)‖V1 � 1

2Re
‖un(t)‖2

V1
+ c‖ f 1(t)‖2

V ′
1
, (3.13)
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2S|(P2
n f 2(t),Bn(t))| � 2S‖ f 2(t)‖V ′

2
‖Bn(t)‖V2 � S

2Rm
‖Bn(t)‖2

V2
+ c‖ f 2(t)‖2

V ′
2
, (3.14)

2|(P1
n g1(t,(un,t ,Bn,t)),un(t))| � 2‖g1(t,(un,t ,Bn,t))‖V ′

1
‖un(t)‖V1

� 2c‖g1(t,(un,t ,Bn,t))‖H1‖un(t)‖V1

� 2c‖(un,t ,Bn,t)‖γ‖un(t)‖V1

� 1
2Re

‖un(t)‖2
V1

+ c‖(un,t ,Bn,t)‖2
γ ,

(3.15)

2S|(P2
n g2(t,(un,t ,Bn,t)),Bn(t))| � 2S‖g2(t,(un,t ,Bn,t))‖V ′

2
‖Bn(t)‖V2

� S
2Rm

‖Bn‖2
V2

+ c‖(un,t ,Bn,t)‖2
γ .

(3.16)

where (h2)–(h3) have been used to derive (3.15) and (3.16). Inserting the estimates
(3.13)–(3.16) in (3.11) and integrating from τ to some τ � t � T, we obtain

|un(t)|2L2 +S|Bn(t)|2L2 +
1
Re

∫ t

τ
‖un(ξ )‖2

V1
dξ +

S
Rm

∫ t

τ
‖Bn(ξ )‖2

V2
dξ

� |φ1(0)|2L2 +S|φ2(0)|2L2 + c
∫ t

τ
‖ f 1(ξ )‖2

V ′
1
dξ

+ c
∫ t

τ
‖ f 2(ξ )‖2

V ′
2
dξ + c

∫ t

τ
‖(un,ξ , Bn,ξ )‖2

γdξ . (3.17)

Furthermore,

‖(un,t ,Bn,t)‖2
γ

= sup
θ∈(−∞,0]

e2γθ |(un(t + θ ),Bn(t + θ ))|2H
= sup

θ∈(−∞,0]
e2γθ

{
|un(t + θ )|2L2 + |Bn(t + θ ))|2L2

}
� sup

θ∈(−∞,0]
e2γθ

{
|φ1(0)|2

L2 +S|φ2(0)|2
L2 + c

∫ t+θ

τ
‖ f 1(ξ )‖2

V ′
1
dξ

+c
∫ t+θ

τ
‖ f 2(ξ )‖2

V ′
2
dξ + c

∫ t+θ

τ
‖(un,ξ ,Bn,ξ )‖2

γdξ
}

� max

{
sup

θ∈(−∞,τ−t]
e2γθ [φ(θ + t− τ)]2 ,

sup
θ∈[τ−t,0]

e2θγ
(
|φ1(0)|2

L2 +S|φ2(0)|2
L2 + c

t+θ∫
τ

‖ f 1(ξ )‖2
V ′

1
dξ

+c

t+θ∫
τ

‖ f 2(ξ )‖2
V ′

2
dξ + c

t+θ∫
τ

‖(un,ξ ,Bn,ξ )‖2
γdξ

)}
� max

{
sup

θ∈(−∞,τ−t]

(
e2γθ [φ(θ + t− τ)]2

)
,

[φ(0)]2H + c

t∫
τ

‖ f 1(ξ )‖2
V ′

1
dξ + c

t∫
τ

‖ f 2(ξ )‖2
V ′

2
dξ + c

t∫
τ

‖(un,ξ ,Bn,ξ )‖2
γdξ

}
.

(3.18)
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Observing that

sup
θ∈(−∞,τ−t]

eγθ [φ(θ + t− τ)] = sup
s∈(−∞,0]

eγ(s−(t−τ)) [φ(s)]

= sup
s∈(−∞,0]

eγs [φ(s)]e−(t−τ)

� ‖φ‖γ .

and [(u(τ), B(τ))] = [φ(0)] � ‖φ‖γ , we deduce from (3.18)

‖(un,t , Bn,t)‖2
γ � R2+c

∫ t

τ
‖ f 1(ξ )‖2

V ′
1
dξ +c

∫ t

τ
‖ f 2(ξ )‖2

V ′
2
dξ +c

∫ t

τ
‖(un,ξ , Bn,ξ )‖2

γdξ .

(3.19)
By the Lemma 1, we have

‖(un,t , Bn,t)‖2
γ � R2ec(t−τ) + c

∫ t

τ

(
‖ f 1(ξ )‖2

V ′
1
dξ +‖ f 2(ξ )‖2

V ′
2

)
dξ ec(t−τ) . (3.20)

Thus, there exists a constant K1 = K1(R,τ,Lg 1
,Lg 2

,T, f 1, f 2) > 0 such that

‖(un,t , Bn,t)‖2
γ � K1, (3.21)

which together with (3.17) gives

|(un(t)|2L2 +S|Bn(t)|2L2

)
+
(

1
Re

∫ T

τ
‖un(ξ )‖2

V1
dξ +

S
Rm

∫ T

τ
‖Bn(ξ )‖2

V2
dξ

)
� R2 + c

∫ T

τ
‖ f 1(ξ )‖2

V ′
1
dξ + c

∫ T

τ
‖ f 2(ξ )‖2

V ′
2
dξ + cK1(T − τ) .

(3.22)

(3.22) proves that the sequence yn =(un, Bn) remains in a bounded set of L∞(τ,T ;H)∩
L2(τ,T ;V )∩Cγ (H) . Hence, we can use a compactness argument (see [42]) to extract
a subsequence from yn = (un, Bn) still denoted by yn = (un, Bn) satisfying

yn → y

⎧⎪⎪⎪⎨⎪⎪⎪⎩
weak-star in L∞(τ,T ;H) ,
weakly in L2(τ,T ;V ) ,
strongly in L2(τ,T ;H) ,
a.e., in (τ,T )×Ω ,

(3.23)

with y = (u , B) ∈ L∞(τ,T ;H)∩L2(τ,T ;V )∩Cγ (H) .
But the estimates (3.22) are not enough to pass to the limit in (2.29) and deduce

the solution of (1.2). More precisely, we have two main difficulties, firstly, we need to
pass to the limit on the G(t,(un,t , Bn,t)), this will be done on Step 3; secondly, we need
to prove that

FN(‖un‖V1) → FN(‖u‖V1) as n → ∞ ,

FN(‖(un,Bn)‖V ) → FN(‖(u,B)‖V ) as n → ∞ ,
(3.24)

To overcome the second difficulty, we need to find a stronger estimate and it is the
aim of the lines below.
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Taking the inner product in H between the first equation of (3.11) with A yn , we
obtain

d
dt
‖yn‖2

V +2|A yn|2H = 2( f 1,A1un)+2( f 2,A2Bn)−2BN
0 (yn,yn,A yn)

+2(g1(t,(un,t ,Bn,t),A1un))+2(g2(t,(un,t ,Bn,t),A2Bn)) .
(3.25)

Now using (2.23) and Young’s inequality with the exponents (4,4/3) , we have

2|BN
0 (yn,yn,A yn)| � cN‖yn‖1/2

V |A yn|3/2
H � 1

4 |A yn|2H + cN4‖yn‖2
V . (3.26)

In addition, by Young’s inequality, (h2)–(h3) , (3.21) one obtains

2|( f 1,A1un)|+2|( f 2,A2Bn)| � 1
4 |A1un|2L2 + 1

4 |A2Bn|2L2 + c| f 1|2L2 + c| f 2|2L2

= 1
4 |A yn|2H + c| f 1|2L2 + c| f 2|2L2

(3.27)

and
2|(g1(t,(un,t ,Bn,t),A1un))+ (g2(t,(un,t ,Bn,t),A2Bn))|

� 1
2
|A1un|2L2 +

1
2
|A2Bn|2L2 + cK2

1 =
1
2
|A yn|2H + cK 2

1 .
(3.28)

It follows from (3.26)–(3.28) that

d
dt
‖yn‖2

V + |A yn|2H � c| f 1|2L2 + c| f 2|2L2 + cK 2
1 + cN4‖yn‖2

V . (3.29)

Now we distinguish two cases:
Case 1: y(τ) = (u(τ), B(τ)) ∈ H .
Integrating (3.29) between s and t for τ < s � t � T, we obtain

‖yn(t)‖2
V +

∫ t

s
|A yn(ξ )|2Hdξ

� ‖yn(s)‖2
V + c

∫ t

s

(| f 1(ξ )|2L2 + | f 2(ξ )|2L2 +K 2
1

)
dξ + cN4

∫ t

s
‖yn(ξ )‖2

Vdξ .

� ‖yn(s)‖2
V + c

∫ t

τ

(| f 1(ξ )‖2
L2 + | f 2(ξ )|2L2 +K 2

1

)
dξ + cN4

∫ t

τ
‖yn(ξ )‖2

Vdξ .

(3.30)

Momentarily dropping the term
∫ t

s
|A yn(ξ )|2Hdξ in (3.30) and integrating once

more between τ and τ + ε for some ε ∈ (0,T − τ), we have∫ τ+ε

τ
‖yn(t)‖2

Vds �
∫ τ+ε

τ
‖yn(s)‖2

Vds

+
∫ τ+ε

τ

(
c
∫ t

τ

(| f 1(ξ )‖2
L2 + | f 2(ξ )|2L2 +K 2

1

)
dξ

)
ds

+ cN4
∫ τ+ε

τ

(∫ t

τ
‖yn(ξ )‖2

Vdξ
)

ds .

(3.31)
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Since τ + ε � T, it follows from (3.31) that

ε‖yn(t)‖2
V �

∫ T

τ
‖yn(s)‖2

V ds+ c(T − τ)
∫ T

τ

(| f 1(ξ )|2L2 + | f 2(ξ )|2L2 +K 2
1

)
dξ

+ c(T − τ)N4
∫ T

τ
‖yn(ξ )‖2

Vdξ . (3.32)

From the estimate (3.22), we infer that the right hand side of (3.32) is bounded indepen-
dently of n. Coming back to (3.30) and dropping the term ‖yn(t)‖2

V , we get for some
ε ∈ [0,T − τ]∫ T

τ+ε
|A yn(ξ )|2Hdξ

� ‖yn(s)‖2
V + c

∫ T

τ

(| f 1(ξ )|2L2 + | f 2(ξ )|2L2 +K 2
1

)
dξ + cN4

∫ T

τ
‖yn(ξ )‖2

Vdξ . (3.33)

We then deduce that yn ∈ L∞(τ + ε,T ;V ) . Therefore

yn ∈ L∞(τ + ε,T ;V )∩L2(τ + ε,T ;D(A1)×D(A2)) for all 0 < ε < T − τ . (3.34)

Note from (3.11) that

dyn

dt
= −A yn −PnB

N(yn,yn)+PnF +PnG.

Then using (2.23) we deduce that

the sequence
{
PnB

N(yn,yn)
}

is bounded in L2(τ + ε,T ;H) .

Therefore, from (3.21) and (3.34), we infer that the sequence

d
dt

(un, Bn) is also bounded in L2(τ + ε,T ;H) . (3.35)

Since D(A ) = D(A1)×D(A2) ⊂V ⊂ H with compact injection, we derive from [25,
Theorem 5.1, Chapter 1] that there exists an element (u , B) ∈ L∞(τ +ε,T ;V )∩L2(τ +
ε,T ;D(A )) , and a subsequence of (un, Bn) (still) denoted (un, Bn) such that for all
T > τ + ε , we have

(un,Bn) → (u,B)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
weak-star in L∞(τ + ε,T ;V ) ,
weakly in L2(τ + ε,T ;D(A )) ,
strongly in L2(τ + ε,T ;V ) ,
a.e., in (τ + ε,T )×Ω ,

(3.36)

and
d
dt

(un, Bn) → d
dt

(u , B) weakly in L2(τ + ε,T ;H) . (3.37)
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From (3.36), we can assume, eventually extracting a subsequence of yn still denoted yn

such that
‖un‖V1 →‖u‖V1 a.e. in (τ + ε,T ) ,

‖(un,Bn)‖V →‖(u,B)‖V a.e. in (τ + ε,T ) ,
(3.38)

and therefore

FN(‖un‖V1) → FN(‖u‖V1) a.e. in (τ + ε,T ),

FN(‖(un,Bn)‖V ) → FN(‖(u,B)‖V ) a.e. in (τ + ε,T ).
(3.39)

Case 2: (φ1(0),φ2(0)) ∈V .
We mention that

‖(φ1n(0),φ2n(0))‖V = ‖Pn(φ1(0),φ2(0))‖V � ‖y(τ)‖V .

Now, dropping the term |A yn|2H in (3.29), we have the following differential inequality

d
dt
‖yn‖2

V � c| f 1|2L2 + c| f 2|2L2 + cK 2
1 + cN4‖yn‖2

V , (3.40)

from which we obtain by using Lemma 1

‖yn(t)‖2
V � ‖y(τ)‖2

V exp
[
cN4(t − τ)

]
+cexp{cN4(t − τ)}

∫ t

τ

(| f 1(ξ )|2L2 + | f 2(ξ )|2L2 + cK 2
1

)
dξ .

(3.41)

Hence, we derive from (3.29) and (3.32) that (yn) = (un, Bn) satisfies

‖(un, Bn)(t)‖2
V � K2,

∫ T

τ

(|A1 un(ξ )|2L2 + |A2Bn(ξ )|2L2

)
dξ � K3 , (3.42)

which proves that (un, Bn) is bounded in L∞(τ,T ;V )∩L2(τ,T ;D(A1)×D(A2)) .
Note that in (3.42), K2 and K3 are positive constants independent of n and de-

pending only on data Ω,Re,Rm,S, f 1, f 2,T, u0, B0,Lg 1
and Lg 2

.
Note that from (3.11) that

dyn

dt
= −A yn−PnB

N(yn,yn)+PnF +PnG .

Then using (2.23) we deduce that the sequence{
PnB

N(yn,yn)
}

n is bounded in L2(τ,T ;H) .

Therefore, from (3.33) and (3.21), we infer that the sequence

d
dt

(un, Bn) is also bounded in L2(τ,T ;H) . (3.43)

Since D(A ) = D(A1)×D(A2) ⊂V ⊂ H with compact injection, we derive from
[25, Theorem 5.1, Chapter 1] that there exists an element (u , B) ∈ L∞(τ,T ;V ) ∩
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L2(τ,T ;D(A )) , and a subsequence of (un, Bn) (still) denoted (un, Bn) such that for
all T > τ , we have

(un,Bn) → (u,B)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
weak-star in L∞(τ,T ;V ) ,
weakly in L2(τ,T ;D(A )) ,
strongly in L2(τ,T ;V ) ,
a.e., in (τ,T )×Ω ,

(3.44)

and
d
dt

(un, Bn) → d
dt

(u , B) weakly in L2(τ,T ;H) . (3.45)

From (3.44), we infer that

‖un‖V1 → ‖u‖V1 a.e. in (τ,T ) ,

‖(un,Bn)‖V → ‖(u,B)‖V a.e. in (τ,T ) ,
(3.46)

and therefore
FN(‖un‖V1) → FN(‖u‖V1) a.e. in (τ,T ) ,

FN(‖(un,Bn)‖V ) → FN(‖(u,B)‖V ) a.e. in (τ,T ) .
(3.47)

Step 3: Passage to the limit. We want to take the limit in (3.11) when n goes to
+∞. We focus our attention on the term G(t,(un,t , Bn,t)) we refer the reader to [5, 13]
for the other terms. More precisely, we want to prove that

G(t,(un,t , Bn,t)) → G(t,(ut , Bt)) when n → +∞ . (3.48)

We proceed like in [28] where the globally modified Navier-Stokes with infinite
delays is investigated. We start by proving that

(un,t , Bn,t) → (ut , Bt) in Cγ (H), ∀t ∈ (−∞,T ] . (3.49)

Since

sup
θ�0

eγθ |yn(t + θ )− y(t + θ )|H

= max

{
sup

θ∈(−∞,τ−t]
eγθ |Pnφ(θ + t− τ)−φ(θ + t− τ)|H ;

sup
θ∈[τ−t,0]

eγθ |yn(t + θ )− y(t + θ )|H
}

� max

{
sup
s�0

eγseγ(τ−t) |Pnφ(s)−φ(s)|H ; sup
r∈[τ,t]

eγ(r−t) |yn(r)− y(r)|H
}

= max

{
es(τ−t) ‖Pnφ −φ‖γ ; sup

r∈[τ,t]
|yn(r)− y(r)|H

}
.

Hence, the relation (3.49) will hold if we prove that

Pnφ → φ in Cγ (H) (3.50)
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and
(un, Bn) → (u , B) in C ([τ,T ];H) . (3.51)

We start by proving (3.50). Indeed, if we assume that it is not held, then there
exists ε > 0 and a subsequence (θn)n such that

eγθn |Pnφ(θn)−φ(θn)|H > ε . (3.52)

Hence following [28], we assume that θn →−∞, otherwise if θn → θ �=−∞, then
Pnφ(θn) → φ(θ ) . In fact,

|Pnφ(θn)−φ(θ )|H � |Pnφ(θn)−Pnφ(θ )|H + |Pnφ(θ )−φ(θ )|H → 0 as n → +∞ .

Assume that θn →−∞ as n → +∞, if we set x := lim
θ→−∞

eγθ φ(θ ) , we obtain

eγθn |Pnφ(θn)−φ(θn)|H =
∣∣Pn(eγθnφ(θn))− eγθnφ(θn)

∣∣
H

�
∣∣Pn(eγθnφ(θn))−Pnx

∣∣
H + |Pnx− x|H +

∣∣x− eγθnφ(θn)
∣∣
H→ 0 as n → +∞

which is a contradiction with (3.52), hence we have (3.50).
Next, we will prove (3.51).
From the convergence of yn to y in L2(τ,T ;H) given by (3.23), we deduce that

yn(t) → y(t) in H a.e. t ∈ (τ,T ].
Since

yn(t)− yn(s) =
∫ t

s
y′(ξ )dξ ∀s,t ∈ [τ,T ]

we have

‖yn(t)− yn(s)‖V ′ �
∫ T

τ

∥∥y′(ξ )
∥∥

V ′ dξ .

Then from remark 3, we deduce that
∫ T

τ

∥∥y′(ξ )
∥∥

V ′ dξ is bounded. Thus yn is equi-

continuous on [τ,T ] with values in V ′ . In addition, yn(t) is bounded in V ′. In fact,
due to the convergence of yn(t) to y(t) in H for a.e.t ∈ [τ,T ], we infer that yn(t) is
bounded in H and by the compactness injection of H in to V ′, we claim that yn(t) is
bounded in V ′ . By the Ascoli-Arzela theorem, we have

yn → y in C ((τ,T ];V ′). (3.53)

Also by the convergence of yn to y in L∞(τ,T ;H), we obtain that for any sequence
{tn} ⊂ [τ,T ] with tn → t, one has

yn(tn) → y(t) weakly in H. (3.54)

Now we prove (3.51) by a contradiction argument.
If (3.51) does not hold, then using the fact that yn ∈ C ([τ,T ];H), there would

exist ε > 0, a value t0 ∈ [τ,T ] and subsequences labelled the same yn and tn ⊂ [τ,T ]
with t0 = limn→+∞ tn such that

|yn(tn) → y(t0)|H � ε. (3.55)
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To prove that this is absurd, we will use an energy method. Observe that the
sequence yn also satisfies the following energy inequality

|yn(t)|2H +
1
Re

∫ t

s
‖un(ξ )‖2

V1
dξ +

S
Re

∫ t

s
‖Bn(ξ )‖2

V2
dξ

� |yn(s)|2H + c
∫ t

s

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ +K1(t− s) .

(3.56)

On the other hand, since the functions yn are bounded in L∞(τ,T ;H), we deduce
the existence of ηG = (ηg 1

,ηg 2
) ∈ L2(τ,T ;H) such that (g1(t,yn,t), g2(t,yn,t)) con-

verges weakly to ηG in L2(τ,T ;H). Then passing to the limit in (2.30), we deduce
that y is a solution of

d
dt

(y(t),(v,C))H +
1
Re

((u(t),v)))V1
+

S
Re

((B(t),C)))V2
+BN(y(t),y(t),(v,C))

= ( f 1(t),v)+ ( f 2(t),C)+ (ηg1
(t,(ut ,Bt)),v)+ (ηg2

(t,(utBt)),C) .
(3.57)

Thus we deduce that, y satisfies the energy inequality

|y(t)|2H +
1
Re

∫ t

s
‖u(ξ )‖2

V1
dξ +

S
Re

∫ t

s
‖B(ξ )‖2

V2
dξ

� |y(s)|2H + c
∫ t

s

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ +

∫ t

s
|ηG(ξ )|2H dξ .

(3.58)

Since∫ t

s
|ηG(ξ )|2H dξ � lim inf

n→∞

∫ t

s

∣∣(g 1(ξ ,yn,ξ ), g2(ξ ,yn,ξ ))
∣∣2
H

dξ � K1(t− s) .

It is noted that y satisfies also the inequality (3.56) with the same constant K1 .
Now we consider the functions Jn, J : [τ,T ] → R defined by

Jn(t) =
1
2
|yn(t)|2H − c

∫ t

τ

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ −K1t ,

and

J(t) =
1
2
|y(t)|2H − c

∫ t

τ

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ −K1t .

Jn and J are continuous and non-increasing functions.
Next, we show that for t � s, Jn(t)−Jn(s) � 0. From a direct definition of Jn , we

have

Jn(t)−Jn(s) =
1
2
|yn(t)|2H −1

2
|yn(s)|2H −c

∫ t

τ

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ−K1t+K1s

=
1
2
|yn(t)|2H −1

2
|yn(s)|2H −c

∫ t

s

(
‖ f 1(ξ )‖2

V ′
1
+‖ f 2(ξ )‖2

V ′
2

)
dξ+K1(s−t)

� 0 .
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Similarly, we can prove that J is a non-increasing function. Moreover by the conver-
gence of yn to y a.e. in time with value on H, it holds that

Jn(t) → J(t) a.e.in H. (3.59)

Now, we want to prove that
yn(tn) → y(t0) in H, (3.60)

which contradicts (3.55).
Firstly, from (3.54) we recall that

yn(tn) → y(t0) weakly in H, (3.61)

then
|y(t0)|H � lim inf

n→∞
|yn(tn)|H . (3.62)

Therefore if we prove that

lim sup
n→∞

|yn(tn)|H � |y(t0)|H (3.63)

we obtain lim
n→∞

|yn(tn)|H → |y(t0)| which jointly with (3.61) imply (3.60).

If t0 = τ, it follows from (3.50) and (3.58) that lim sup
n→∞

|yn(tn)|H � |y(τ)| . So we

may assume that t0 > τ; this is important since we will approach this value t0 by a
sequence {t̃k} , this means that limk→∞ t̃k → t0 , with t̃k being taken only when (3.59)
is valid. Since y(·) is continuous at t0 and t̃k → t0, for any ε > 0, there exists kε > 0
such that

|J(t̃k)− J(t0)| < ε
2

.

On the other hand, taking n > n(kε) such that tn > t̃kε , as Jn is non-increasing and for
all t̃k, the convergence (3.59) holds, one has that

Jn(tn)− J(t0) � |Jn(t̃kε )− J(t̃kε )|+ |J(t̃kε )− J(t0)|
and obviously taking n > n′(kε), it is possible due to (3.59) to obtain

|Jn(t̃kε )− J(t̃kε )| �
ε
2

.

Moreover, we deduce from (3.23)∫ tn

τ
(F(ξ ),yn(ξ ))dξ →

∫ t0

τ
(F(ξ ),y(ξ ))dξ ,

so we conclude that (3.63) holds. Thus (3.60) and finally (3.51) are also true as we
wanted to prove.

Now we are ready to pass to the limit in (3.26). Assume initially that y(τ) =
φ(0) ∈ H, the first consequence of the convergence proved above since gi satisfies
(h3) is that

(g1(.,(un,., Bn,.)).g2(.,(un,., Bn,.))) → (g1(.,(u ., B .)).g 2(.,(u ., B .))) in L2(τ,T ;H).
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Hence, we can identify (ηg 1
,ηg 2

) = (g1, g2) in (3.57) so that y is a solution of
(2.29). �

In the next lines, we prove that the solution of (2.29) given by Theorem 2 is con-
tinuous in respect to the initial data as well as in the parameter N . More precisely, we
prove the following result.

THEOREM 3. Assume that f i ∈ L2(τ,T ;Hi) and gi : (τ,T )×Cγ(H)) → L
2(Ω)

satisfies (h1)–(h3) for some fixed γ > 0, i = 1, 2. Let φi = (φi,1,φi,2) ∈ Cγ (H) be
given, with Ri := ‖φi‖γ and Ni > 0, yi(τ) = (ui(τ), Bi(τ)) ∈ V, i = 1;2 be given.
Let yi = (ui, Bi) be the solutions of (2.29) corresponding to the parameter Ni and the
initial values yi(τ) = (u i(τ), Bi(τ)), i = 1;2. Then

(u 1, B1) → (u2, B2) in C(τ,T ;V )∩D(τ,T ;D(A1)×D(A2))

when N1 → N2, (u 1(τ), B1(τ)) → (u2(τ), B2(τ)) and φ1 → φ2. More precisely, let
y = y1− y2 and φ = φ1−φ2, the following estimates hold true.

sup
θ∈[τ,t]

‖y(θ )‖2
V �

[
‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

]

× exp

[
c(η +N4

1 )(t− τ)+ c
∫ t

τ
Z1(ξ )dξ

]
, (3.64)

and ∫ t

τ
|A y(ξ )|2Hdξ �

[
‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

]
×
[
1+

(
c(N4

1+η)(t−τ)+c
∫ t

τ
Z1(ξ )dξ

)
× exp

[
c(N4

1+η)(t−τ)+c
∫ t

τ
Z1(ξ )dξ

]]
,

(3.65)
for all t ∈ [τ,T ] with Z1 = |A1 u2|2L2 + |A2 B2|2L2 .

Proof. Since y = y1 − y2 = (u1, B1)− (u2, B2) = (δ u ,δ B) and φ = φ1 − φ2 =
(φ1,1−φ2,1,φ1,2 −φ2,2), then y = (δ u ,δ B) satisfies

dy
dt

+A y+BN1(y1,y1)−BN2(y2,y2) = G(t,(u 1t , B1t))−G(t,(u2t , B2t)) . (3.66)

From [5, 13], we have

R1 ≡ FN1(‖u1‖V1)b(u1,u1,A1δu)−FN2(‖u2‖V1)b(u2,u2,A1δu)
= FN1(‖u1‖V1)b(δu,u1,A1δu)+FN2(‖u2‖V1)b(u2,δu,A1δu)

+[FN1(‖u1‖V1)−FN2(‖u2‖V1)]b(u2,u1,A1δu) .
(3.67)

Making similar reasoning as in (3.67), we can also check that:

R2 ≡ FN1(‖(u1,B1)‖V )b(B1,B1,A1δu)−FN2(‖(u2,B2)‖V )b(B2,B2,A1δu)
= FN1(‖(u1,B1)‖V )b(δB,B1,A1δu)+FN2(‖(u2,B2)‖V )b(B2,δB,A1δu)

+[FN1(‖(u1,B1)‖V )−FN2(‖(u2,B2)‖V )]b(B2,B1,A1δu)
≡ R1

2 +R2
2 +R3

2,

(3.68)
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R3 ≡ FN1(‖(u1,B1)‖V )b(u1,B1,A2δB)−FN2(‖(u2,B2)‖V )b(u2,B2,A2δB)
= FN1(‖(u1,B1)‖V )b(δu,B1,A2δB)+FN2(‖(u2,B2)‖V )b(u2,δB,A2δB)

+[FN1(‖(u1,B1)‖V )−FN2(‖(u2,B2)‖V )]b(u2,B1,A2δB)
≡ R1

3 +R2
3 +R3

3,

(3.69)

R4 ≡ FN1(‖(u1,B1)‖V )b(B1,u1,A2δB)−FN2(‖(u2,B2)‖V )b(B2,u2,A2δB)
= FN1(‖(u1,B1)‖V )b(δB,u1,A2δB)+FN2(‖(u2,B2)‖V )b(B2,δu,A2δB)

+[FN1(‖(u1,B1)‖V )−FN2(‖(B2,u1)‖V )]b(B2,u1,A2δB)
≡ R1

4 +R2
4 +R3

4.

(3.70)

Also, we can check that(
BN1(y1,y1)−BN2(y2,y2),A y

)
= R1−SR2 +R3−R4 . (3.71)

Hence, taking the scalar product in H of (3.66) with A y , we obtain

d
dt
‖y‖2

V +2|A y|2H =−2R1+2SR2−2R3+2R4+2(G(t,(u1t , B1t))−G(t,(u 2t , B2t)),A y).
(3.72)

We can check that (see [5, 13])

2|R1| � 2
12

|A y|2H + cN4
1‖y‖2

V + c|A1u2|2L2‖y‖2
V + c|A1u2|2L2

(‖y‖2
V +(N1−N1)2) .

(3.73)
SRi

2,R
i
3 and Ri

4 , i = 1,2,3 satisfy the following estimates (see [13] for more de-
tails):

2S|R1
2| = 2SFN1(‖(u1,B1)‖V )|b(δB,B1,A1δu)| � 1

12 |A y|2H + cN4
1‖y‖2

V , (3.74)

2S|R2
2| = 2SFN2(‖(u2,B2)‖V )|b(B2,δB,A1δu)| � 1

12 |A y|2H + c|A2B2|2L2‖y‖2
V , (3.75)

2S|R3
2| = 2S |[FN1(‖(u1,B1)‖V )−FN2(‖(u2,B2)‖V )]| |b(B2,B1,A1δu)|

� 1
12 |A y|2H + c|A2B2|2L2

[‖y‖2
V +(N1−N2)2

]
,

(3.76)

2|R1
3| = 2FN1(‖(u1,B1)‖V )|b(δu,B1,A2δB)| � 1

12 |A y|2H + cN4
1‖y‖2

V , (3.77)

2|R2
3| = 2FN2(‖(u2,B2)‖V )|b(u2,δB,A2δB)| � 1

12 |A y|2H + c|A1u2|2L2‖y‖2
V , (3.78)

2|R3
3| = 2| [FN1(‖(u1,B1)‖V )−FN2(‖(u2,B2)‖V )] ||b(u2,B1,A2δB)|

� 1
12 |A y|2H + c|A1u2|2L2

[‖y‖2
V +(N1−N2)2

]
,

(3.79)

2|R1
4| = 2FN1(‖(u1,B1)‖V )|b(δB,u1,A2δB)| � 1

12 |A y|2H + cN4
1‖y‖2

V , (3.80)

2|R2
4| = 2FN2(‖(u2,B2)‖V )|b(B2,δu,A2δB)| � 1

12 |A y|2H + c|A2B2|2L2‖y‖2
V , (3.81)

2|R3
4| = 2 |[FN1(‖(u1,B1)‖V )−FN2(‖(B2,u1)‖V )]| |b(B2,u1,A2δB)|

� 1
12 |A y|2H + c|A2B2|2L2

[‖y‖2
V +(N1−N2)2

]
.

(3.82)

|2(G(t,(u1t ,B1t))−G(t,(u2t ,B2t)),A y)|
� 2max

{
Lg1

,Lg2

}‖yt‖γ |A y|H + 1
12 |A δy|2H + c‖δyt‖2

γ .
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Just like proving (3.21) we can prove that

‖(δut ,δBt)‖2
γ � ‖φ‖2

γ + sup
θ∈[τ,t]

e2γ(θ−t) |y(θ )|2H � ‖φ‖2
γ + cη sup

θ∈[τ,t]
‖y(θ )‖2

V (3.83)

where we have used also the embedding of V into H and set η = max
{
Lg 1

,Lg 2

}
.

Then

|2(G(t,(u1t , B1t))−G(t,(u2t , B2t)),A y)| � 1
12

|A y|2H +‖φ‖2
γ + cη sup

θ∈[τ,t]
‖y(θ )‖2

V .

(3.84)
Now inserting these estimates (3.73)–(3.84) in (3.72), we obtain

d
dt
‖y‖2

V + |A y|2H � c(N4
1 + |A1u2|2L2 + |A2B2|2L2 + η) sup

θ∈[τ,t]
‖y(θ )‖2

V

+ c(|A1u2|2L2 + |A2B2|2L2)(N1 −N2)2 +‖φ‖2
γ

≡ c(N4
1 + η +Z1) sup

θ∈[τ,t]
‖y(θ )‖2

V + cZ1(N1 −N2)2 +‖φ‖2
γ .

(3.85)

Integrating (3.85) from τ to t, we have

‖y(t)‖2
V +

∫ t

τ
|A y(ξ )|2Hdξ �‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

+
∫ t

τ
c(η +N4

1 +Z1(ξ )) sup
θ∈[τ,ξ ]

‖y(θ )‖2
V dξ ,

(3.86)
which leads to

sup
θ∈[τ,t]

‖y(θ )‖2
V +

∫ t

τ
|A y(ξ )|2Hdξ �‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

+
∫ t

τ
c(η +N4

1 +Z1(ξ )) sup
θ∈[τ,ξ ]

‖y(θ )‖2
V dξ .

(3.87)

It follows from Lemma 1 and (3.87) when dropping the term
∫ t

τ
|A y(ξ )|2Hdξ that

sup
θ∈[τ,t]

‖y(θ )‖2
V �

[
‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

]
× exp

[
c(η +N4

1 )(t− τ)+ c
∫ t

τ
Z1(ξ )dξ

]
,

(3.88)

which proves (3.64).
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Now using (3.87) and (3.88), we get

∫ t

τ
|A y(ξ )|2Hdξ �

[
‖y(τ)‖2

V +(t− τ)‖φ‖2
γ + c(N1−N2)2

∫ t

τ
Z1(ξ )dξ

]
×
[
1+

(
c(N4

1 +η)(t−τ)+c
∫ t

τ
Z1(ξ )dξ

)
× exp

[
c(N4

1+η)(t−τ)+c
∫ t

τ
Z1(ξ )dξ

]]
. � (3.89)

REMARK 5. Theorem 3 also provides the uniqueness of the strong solution of
problem (1.2).

4. Stationary solution

In this section, we are interested in proving that problem (1.2) with some restric-
tions, admits stationary solutions. Also, we prove under additional assumptions that the
stationary solution is unique and is globally asymptotically exponentially stable.

The restrictions we impose to give sense to a stationary solution are that f 1, f 2, g1
and g2 are independent on time. One of the worries is that how (g1, g2) acts over a
fixed element of H. Inspired by what was done in [28], we consider (g1(w), g2(w))
as (g 1(w̃), g2(w̃)), where w̃ ∈ H is the element that has the only value w for all time
t � 0. w̃ is an element of Cγ (H) and ‖w̃‖γ = |w|H for some fixed γ > 0; so we will
continue denoting w instead of w̃ since no confusion arises. The hypothesis (h3) is
reformulated as follows: There exists a constant Lg i

> 0 such that for all ξ ,η ∈ H,

|gi(ξ )− gi(η)|L2(Ω) � Lg i
|ξ −η |H . (4.1)

We consider the following system{ dy
dt

+A y+BN(y,y) = F +G on D ′(τ,T ;V ′)
y(τ + s) = (φ1(s),φ2(s)), s ∈ (−∞,0]

(4.2)

where A and BN are defined in section 3.

By a stationary solution to (4.2) we mean an element (u∗, B∗) ∈V such that for
all ϕ = (v , C ) ∈V,

((y,ϕ))+BN
0 (y,y,ϕ) = 〈 f 1, v〉+〈 f 2, C〉+〈g1(u

∗, B∗), v〉+〈g2(u
∗, B∗), C〉 . (4.3)

We will prove the existence result by Galerkin’s method before studiying its asymp-
totic behavior.
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4.1. Existence result

THEOREM 4. We assume that f 1, f 2, g1, g2 are independent on time, and (4.1)
holds. If 1 >

{
cLg 1

( Re
λ 1

1
)1/2 + cLg 2

(Rm
λ 2

1
)1/2

}
, Problem (4.3) has at least one solution

(u∗, B∗) which belongs to D(A ).
In addition, if

min{1,S} � max
{
Re(λ 1

1 )−1,SRm(λ 2
1 )−1}(cN4 + cN8)

+cLg1

(Re

λ 1
1

)1/2
+ScLg2

(Rm

λ 2
1

)1/2
, (4.4)

this solution is unique.

Proof. Like dealing with the evolutionary case, the existence of a solution y∗ =
(u∗, B∗) of problem (4.3) is proved by the Galerkin’s method as follows.

Since the injection V ⊂ H is compact, let {(wi,ψi), i = 1,2, . . .} ⊂ V be an or-
thonormal basis of H , where {wi, i = 1,2, . . .} , {ψi, i = 1,2, . . .} are eigenfunctions of
A1 and A2 respectively. We set Vm = Hm = span{(w1,ψ1), . . . ,(wm,ψm)} and denote
by Pm = (P1

m,P2
m) , the orthogonal projector from H onto Vm for the scalar product (., .)

defined by (2.8)1 . Note that Pm is also the orthogonal projector from D(A ),V,V ′ onto
Vm . We look for y∗m = (u∗

m, B∗
m), verifying for ϕ = (v ,C ) ∈Vm

〈A y∗m,ϕ〉+ 〈
PnB

N(y∗m,y∗m),ϕ
〉

= 〈 f 1,v〉+ 〈 f 2,C〉+ 〈g1(u
∗
m,B∗m),v〉

+ 〈g2(u
∗
m,B∗m),C〉 .

(4.5)

Since we will apply a consequence of Brouwer’s fixed point theorem, see ([46],
Lemma 41, page 23), we define the operators �m :Vm →Vm by, for all y = (u , B), ϕ =
(v , C ) ∈Vm .

((�my,ϕ)) =〈A y,ϕ〉+ 〈
PmBN(y,y),ϕ

〉−〈 f 1,v〉− 〈 f 2,C〉− 〈g1(u,B),v〉
− 〈g2(u,B),C〉 .

(4.6)

Since the right hand side of (4.6) is a linear continuous map from Vm to R, by the
Riez theorem, each �my ∈Vm is well defined. We now prove that �m is continuous.

Let (yn) ⊂ Vm be a sequence which converges to y in Vm, since A and BN are
continuous from Vm to V ′

m then A yn → A y and BN(yn,yn) → BN(y,y). In addition,

‖gi(yn)− gi(y)‖V ′
i,m

� |gi(yn)− gi(y)|L2 � Lgi
|yn − y|H � cLg i

|yn − y|V .

By the compactness of the embedding Vm ↪→ Hm and (4.6), we infer that Rmyn → Rmy
in Vm as n → ∞. On the other hand, for all y = (u , B) ∈Vm,

((�my,y)) = 〈A y,y〉− 〈 f 1,u〉− 〈 f 2,B〉− 〈g1(u,B),u〉− 〈g2(u,B),B〉
� ‖y‖2

V − (λ 1
1 )−1/2 | f 1|L2 ‖u‖V1

− (λ 2
1 )−1/2 | f 2|L2 ‖B‖V2

−c(λ 1
1 )−1/2Lg1

‖y‖V ‖v‖V1
− c(λ 2

1 )−1/2Lg2
‖y‖V ‖C‖V2

� ‖y‖V

[
‖y‖V

(
1−

{
cLg1

( Re
λ 1

1
)1/2 + cLg2

(Rm
λ 2

1
)1/2

})
−( Re

λ 1
1
)1/2 | f 1|L2 − (Rm

λ 2
1
)1/2 | f 2|L2

] (4.7)
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where c =
(
max

{
λ 1

1 Re,λ 2
1 Rm

})1/2
.

Then, ((�my,y)) is non negative on the sphere of Vm with radius

β �
( Re

λ 1
1
)1/2 | f 1|L2 +(Rm

λ 2
1
)1/2 | f 2|L2

1−
{
cLg 1

( Re
λ 1

1
)1/2 + cLg 2

(Rm
λ 2

1
)1/2

} .

So by a consequence of Brouwer fixed point theorem, for each m � 1, there exists
y∗m = (u∗

m, B∗
m) ∈ Vm solution of (4.5). Moreover, replacing φ in the first equation of

(4.5) by A y∗m , we obtain

|A y∗m|2H =( f 1,A1u
∗
m)+ ( f 2,A2B∗m)−BN

0 (y∗m,y∗m,A y∗m)
+ (g1(u

∗
m,B∗m),A1u

∗
m))+ (g2(u

∗
m,B∗m),A2B∗m)) .

(4.8)

Now using (2.23) and Young’s inequality with the exponents (4,4/3) , we have

|BN
0 (y∗m,y∗m,A y∗m)| � cN‖y∗m‖1/2

V |A y∗m|3/2
H � 1

8 |A y∗m|2H + cN4‖ym‖2
V . (4.9)

In addition, by Young’s inequality and (4.1) one obtains

|( f 1,A1u∗m)|+ |( f 2,A2B∗m)| � 1
8 |A1u∗m|2L2 + 1

8 |A2B∗m|2L2 + c| f 1|2L2 + c| f 2|2L2

= 1
8 |A y∗m|2H + c| f 1|2L2 + c| f 2|2L2

(4.10)

and
|(g1(u∗m,B∗m),A1u∗m))+ (g2(t,(u∗m,B∗m),A2B∗m))|
� 1

4 |A1u∗m|2L2 + 1
4 |A2B∗m|2L2 +

{
(cLg1

)2 +(cLg2
)2
}‖y∗m‖2

V

= 1
4 |A y∗m|2H +

{
(cLg1

)2 +(cLg2
)2
}‖y∗m‖2

V .

(4.11)

It follows from (4.9)–(4.11) that

|A y∗m|2H � c| f 1|2L2 + c| f 2|2L2 +
(
(cLg 1

)2 +(cLg 2
)2 + cN4)‖y∗m‖2

V . (4.12)

From (4.12), we infer that the sequence y∗m is bounded in D(A ); consequently,
using the compact injection of D(A ) in V, we can extract a subsequence of y∗m still
denoted by y∗m which converges weakly in D(A ) and strongly in V to an element
(u∗, B∗) ∈D(A ). Finally taking the limit in (4.5), we prove that (u∗, B∗) is a solution
of a stationary problem (4.3).

For the uniqueness, let y∗ = (u∗, B∗) and ỹ∗ = ( ũ∗, B̃
∗) two solutions of (4.3), we

set y = y∗ − ỹ∗; u = u∗ − ũ∗ and B = u∗ − ũ∗ then

A y = −(
BN(y∗,y∗)−BN(ỹ∗, ỹ∗)

)
+
(
G(u ∗, B∗)−G( ũ∗, B̃

∗))
)

. (4.13)

Taking the inner product in H of (4.13) with My and proceed like proving the
uniqueness result in the non-stationary case and taking into account (4.1), we obtain

1
Re

‖u‖2
V1

+
S

Rm
‖B‖2

V2
= −(BN(y∗,y∗)−BN(ỹ∗, ỹ∗),My)+

(
g1(u

∗,B∗)−g1(ũ
∗, B̃∗),u

)
+
(
g2(u∗,B∗)−g2(ũ

∗, B̃∗),B
)

.
(4.14)
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But ∣∣(g1(u
∗, B∗)− g1( ũ

∗, B̃
∗), u

)
+
(
g2(u

∗, B∗)− g2( ũ
∗, B̃

∗),SB
)∣∣

� cLg1
(λ 1

1 )−1/2 ‖(u,B)‖V ‖u‖V1
+ScLg2

(λ 2
1 )−1/2‖(u,B)‖V ‖B‖V2

�
{

cLg1
( Re

λ 1
1
)1/2 +ScLg2

(Rm
λ 2

1
)1/2

}
‖(u,B)‖2

V .
(4.15)

On the other hand,∣∣(−BN(y∗,y∗)+BN(ỹ∗, ỹ∗),My
)∣∣

�
(
cN4 + cN8){Re(λ 1

1 )−1

Re
‖u‖2

V1
+

SRm(λ 2
1 )−1

Rm
‖B‖2

V2

}
�

(
cN4 + cN8)max

{
Re(λ 1

1 )−1,SRm(λ 2
1 )−1}‖(u,B)‖2

V .

(4.16)

Including (4.15) and (4.16) in (4.14), we obtain

min{1,S}‖(u,B)‖2
V

�
[
max

{
Re(λ 1

1 )−1,SRm(λ 2
1 )−1

}(
cN4 + cN8

)
+ cLg1

( Re
λ 1

1
)1/2 +ScLg2

(Rm
λ 2

1
)1/2

]
×‖(u,B)‖2

V .
(4.17)

Consequently, if (4.4) holds, ‖(u , B)‖2
V � 0 then, u∗ = ũ∗ and B∗ = B̃

∗
. �

4.2. Stability of the stationary solution

As announced before, we prove here that the unique solution of (4.3) given by
Theorem 4 is globally asymptotically exponentially stable. More precisely, we prove
the following result.

THEOREM 5. Assume that f 1, f 2, g1, g2 are independent on time and (4.4) is
valid. Assume that the assumptions in Theorem 2 are valid.

Then for some fixed γ > 0, there exists a value 0 < β < 2γ such that for the solu-
tion y(.,0,φ) = (u(.,0,φ), B(.,0,φ)) of problem (1.2) with τ = 0 and φ ∈ Cγ (H), the
following estimates hold for all t � 0 :

[y(t,0,φ)− y∗]2 � e−β t

(
[φ(0)− y∗]2 +

{
L2
g 1

Re

λ 1
1

+L2
g 2

Rm

Sλ 2
1

} ‖φ − y∗‖2
γ

2γ −β

)
, (4.18)

and

‖yt(t,0,φ)− y∗‖2
γ

� max

{
e−2γt ‖φ − y∗‖2

γ ;e−β t

{
[φ(0)− y∗]2 +

{
L2
g1

Re

λ 1
1

+L2
g2

Rm

Sλ 2
1

} ‖φ − y∗‖2
γ

2γ −β

}}
(4.19)

where y∗ is the unique solution of (4.5) given by Theorem 4.
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Proof. Just for simplification, we denote y(t) = y(.,0,φ). We also denote w(t) =
y(t)− y∗ . From equations (4.2) and (4.3), one has for any z = (v , C)

d
dt

(w(t),z)H +((w(t),z))V = − (BN(y(t),y(t))−BN(y∗,y∗),z)

+ (g1(ut ,Bt)−g1(u
∗,B∗),v)

+ (g2(ut ,Bt)−g2(u
∗,B∗),C) .

(4.20)

Seeing how (3.17) is obtained, we have

d
dt

(|un(t)|2L2 +S|Bn(t)|2L2

)
+

2
Re

‖un(t)‖2
V1

+
2S
Rm

‖Bn(t)‖2
V2

� L2
g1

Re

λ 1
1

‖wt‖2
γ +

1
Re

‖u‖2
V1

+L2
g2

Rm

Sλ 2
1

‖wt‖2
γ +

S
Rm

‖B‖2
V2

+2
(
cN4 + cN8)max

{
1

λ 1
1

,
S

λ 2
1

}
‖(u,B)‖2

V ,

(4.21)

which leads to

d
dt

[w(t)]2 +
[
min{1,S}−2

(
cN4 + cN8)max

{
1

λ 1
1

,
S

λ 2
1

}]
‖w(t)‖2

V .

�
(

L2
g 2

Rm

Sλ 2
1

+L2
g 1

Re

λ 1
1

)
‖wt‖2

γ . (4.22)

Introducing in (4.22) an exponential term eβ t with a positive value 0 < β < 2γ and
integrating from 0 to t, we obtain

eβ t [w(t)]2 +
[
min{1,S}−2

(
cN4 + cN8)max

{
1

λ 1
1

,
S

λ 2
1

}
−β max

{
1

λ 1
1

,
1

λ 2
1

}]∫ t

0
eβ ξ ‖w(ξ )‖2

V dξ .

� [w(0)]2 +
(

L2
g2

Rm

Sλ 2
1

+L2
g1

Re

λ 1
1

)∫ t

0
eβ ξ ∥∥wξ

∥∥2
γ dξ . (4.23)

But∫ t

0
eβ ξ ∥∥wξ

∥∥2
γ dξ

=
∫ t

0
eβ ξ sup

θ∈(−∞,0]
e2γθ |(w(ξ + θ )|2H dξ

=
∫ t

0
eβ ξ max

{
sup

θ�−ξ
e2γθ |(w(ξ + θ )|2H ; sup

θ∈[−ξ ,0]
e2γθ |(w(ξ + θ )|2H

}
dξ

=
∫ t

0
max

{
e−(2γ−β )ξ ‖φ − y∗‖2

γ ; sup
θ∈[−s,0]

e(2γ−β )θeβ (ξ+θ) |(w(ξ + θ )|2H
}

dξ

�
∫ t

0

{
e−(2γ−β )ξ ‖φ − y∗‖2

γ + sup
r∈[0,ξ ]

erβ |(w(r)|2H
}

dξ

(4.24)
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where we have used β � 2γ to deduce the last inequality. Using this in (4.23), we
obtain

eβ t [w(t)]2 � [w(0)]2 +
(

L2
g2

Rm

Sλ 2
1

+L2
g1

Re

λ 1
1

)
‖φ − y∗‖2

γ

∫ t

0
e−(2γ−β )ξ dξ

+
[
2
(
cN4 + cN8)max

{
1

λ 1
1

,
S

λ 2
1

}
+β max

{
1

λ 1
1

,
1

λ 2
1

}
+ c

(
L2
g2

Rm

Sλ 2
1

+L2
g1

Re

λ 1
1

)
−min{1,S}

]
×

∫ t

0
sup

r∈[0,ξ ]
eβ r ‖w(r)‖2

V dξ .

(4.25)

We can choose β such that the coefficient of the last integral in (4.25) is negative.
Doing that, we deduce (4.18).

On the other hand,

‖w(t)‖2
γ = sup

θ�0
e2γθ |w(t + θ )|2H

= max

{
sup

θ�−t
e2γθ |(w(t + θ )|2H ; sup

θ∈[−t,0]
e2γθ |(w(t + θ )|2H

}

� max

{
e−2γt ‖φ − y∗‖2

γ , sup
θ∈[−t,0]

e2γθ |(w(t + θ )|2H
}

.

(4.26)

Using (4.18), we have

sup
θ∈[−t,0]

e2γθ |(w(t + θ )|2H

� sup
θ∈[−t,0]

e2γθ e−β (t+θ)

(
[φ(0)− y∗]2 +

{
L2
g1

Re

(λ 1
1 )

+L2
g2

Rm

(Sλ 2
1 )

} ‖φ − y∗‖2
γ

2γ −β

)

= sup
θ∈[−t,0]

e(2γ−β )θe−β t

(
[φ(0)− y∗]2 +

{
L2
g1

Re

(λ 1
1 )

+L2
g2

Rm

(Sλ 2
1 )

} ‖φ − y∗‖2
γ

2γ −β

)

� e−β t

(
[φ(0)− y∗]2 +

{
L2
g1

Re

(λ 1
1 )

+L2
g2

Rm

(Sλ 2
1 )

} ‖φ − y∗‖2
γ

2γ −β

)

since e(2γ−β )θ � 1 for θ ∈ [−t,0] . Hence, we deduce (4.19). �
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dispersion, Phys. Rev. Lett., vol. 349 (1998), 4173–4177.

[19] D. D. HOLM, J. E. MARSDEN AND T. S. RATIU, The Euler-Poincaé equations and semi-direct
products with applications to continuum theories, Adv. Math., vol. 137 (1998), 1–81.

[20] P. E. KLOEDEN, J. A. LANGA AND J. REAL, Pullback V -attractors of the three-dimensional globally
modified Navier-Stokes equations, Commun. Pure Appl. Anal., vol. 6 (2007), 937–955.

[21] P. E. KLOEDEN AND J. VALERO, The weak connectedness of the attainability set of weak solutions
of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys Engs. Sci.,
vol. 463 (2082) (2007), 1491–1508.

[22] P. E. KLOEDEN AND J. A. LANGA, Flattening, squeezing and the existence of random attractors,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., vol. 463 (2007), 163–181.

doi:10.11948/20200409


Differ. Equ. Appl. 13, No. 4 (2021), 373–404. 403
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