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A BOUND FOR ZEROS OF SOLUTIONS TO A HIGHER ORDER

NON–HOMOGENEOUS ODE WITH POLYNOMIAL COEFFICIENTS

MICHAEL GIL’

Abstract. Let Pk(z) (k = 1,2, . . . ,n) and G(z) be polynomials with complex in general coeffi-
cients. The paper deals with the higher order differential equation

v(n)(z)+P1(z)v(n−1)(z)+ . . .+Pn(z)v(z) = G(z).

We derive estimates for the sums of the zeros of solutions to this equation. These estimates give
us bounds for the function counting the zeros of solutions and information about the zero-free
domain. Some other applications are also discussed.
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