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SHARP WELL–POSEDNESS AND ILL–POSEDNESS RESULTS

FOR DISSIPATIVE KDV EQUATIONS ON THE REAL LINE

XAVIER CARVAJAL, PEDRO GAMBOA AND RAPHAEL SANTOS

(Communicated by P. I. Naumkin)

Abstract. This work is concerned about the Cauchy problem for the following generalized KdV-
Burgers equation {

∂t u+∂ 3
x u+Lpu+u∂xu = 0,

u(0, x) = u0(x),

where Lp is a dissipative multiplier operator. Using Besov-Bourgain Spaces, we establish a
bilinear estimate and following the framework developed in [14] we prove sharp local and global
well-posedness in the Sobolev spaces H−p/2(IR) and ill-posedness in Hs(IR) when s < −p/2 ,
both when p � 2 . Also, we prove C2 -ill-posedness in Hs(IR) , for s < 3/2− p/4 and 0� p � 2 .

1. Introduction

In this paper we study the well-posedness of the generalized Korteweg-De Vries-
Burgers equation

∂tu+ ∂ 3
x u+Lpu+u∂xu = 0, x ∈ IR, t � 0, (g-KdV-B)

where u = u(t,x) is a real-valued function and Fx{Lpu}(t,ξ ) = |ξ |pFxu(t,ξ ) , for
p ∈ IR+ . When p = 2 we have the well-known KdV-Burgers equation. This equation
arises in some different physical contexts as a model equation involving the effects of
dispersion, dissipation and nonlinearity. When p = 1/2 the related equation models the
evolution of the free surface for shallow water waves damped by viscosity. For these
models, see e.g. [9], [10], and [15].

The well-posedness for the equation (g-KdV-B) has been studied for many authors.
In 2001, using the Bourgain spaces, related only to the KdV equation (see e.g. [1] and
[7]), and the bilinear estimate due to Kenig, Ponce and Vega (see [11]), Molinet and
Ribaud obtained the local and global well-posedness in Hs(IR) , for s > −3/4 and
p > 0. In the particular case of p = 2 (KdV-Burgers equation), they proved local
and global well-posedness in Hs(IR) , for s > −3/4− 1/24 (see [12]). In 2002, they
improved the result when p = 2, by using the Bourgain space but now, associated to the
KdV-Burgers equation, getting local and global well-posedness in Hs(IR) , for s > −1
(see [13]). Also, in this paper they pointed out that the Cauchy problem (g-KdV-B),
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with 0 � p � 2 is ill-posed in the homogeneous Sobolev space Ḣs(IR) for s < sp ,
where sp = (p− 6)/2(4− p) , and conjectured that Hsp(IR) is the critical Sobolev
spaces and the Cauchy problem for (g-KdV-B) is well-posed in Hs(IR) for s > sp .
In 2010, Xue and Hu proved the local well-posedness (l.w.p.) for the (g-KdV-B) in the
homogeneous Sobolev spaces Ḣs(IR) , with (p−6)/2(4− p)< s � 0, when 0 � p � 2,
giving a partial answer for this open problem (see [19]). In 2011, Vento proved local
and global well-posedness for the (g-KdV-B) in Hs(IR) , for s > sp where

sp =
{−3/4, 0 < p � 1,
−3/(5− p), 1 < p � 2,

(1.1)

improving the early results in the case 1 < p < 2 (see [18]). Also, in 2011 Molinet and
Vento completes the result for the KdV - Burgers equation ( p = 2), using the Besov
refinement of Bourgain’s spaces. They obtained the sharp g.w.p. in H−1(IR) (see [14]).
In 2016 Carvajal and Mahendra studied, among other things, the well-posedness of the
following dissipative versions of the generalized KdV equation{

vt + vxxx + ηLv+(v2)x = 0, x ∈ IR, t � 0,
v(x,0) = v0(x),

(1.2)

where η > 0 and the linear operator L is defined via the Fourier transform by Fx{L f}=
Φ(·)Fx f , where the symbol

Φ(ξ ) = |ξ |p + Φ1(ξ ), (1.3)

where p is a positive real number and |Φ1(ξ )| � 1 + |ξ |q , with 0 � q < p . They
proved that the Cauchy problem for (1.2) is locally well-posed in Hs(IR) , s > −p/2,
with p > 3. Also, they showed that for p � 2, there does not exist any T > 0 such
that the data-solution map v0 ∈ Hs(IR) �→ v ∈C([0, t] : Hs(IR)) is C2 - differentiable at
the origin (see [3]). When the nonlinearity in (1.2) is (vk+1)x , k > 1 (generalized KdV
nonlinearity), they obtain some local well-posedness results for the data with Sobolev
regularity below L2(IR) , see [2]. Also, an n-dimensional dissipative version of the KdV
equation (1.2) was considered in Carvajal, Esfahani and Panthee [4], where they prove
well-posedness and ill-posedness results in anisotropic Sobolev spaces, they also study
the dissipative limit of the solution when η goes to zero. Finally, in [6] Carvajal and
Esquivel proved local well-posedness for (g-KdV-B) in Hs(IR) for s > −p/2, when
2 � p < 3, improving the result in [12]. In the next figure we have a resume of the
former results.

In our work, we use the framework developed in [14] to establish the following
results:

THEOREM 1.1. Let p � 2 . The Cauchy problem associated to (g-KdV-B) is lo-
cally analytically well-posed in H−p/2(R) . Moreover, at every point u0 ∈ H−p/2(IR)
there exist T = T (u0) > 0 and R =R(u0)> 0 such that the solution-map u0 → u is ana-
lytic from the ball centered at u0 with radius R of H−p/2(IR) into C([0,T ];H−p/2(IR)) .
Also, the solution u belongs to C((0,∞);H∞(IR)) .
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THEOREM 1.2. Let p � 2 . The Cauchy problem associated to (g-KdV-B) is ill-
posed in Hs(IR) for s < −p/2 : there exist T > 0 such that for any t ∈ [0,T ] the flow-
map u0 → u(t) constructed in Theorem 1.1 is discontinuous at the origin from Hs(IR)
to Hs(IR) .

REMARK 1.3. i) Following the same steps in the proof of Theorem. 1.2 we also
obtain that the flow-map is not C2 at the origin for s < 3/2− p/4, when 0 � p � 2.
This allow us to conclude that we can not use contraction method to prove local well-
posedness in this regularity.

ii) We observe that if u is a solution of the (g-KdV-B) then ‖u‖L2
x
� ‖u0‖L2

x
. Also,

the local well-posedness result in [3] and [6] gives a global well-posedness result in
L2(R) with u∈C((0,∞);H∞(R)) (see [3] and [6]) and on the other hand the inequality
(2.9) and the Section 5 imply that, for any 0 < t < T there exists t ′ ∈]0,t[ , such that
u(t ′) ∈ L2(R) . Thus the solution in Theorem 1.1 also belongs to C((0,∞);H∞(R)) .

These results extends the previous results in [3] (with Φ1 ≡ 0 and η = 1) and in
[6] for s = −p/2 and p � 2.

The plan of this paper is as follows. In Section 2 we fix some notations, define
the spaces when we perform the iteration process, prove some useful inequalities and
recall some important results. In Section 3 we establish linear estimates related to the
Duhamel operator, associated to the (g-KdV-B) equation. In Section 4, we prove the
crucial result in this work: the bilinear estimates. In Section 5 we prove the Theorem
1.1 and finally, in the Section 6 we prove the ill-posedness results.
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2. Notations and preliminaries results

For A,B > 0, we write A � B when there exists c > 0 such that A � cB . When the
constant c is small we write A � B . We write A ∼ B to denote that A � B � A . Also,
we may write A �α B , to express that the constant c depends on α . Given u = u(t,x)∈
S ′(IR2) , we denote by Fu (or ũ ), Fxu (or û) and Ft u its Fourier transform in space-
time, space and time respectively. Analogously, for the inverse Fourier transform we
write F−1u , F−1

ξ u and F−1
τ u .

We work with the usual Lebesgue spaces as Lp
x (IR) , Lp

t (IR) and Lp
x Lq

t . By sim-
plicity we write Lp

x Lp
t as Lp . The non-homogeneous Sobolev spaces are endowed with

the norm ‖ f‖Hs = ‖〈·〉s f̂‖L2 , where 〈x〉= (1+ |x|2)1/2 ∼ 1+ |x| is the japanese bracket.
In order to define our functional spaces, we recall the Littlewood-Paleymultipliers.

Let us fix η ∈ C∞
0 (IR) , such that η � 0, suppη ⊂ [−2, 2] and η ≡ 1 on [−1, 1] . A

dyadic number is any number N of the form 2 j , where j ∈ Z . With this notation, any
sum over the dummy variable M , N or L is understood to be over dyadic numbers
unless otherwise specified. Define ϕ(ξ ) = η(ξ )−η(2ξ ) and ψ(τ, ξ ) = ϕ(τ − ξ 3) .
Using the notation fN(y) = f (y/N) , we define, for u∈S ′(IR2) the Fourier multipliers

Fx{PNu(t, ·)}(ξ ) = ϕN(ξ )û(t,ξ ) and F{QLu}(τ, ξ ) = ψL(τ, ξ )ũ(τ, ξ ).

Because, rougly speaking, PN localizes in the annulus {|ξ |∼N} and QL localizes
in the region {|τ − ξ 3| ∼ L} , they are so-called the Littlewod-Paley projections. We
can define more projections like

P�Nu = ∑
M � N

PMu or Q�Lu = ∑
M � L

QMu,

and etc.
Associated to the equation (g-KdV-B), we have the following integral equation

u(t) = Sp(t)u0− 1
2

∫ t

0
Sp(t − t ′)∂xu

2(t ′)dt ′, t � 0, (2.1)

where the linear semi-group Sp(t) = e−t(∂ 3
x +Lp) = e−t∂ 3

x e−tLp , associated to (g-KdV-B),
is given by

Fx{Sp(t) f}(ξ ) = eitξ 3−t|ξ |p f̂ (ξ ), t � 0. (2.2)

We observe that e−t∂ 3
x is the unitary group associated to KdV equation and also, e−tLp ,

given by e−tLp f = F−1
ξ {e−t| · |p f̂ ( ·)} is the semi-group associated to ∂t u+Lpu = 0.

We define the two-parameter linear operator Wp(t, t ′) = e−t∂ 3
x −|t′|Lp , given by

Fx{Wp(t, t ′) f}(ξ ) = eitξ 3−|t′||ξ |p f̂ (ξ ), t,t ′ ∈ IR. (2.3)

If t = t ′ , t ∈ IR �→ Wp(t,t) is clearly an extension to IR of Sp(t) . Instead of use the
integral equation (2.1), we will apply a fixed-point argument to the following extension

u(t) = η(t)Wp(t,t)u0− 1
2
η(t)χIR+

(t)
∫ t

0
Wp(t− t ′,t − t ′)∂xu

2(t ′)dt ′

−1
2
η(t)χIR−(t)

∫ t

0
Wp(t− t ′,t + t ′)∂xu

2(t ′)dt ′, (2.4)
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t ∈ IR. Of course, if u solves (2.4), then u|[0,T ] solves (2.1) in [0, T ] , T < 1.
The iteration process will be applied in the Besov version of classical Bourgain

Spaces, which we will be defined now, following [14]. For s,b ∈ IR, the space X s, b, q
p

(q = 1) is the weak closure of the test functions that are uniformly bounded by the norm

‖u‖
Xs,b,q

p

=

⎛⎝∑
N

[
∑
L

〈N〉sq〈L+Np〉bq ‖PNQLu‖q

L2

]2/q
⎞⎠1/2

. (2.5)

In order to control the high-high interaction in the nonlinearity, we introduce1 for b =
±1/2, the space Y s, b endowed with the norm

‖u‖
Ys,b
p

=

⎛⎝∑
N

[
〈N〉s

∥∥∥F
−1{(i(τ − ξ 3)+ |ξ |p +1)b+1/2ϕN ũ}

∥∥∥
L1
t L2

x

]2
⎞⎠1/2

, (2.6)

such that

‖u‖
Y
−p/2,1/2
p

=

(
∑
N

[
〈N〉−p/2

∥∥(∂t + ∂ 3
x +Lp + I)PNu

∥∥
L1
t L2

x

]2
)1/2

. (2.7)

Thus, we form the resolution space S s = X s, 1/2, 1
p +Y s, 1/2

p and the nonlinear space
N s = X s, −1/2, 1

p +Y s, −1/2
p , endowed with the usual norm:

‖u‖X+Y = inf
{‖u1‖X +‖u2‖Y : u = u1 +u2, with u1 ∈ X , u2 ∈ Y

}
.

From now on we work with the resolution space S −p/2 and the nonlinear space N −p/2 .
Remembering that e−t∂ 3

x f = F
−1

ξ {eit(·)3 f̂ (·)} is the group associated to the KdV equa-
tion, we have the following result:

LEMMA 2.1. For any φ ∈ L2
x(IR) , we have(

∑
L

[
L1/2‖QL(e−t∂ 3

x φ)‖L2

]2)1/2

� ‖φ‖L2
x
.

Proof. See [14]. �

LEMMA 2.2. 1. For each dyadic N , we have

‖(∂t + ∂ 3
x )PNu‖

L1
t L2

x
� ‖PNu‖Y 0,1/2

p
. (2.8)

2. For all u ∈ S −p/2 , with p > 0 ,

‖u‖
L2 � ‖u‖S −p/2 . (2.9)

1The authors in [14] were inspired by [17].
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3. For all u ∈ S 0 , (
∑
L

[
L1/2‖QLu‖L2

]2)1/2

� ‖u‖S 0 . (2.10)

Proof. We will prove only (2.9), the proofs of (2.8) and (2.10) practically are given
in [14]. As

‖u‖L2 ∼
(

∑
N
‖PNu‖2

L2

)1/2

and ‖u‖S −p/2 ∼
(

∑
N
‖PNu‖2

S −p/2

)1/2

,

it is sufficient to prove that

‖PNu‖L2 � ‖PNu‖S −p/2 . (2.11)

Remembering the definition of our resolution space, it suffices to prove (2.11) with
‖PNu‖X −p/2,1/2,1 and with ‖PNu‖Y−p/2,1/2 in the right-hand side. For the first, noting that
〈L+Np〉1/2 � 〈N〉p/2 , we have

‖PNu‖X−p/2,1/2,1 ∼ ∑
L
〈N〉−p/2〈L+Np〉1/2‖PNQLu‖L2

� ∑
L
‖PNQLu‖L2 �

(
∑
L
‖PNQLu‖2

L2

)1/2

∼ ‖PNu‖L2 .

For the second inequality, since ‖PNu‖L2 = ‖ϕNû‖L2 = ‖F−1
τ (ϕNũ)‖L2 , then

‖PNu‖L2

=‖F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
∗t F

−1
τ

({
i(τ − ξ 3)+ |ξ |p +1

}
ϕNũ

)‖L2

�‖‖F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
‖L2

t
‖F−1

τ
({

i(τ − ξ 3)+ |ξ |p +1
}

ϕNũ
)‖L1

t
‖L2

ξ

�‖F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
‖L∞

ξ L2
t
‖F−1

τ
({

i(τ − ξ 3)+ |ξ |p +1
}

ϕNũ
)‖L2

ξ L1
t

�‖F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
‖L2

t L∞
ξ
‖F−1

τ
({

i(τ − ξ 3)+ |ξ |p +1
}

ϕNũ
)‖L1

t L2
ξ
.

(2.12)

Using the definition of ‖ · ‖Y0,1/2 we get

‖PNu‖L2 � ‖F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
‖L2

t L∞
ξ
‖PNu‖Y0,1/2 . (2.13)
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To estimate the norm of inverse Fourier transform above, we note that∣∣∣∣F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
(t)

∣∣∣∣ =|ϕN |
∣∣∣∣∫

IR
e2π itτ 1

i(τ − ξ 3)+ |ξ |p +1
dτ

∣∣∣∣
=|ϕN |

∣∣∣∣∫
IR

e2π itx 1
ix+ |ξ |p +1

dx

∣∣∣∣
=|ϕN |

∣∣∣∣∫
IR

e2π itx 1
x− i(|ξ |p +1)

dx

∣∣∣∣ .
(2.14)

Now, if k �= 0 is a constant, we have that

̂
(

x
x2 + k2

)
(t) = −π isgnte−2πk|t|,

̂
(

k
x2 + k2

)
(t) = π e−2πk|t|. (2.15)

For the first and the second identities we refers, e.g. [5] pg. 49 and [16] pg. 127,
respectively. With these identities in hands, we obtain

F−1
x

(
1

x− ik

)
(t) =F−1

x

(
x

x2 + k2

)
(t)+ iF−1

x

(
k

x2 + k2

)
(t)

=π i(1+ sgnt)e−2πk|t|

=

{
2π ie−2πk|t|, if t � 0,

0, if t � 0.

(2.16)

Combining (2.14) and (2.16) we get∣∣∣∣F−1
τ

(
ϕN

i(τ − ξ 3)+ |ξ |p +1

)
(t)

∣∣∣∣ =2π |ϕN |e−2π(1+|ξ |p)t χIR+(t)

�e−2πNpt χIR+(t).
(2.17)

Using (2.13) and (2.17), we conclude that

‖PNu‖L2 �N−p/2 ‖PNu‖Y0,1/2 � ‖PNu‖Y−p/2,1/2 . � (2.18)

LEMMA 2.3. (Extension lemma) Let Z be a Banach space of functions on IR×
IR with the property that

‖g(t)u(t,x)‖Z � ‖g‖L∞
t
‖u(t,x)‖Z

holds for any u ∈Z and g∈ L∞
t (IR) . Let T be a spatial linear operator for which one

has the estimate
‖T (e−t∂ 3

x PNφ)‖Z � ‖PNφ‖L2

for some dyadic N and for all φ . Then one has the embedding

‖T (PNu)‖Z � ‖PNu‖S 0 .
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Proof. See in [14] the comments before the Lemma 3.3 or see [17]. �
As a consequence of this abstract result, using the Kato smoothing effect

‖∂xe
−t∂ 3

x φ‖L∞
x L2

t
� ‖φ‖L2 , ∀φ ∈ L2, (2.19)

and that e−t∂ 3
x is a unitary operator in L2 , we obtain the following results

COROLLARY 2.4. For any u, we have, for p > 0 , that

‖u‖
L∞
t H−p/2

x
� ‖u‖S −p/2 , (2.20)

‖PNu‖
L∞
t L2

x
� N−1‖PNu‖S 0 , (2.21)

provided the right-hand side is finite.

3. Linear estimates

In this section we prove linear estimates related to operator Wp as well to the
extension of the Duhamel operator introduced in (2.4). We will do some adaptations of
the arguments in [14], in order to get the necessary estimates.

PROPOSITION 3.1. For all φ ∈ H−p/2(IR) and p > 0 , we have

||η(t)Wp(t, t)φ ||S −p/2 � ||φ ||H−p/2 . (3.1)

Proof. Clearly, the left-hand side in (3.1) is bounded by ‖η(t)W(t, t)φ‖
X

− p
2 ,− 1

2 ,1
p

. It

suffices to show

∑
L
〈L+Np〉1/2||PNQL(η(t)Wp(t, t)φ)||L2 � ||PNφ ||L2 . (3.2)

After this, multiplying both sides by 〈N〉−p/2 , squaring and summing in N , we get the
desired. In order to prove (3.2), first we note that

||PNQL(η(t)Wp(t, t)φ)||L2
xt

(3.3)

= ||ϕN (ξ )ϕL(τ − ξ 3)Ft (eitξ 3−|t||ξ |pη(t))(ξ )φ̂ (ξ )||L2
ξ ,τ

� ||ϕN (ξ )ϕL(τ − ξ 3)Ft (e−|t||ξ |pη(t))(τ − ξ 3)ϕN (ξ )φ̂(ξ )||L2
ξ ,τ

(1)
= ||ϕL(τ)Ft (e−|t||ξ |pη(t))(τ)ϕN (ξ )φ̂ (ξ )||L2

ξ ,τ

(2)
� ||ϕN (ξ )ϕL(τ)Ft (e−|t||ξ |pη(t))(τ)||L∞

ξ L2
τ
||P̂Nφ ||L2

ξ ,τ

= ||ϕN (ξ )PL(e−|t||ξ |pη(t))||L∞
ξ L2

t
||PNφ ||L2

x,t
, (3.4)
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where we using in (1) the translation invariance of the Lp -norms and in (2) the Hölder
inequality.

Adding in L we obtain

∑
L
〈L+Np〉1/2|||PNQL(η(t)Wp(t, t)φ)||L2

x,t

� ||PNφ ||L2
x,t ∑

L
〈L+Np〉1/2||ϕN (ξ )PL(e−|t||ξ |pη(t))||L∞

ξ L2
t
.

(3.5)

To get the bound in (3.2) we will prove that

∑
L

〈L+Np〉1/2||ϕN (ξ )PL(e−|t||ξ |pη(t))||L∞
ξ L2

t
� 1. (3.6)

Spliting the summand into L � 〈N〉p and L � 〈N〉p , the proof will be done in two cases.
For the first case, applying Bernstein inequality in time, we have

∑
L� 〈N〉p

〈L+Np〉1/2||ϕN (ξ )PL(e−|t||ξ |pη(t))||L∞
ξ L2

t

� ∑
L� 〈N〉p

〈N〉p/2L1/2 sup
|ξ |∼N

||e−|t||ξ |pη(t)||L1
t
.

(3.7)

Noting that
||e−|t||ξ |pη(t)||L1

t
� min{1, |ξ |−p},

then we have

∑
L� 〈N〉p

〈L+Np〉1/2||ϕNPL(e−|t||ξ |pη(t))||L∞
ξ L2

τ
� 〈N〉p min{1, N−p} � 1. (3.8)

For the second case, using the following rearrangement

∑
M

∑
N

aM,N = ∑
M

∑
N�M

aM,N +∑
M

∑
N�M

aM,N = ∑
M

∑
N�M

aM,N +∑
M

∑
N�M

aN,M,

one can see that

PL(e−|t||ξ |pη(t)) = PL

[
∑

M�L

(PMη(t)P�Me−|t||ξ |p +P�Mη(t)PMe−|t||ξ |p )

]
= PL(I)+PL(II).

(3.9)

For the term PL(I) , using Hölder inequality

∑
L�〈N〉p

〈L+Np〉1/2||ϕNPL(I)||L∞
ξ L2

τ

� ∑
L

L1/2 ∑
M�L

‖ϕN (ξ )PMη(t)‖L∞
ξ L2

t
‖ϕN (ξ )P�Me−|t||ξ |p‖L∞

x,t

� ∑
M

L1/2 ∑
L�M

‖ϕN (ξ )PMη(t)‖L∞
ξ L2

t
‖ϕN (ξ )P�Me−|t||ξ |p‖L∞

x,t

� ∑
M

M1/2‖ϕN (ξ )PMη(t)‖L∞
ξ L2

t
‖ϕN (ξ )P�Me−|t||ξ |p‖L∞

x,t
. (3.10)
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But, because ϕN (ξ )P�Me−|t||ξ |p � ϕN (ξ )arctan(M/ξ p) , then the right-hand side of
(3.10) is bounded by

∑
M

M1/2‖PMη‖L2
t
�‖η‖

B1/2
2,1

1.

Proceeding in a similar way for PL(II) , we obtain

∑
L�〈N〉p

〈L+Np〉1/2||ϕNPL(II)||L∞
ξ L2

τ
� ∑

M
M1/2||ϕN PMe−|t|Np ||L2

t
�

‖e−|t|‖
Ḃ 1/2

2,1

1, (3.11)

remembering that the homogeneous Besov space Ḃ1/2
2,1 has a scaling invariance and

e−|·| ∈ Ḃ1/2
2,1 .

LEMMA 3.2. Let p > 0 . For ω ∈ S (IR2) , consider κp,ξ defined on IR by

κp,ξ (t) = η(t)ϕN(ξ )
∫

IR

eitτe(t−|t|)|ξ |p − e−|t||ξ |p

iτ + |ξ |p ω̃(τ,ξ )dτ.

Then, for all ξ ∈ IR , it holds

∑
L
〈L+Np〉1/2||PLκp,ξ ||L2

t
� ∑

L
〈L+Np〉−1/2||ϕL(τ)ϕN(ξ ) ω̃ ||L2

τ
. (3.12)

Proof. As in [14], adding and subtracting η(t)e(t−|t|)|ξ |p inside the integral (nu-
merator), we can rewrite kp,ξ as

κp,ξ (t) = η(t)e(t−|t|)|ξ |p
∫
|τ|�1

eitτ −1
iτ + |ξ |p ω̃Ndτ + η(t)

∫
|τ|�1

e(t−|t|)|ξ |p − e−|t||ξ |p

iτ + |ξ |p ω̃Ndτ

+ η(t)e(t−|t|)|ξ |p
∫
|τ|�1

eitτ

iτ + |ξ |p ω̃Ndτ −η(t)
∫
|τ|�1

e−|t||ξ |p

iτ + |ξ |p ω̃Ndτ,

= (I)+ (II)+ (III)− (IV),
(3.13)

where ω̃N is defined by ω̃N(τ, ξ ) = ϕN(ξ )ω̃(τ, ξ ) . By triangular inequality, it’s suf-
fices to prove the estimate (3.12) with PL(I) , PL(II) , PL(III) and PL(IV ) in place of
PLκp,ξ .

Term (IV). With (3.6) in mind and performing a straighfoward calculations we get

‖PL(IV )‖L2
t
� ‖ϕN (ξ )PL(η(t)e−|t||ξ |p)‖L2

t

∫
|τ|�1

〈iτ + |ξ |p〉−1ω̃Ndτ.

�
∫
|τ|�1

〈iτ + |ξ |p〉−1ω̃Ndτ. (3.14)
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Also, because 〈iτ + |ξ |p〉 � 〈1+ |ξ |p〉 then we have∫
|τ|�1

〈iτ + |ξ |p〉−1ω̃Ndτ � ∑
L�1

‖〈1+Np〉−1ϕLω̃N‖L1
τ

� ∑
L
〈L+Np〉−1L1/2‖ϕLω̃N‖L2

t
, (3.15)

where in the last line we use the Cauchy-Schwarz in τ . This yields the desired bound.

Term (II). Taking account that

∫
|τ|�1

|ω̃N(τ)|
|iτ + |ξ |p| dτ �

(∫
|τ|�1

|ϕN (ξ )|〈iτ + |ξ |p〉
|iτ + |ξ |p|2 dτ

)1/2(∫
|τ|�1

|ω̃N(τ)|2
〈iτ + |ξ |p〉 dτ

)1/2

� 〈N〉p/2

Np ∑
L
〈L+Np〉−1/2‖ϕLω̃N(τ)‖L2

τ
(3.16)

thus

∑
L

〈L+Np〉1/2||PL(II)||L2
t

� 〈N〉p/2N−p ∑
L

〈L+Np〉1/2||PL(ϕN (ξ )η(t)(e(t−|t|)|ξ |p − e−|t||ξ |p))||L2
t
.

×∑
L
〈L+Np〉−1/2||ϕLω̃N ||L2

τ
.

(3.17)

We need to prove that

∑
L
〈L+Np〉1/2||PL(II)||L2

t
� ∑

L
〈L+Np〉−1/2||ϕLω̃N ||L2

τ
, ∀N dyadic. (3.18)

In view of (3.17) it suffices to prove that

∑
L
〈L+Np〉1/2||PL(ϕN (ξ )η(t)(e(t−|t|)|ξ |p − e−|t||ξ |p))||L2

t
� 〈N〉p/2. (3.19)

For technical reasons, we will divide the proof in two cases, namely, N � 1 and N < 1.
For the first case, by triangular inequality, we have

∑
L
〈L+Np〉1/2||PL(ϕN (ξ )η(t)(e(t−|t|)|ξ |p − e−|t||ξ |p))||L2

t

� ∑
L
〈L+Np〉1/2||PL(ϕN (ξ )η(t)e(t−|t|)|ξ |p)||L2

t︸ ︷︷ ︸
J

+∑
L
〈L+Np〉1/2||PL(ϕN (ξ )η(t)e−|t||ξ |p)||L2

t︸ ︷︷ ︸
K

. (3.20)
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One can see that K � 1, thanks to estimate (3.6). We will estimate the first term.
Denoting θp(t) = η(t)e(t−|t|)|ξ |p , the estimates

|θ̂p(τ)| � |τ|−1 and |θ̂p(τ)| � 〈ξ 〉p|τ|−2, (3.21)

yields from one and two integrations by parts, respectively. Now, splitting the summand
in a convenient way and use the estimates in (3.21) we get

J = ∑
L�1

〈L+Np〉1/2||ϕL(τ)ϕN (ξ )θ̂p(τ)||L2
τ
+ ∑

1�L�〈N〉p
〈L+Np〉1/2||ϕL(τ)ϕN (ξ )θ̂p(τ)||L2

τ

+ ∑
L�〈N〉p

〈L+Np〉1/2||ϕL(τ)ϕN (ξ )θ̂p(τ)||L2
τ

� ∑
L�1

〈N〉p/2L1/2||θp||L1
t
+ ∑

1�L�〈N〉p
〈N〉p/2L−1L−1/2||θp||L1

t

+ ∑
L�〈N〉p

〈L〉1/2L−2L1/2||θp||L1
t
〈N〉p

� 〈N〉p/2.

(3.22)

Therefore, remembering that K � 1 � 〈N〉 p/2 and combining this fact, the estimates
(3.22) and (3.20) with (3.17) we conclude the estimate (3.18) for N � 1. The case
N � 1 will be treated in a different way: we will use a Taylor expansion. The identity

(e(t−|t|)|ξ |p −1)− (e−|t||ξ |p −1) =
∞

∑
n=1

χIR−(t)(2t)
n

n!
|ξ |pn−

∞

∑
n=1

(−|t|)n

n!
|ξ |pn,

allows us to conclude that

∑
L
〈L+Np〉1/2||PL(ϕN (ξ )η(t)(e(t−|t|)|ξ |p − e−|t||ξ |p))||L2

t

�
∞

∑
n=1

|ξ |pn

n! ∑
L
〈L〉1/2

[
‖PL(|t|nη(t))‖L2

t
+2n‖PL(tnη(t)χIR−(t))‖L2

t

]
� Np

∞

∑
n=1

1
n!

[
|| |t|nη(t)||

B1/2
2,1

+2n||tnη(t)χIR−(t)||
B1/2

2,1

]
. (3.23)

Because H1 ↪→B1/2
2,1 and ||χIR− f ||H1

t
� || f ||H1

t
if f (0) = 0, the right-hand side of (3.23)

is

� Np
∞

∑
n=1

1
n!

2n|| |t|nη(t)||H1
t

� Np. (3.24)

Combining this last estimate with (3.17) we conclude the estimate (3.18) for N < 1.
This finishes the estimate of Term (II).
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Term (I). Using a Taylor expansion of eitτ , the Cauchy-Schwarz inequality in τ
and remembering the estimates of the integrals in (3.16), we obtain

||PL(I)||L2
t

�
∞

∑
n=1

1
n!
||ϕN (ξ )PL(tnθp)||L2

t

∫
|τ|�1

|τ|n
|iτ + |ξ |p| |ω̃N(τ)|dτ

�
∞

∑
n=1

1
n!
||PL(ϕN (ξ )tnθp)||L2

t

[∫
|τ|�1

|ω̃N(τ)|2
〈iτ + |ξ |p〉 dτ

]1/2

×
[∫

|τ|�1

|ϕN (ξ )||τ|2〈iτ + |ξ |p〉
|iτ + |ξ |p|2 dτ

]1/2

� 〈N〉p/2N−p
∞

∑
n=1

1
n!
||ϕN (ξ )PL(tnθp)||L2

t ∑
L1

〈L1 +Np〉−1/2‖ϕL1ω̃N‖L2
τ
.

(3.25)

Thus, it suffices to show that

∑
L
〈L+Np〉1/2

∞

∑
n=1

1
n!
‖ϕN (ξ )PL(tnθp(t))‖L2

t
� 〈N〉p/2. (3.26)

Again, using (3.21), we get

| ̂tnθp(t)(τ) | � 2n‖θp‖L1
t
� 2n min{|τ|−1, 〈ξ 〉p|τ|−2}. (3.27)

With this in hands and arguing as in (3.22), we have that the left-hand side of (3.26) is

� 〈N〉p/2
+∞

∑
n=1

2n

n!
� 〈N〉p/2,

the desired bound.

Term (III). Writting ĝ(τ) :=
ω̃N(τ)

it + |ξ |p χ{|τ|�1} , so we need to prove that

∑
L
〈L+Np〉1/2||PL(θpg)||L2

t
� ∑

L
〈L+Np〉1/2||PLg||L2

t
, (3.28)

noting that ||PLg||L2
t
� 〈L+Np〉−1‖ϕLϕNω̃‖L2

τ
. First, using a paraproduct decomposi-

tion as in (3.9) we have

PL(θpg) = PL

(
∑

M�L

(P�MθpPMg+PMθpP�Mg)

)
= PL(III1)+PL(III2).

We estimate the contributions of these terms separately. In both cases, we divide
the proof when L � 〈N〉p and L > 〈N〉p .
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Term (III1) . For the sum over L � 〈N〉p , rearranging the sums we have

∑
L�〈N〉p

〈L+Np〉1/2||PL(III1)||L2
t

� ∑
L�〈N〉p

〈L〉1/2 ∑
M�L

‖P�Mθp|L∞
t
||PMg||L2

t

� ∑
M�〈N〉p

∑
L�M

〈L〉1/2||PMg||L2
t

� ∑
M
〈M〉1/2||PMg||L2

t
. (3.29)

Now we deal with the sum over L � 〈N〉p . Because supp(P̂�Mθp) ⊂ {|τ| ∼ M} ∪
{|τ|�M}∩supp(θ̂p) , this case is divided into two subcases, namely, when supp(θ̂p)⊂
{|τ| ∼ M} or when supp(θ̂p) ⊂ {|τ| � M} .

For the first subcase, applying the Bernstein inequality and rearranging the sums,
we obtain

∑
L�〈N〉p

〈L+Np〉1/2||PL(III1)||L2
t
� ∑

L�〈N〉p
〈L+Np〉1/2 ∑

M�L

||PL(P�MθpPMg)||L2
t

� ∑
L�〈N〉p

〈N〉p/2 ∑
M�L

||PL(PMθpPMg)||L2
t

� ∑
L�〈N〉p

〈N〉p/2 ∑
M�L

L1/2||PMθp||L2
t
||PMg||L2

t

� ∑
M

〈N〉p/2M1/2||PMθp||L2
t
||PMg||L2

t

� ∑
M
〈N〉p/2||PMg||L2

t
(3.30)

where in the last inequality we used the estimate ||PMθp||L2
t

� |||τ|−1ϕM(τ)||L2
τ

�
M−1/2 .

Now, for the second subcase, we must have M ∼ L . Thus we have

∑
L�〈N〉p

〈L+Np〉1/2||PL(III1)||L2
t
� ∑

L�〈N〉p
〈L+Np〉1/2 ∑

M�L

||PL(P�MθpPMg)||L2
t

� ∑
L�〈N〉p

〈N〉p/2 ∑
M∼L

||PL(P�MθpPMg)||L2
t

� ∑
L�〈N〉p

〈N〉p/2||P�Lθp||L∞
t
||PLg||L2

t

� ∑
L

〈N〉p/2||PLg||L2
t
, (3.31)

and we finished this subcase and therefore the desired estimate for (III1 ).

Term (III2) . For the sum over L � 〈N〉p , since |θ̂p| � 〈ξ 〉p|τ|−2 , then we have
by Young’s inequality

||PL(PMθpP�Mg)||L2
t

� ||ϕM θ̂p||L1
τ
||P�Mg||L2

t
� 〈N〉p/2M−1||P�Mg||L2

t
.
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Therefore

∑
L�〈N〉p

〈L+Np〉1/2||PL(III2)||L2
t
� ∑

L�〈N〉p
〈L+Np〉1/2 ∑

M�L

||PMθpP�Mg||L2
t

� ∑
L�〈N〉p

L1/2〈N〉p||P�Mg||L2
t ∑

M�L

M−1

� 〈N〉p/2||P�Mg||L2
t
. (3.32)

For the case L � 〈N〉p , first one can see that

∑
L�〈N〉p

〈L+Np〉1/2||PL(III2)||L2
t
� ∑

L�〈N〉p
〈L+Np〉1/2 ∑

M�L

||PL(PMθpP�Mg)||L2
t

� ∑
L�〈N〉p

〈L+Np〉1/2 ∑
M�L

||PL(PMθpPMg)||L2
t

+ ∑
L�〈N〉p

〈L+Np〉1/2 ∑
M�L

||PL(PMθP�Mg)||L2
t
.

(3.33)

The first term has already been estimated (see (3.30)). For the second term, observing
that we are in the case supp(ĝ) ⊂ {|τ| � M} , thus M ∼ L and

∑
L�〈N〉p

〈L+Np〉1/2 ∑
M�L

||PL(PMθpP�M g)||L2
t
� ∑

L
〈N〉p/2||PL θp||L2

t
||P�L g||L∞

t

� ∑
L

〈N〉p/2L−1/2 ∑
M�L

M1/2‖ϕN ĝ‖L2
τ

� ∑
M
〈N〉p/2||PMg||L2

t
, (3.34)

and we complete the estimate of term (III2 ) and therefore the proof of Lemma 3.2. �

PROPOSITION 3.3. Let p > 0 and L : N −p/2 → S −p/2 the linear operator
defined by

L f (t,x) = χIR+(t)η(t)
∫ t

0
Wp(t− t ′,t− t ′) f (t ′)dt ′

+χIR−(t)η(t)
∫ t

0
Wp(t − t ′, t + t ′) f (t ′)dt ′. (3.35)

If f ∈ N −p/2 , then

||L f ||S −p/2 � || f ||N −p/2 . (3.36)

Proof. By the definition of S −p/2 and N −p/2 it suffices to prove that

||L f ||X−p/2,1/2,1 � || f ||X−p/2,−1/2,1 . (3.37)
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and
||L f ||Y−p/2,1/2 � || f ||Y−p/2,−1/2. (3.38)

Noting that Wp(t, t ′) = e−t∂ 3
x e−|t′|Lp , then

L { f}(t, x) = η(t)χIR+(t)
∫ t

0
e−t∂ 3

x e−|t−t′ |Lpet′∂ 3
x f (t ′)dt ′

+ η(t)χIR−(t)
∫ t

0
e−t∂ 3

x e−|t+t′ |Lpet′∂ 3
x f (t ′)dt ′

= e−t∂ 3
x

[
η(t)

∫ t

0

{
χIR+(t)e−|t−t′ |Lp + χIR−(t)e−|t+t′ |Lp

}
et′∂ 3

x f (t ′)dt ′
]

= e−t∂ 3
x

[
η(t)

∫ t

0
e−(|t|−t′)Lpet′∂ 3

x f (t ′)dt ′
]
. (3.39)

Writing ω(t ′, x) = et′∂ 3
x f (t ′, x) , and observe that

e−(|t|−t′)Lpω(t ′, x) = F−1
ξ

(
e−|t||ξ |pet′|ξ |pF−1

t′ {ω̃(τ, ξ )}
)

=
∫

IR2
e(iτ+|ξ |p)t′eixξ e−|t||ξ |p ω̃(τ, ξ )dτdξ , (3.40)

then we can conclude that

L { f}(t, x) = e−t∂ 3
x

[
η(t)

∫
IR2

eixξ eitτe(t−|t|)|ξ |p − e−|t||ξ |p

iτ + |ξ |p ω̃(τ, ξ )dτdξ

]

= e−t∂ 3
x

[
F−1

ξ

{
η(t)

∫
IR

eitτe(t−|t|)|ξ |p − e−|t||ξ |p

iτ + |ξ |p ω̃(τ, ξ )dτ

}]
. (3.41)

The estimate (3.37) follows from Proposition 3.3, noting that

‖PNQLL { f}‖L2
x,t

=

∥∥∥∥∥ϕN (ξ )ϕL(τ − ξ 3)Ft

{
η(t)

∫
IR

eitτe(t−|t|)|ξ |p − e−|t||ξ |p

iτ + |ξ |p ω̃(τ, ξ )dτ

}
(τ − ξ 3)

∥∥∥∥∥
L2

τ,ξ

= ‖ϕL(τ − ξ 3)Ft (κp,ξ )(τ − ξ 3)‖L2
τ,ξ

= ‖‖PLκp,ξ‖L2
t
‖L2

ξ
, (3.42)

where κp,ξ (t) was defined in Lemma 3.2.
Now we establish the estimate (3.38). It suffices to prove that

‖(∂t + ∂ 3
x +Lp + I)PNL { f}‖L1

t L2
x
� ‖PN f‖L1

t L2
x
. (3.43)

After this, squaring and summing in N , we get the estimate (3.38). In order to prove
(3.43), because ‖g‖L1

t L2
x
= ‖g‖L1

t�0L
2
x
+‖g‖L1

t<0L
2
x
, we will treat the cases t > 0 and t < 0
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separately. So, in the first case, using (3.35), one can see that

(∂t + ∂ 3
x +Lp + I)(L { f})

= ∂t

(
η(t)

∫ t

0
Wp(t− t ′,t− t ′) f (t ′)dt ′

)
+ η(t)

∫ t

0
(∂ 3

x +Lp)Wp(t− t ′, t− t ′) f (t ′)dt ′

+ η(t)
∫ t

0
Wp(t− t ′,t− t ′) f (t ′)dt ′

= η(t) f (t)+ (η ′(t)+ η(t))
∫ t

0
Sp(t − t ′) f (t ′)dt ′

+ η(t)
∫ t

0
(∂t + ∂ 3

x +Lp)Sp(t)Sp(−t ′) f (t ′)dt ′

= η(t) f (t)+ (η ′(t)+ η(t))
∫ t

0
Sp(t− t ′) f (t ′)dt ′, (3.44)

where the last line was obtained by remembering that Wp(t,t) = Sp(t) (t > 0) and
∂t Sp(t)F = −(∂ 3

x +Lp)Sp(t)F . Thus, we have

‖(∂t + ∂ 3
x +Lp + I)PN(L { f})‖L1

t L2
x

� ‖PN f‖L1
t L2

x
+‖η ′+ η‖L1

t

∫ +∞

0
‖ϕN (ξ ) f̂ (t ′, ξ )‖L2

ξ
dt ′

� ‖PN f‖L1
t L2

x
, (3.45)

the desired estimate. Now we treat the case t < 0. As mentioned in [14], this is harder
than the former case, because the presence of Wp(t− t ′,t + t ′) implies that L { f} does
not satisfy the same equation for negative times. Indeed, with t < t ′ < 0, we have
Wp(t − t ′, t + t ′) = e−t(∂ 3

x −Lp)et′(∂ 3
x +Lp) and e−t(∂ 3

x −Lp) is the semi-group associated to
another PDE: (∂t + ∂ 3

x −Lp)u = 0. In order to avoid this problem we decompose

∂t + ∂ 3
x +Lp + I = (∂t + ∂ 3

x −Lp + I)+2Lp. (3.46)

With this in hands, first we see that

(∂t + ∂ 3
x −Lp + I)(L { f})

= ∂t

(
η(t)

∫ t

0
Wp(t− t ′,t− t ′) f (t ′)dt ′

)
+ η(t)

∫ t

0
(∂ 3

x −Lp)Wp(t− t ′, t + t ′) f (t ′)dt ′

+ η(t)
∫ t

0
Wp(t− t ′,t + t ′) f (t ′)dt ′

= η(t)Wp(0, 2t) f (t)+ (η ′(t)+ η(t))
∫ t

0
Wp(t − t ′,t + t ′) f (t ′)dt ′

+ η(t)
∫ t

0
(∂t + ∂ 3

x −Lp)e−t(∂ 3
x −Lp)et′(∂ 3

x +Lp) f (t ′)dt ′

= η(t)Wp(0, 2t) f (t)+ (η ′(t)+ η(t))
∫ t

0
Wp(t− t ′,t + t ′) f (t ′)dt ′. (3.47)
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Thus, doing the same calculations as in (3.45) one can see that

‖(∂t + ∂ 3
x −Lp + I)(PNL { f})‖L1

t L2
x
� ‖PN f‖L1

t L2
x
. (3.48)

So it remains to prove a similar estimate for the term 2Lp(PNL { f}) . First, we observe
that

‖Lp(PNL { f})‖L1
t<0L

2
x
∼ Np‖PNL { f}‖L1

t<0L
2
x
.

Denoting by Θ the right-hand side of (3.47) we can see that

PNL { f} = −(∂t + ∂ 3
x −Lp)(PNL { f})+PNΘ. (3.49)

Thus, integrating by parts and using Cauchy-Schwarz inequality we obtain

‖PNL { f}‖2
L2

x

=
〈
PNL { f}, PNL { f}〉L2

x

= −1
2

d
dt
‖PNL { f}‖2

L2
x
+

〈
Lp(PNL { f}), PNL { f}〉L2

x
+

〈
PNΘ, PNL { f}〉L2

x

� −‖PNL { f}‖L2
x

d
dt
‖PNL { f}‖L2

x
+Np‖PNL { f}‖2

L2
x
−‖PNΘ‖L2

x
‖PNL { f}‖L2

x
.

(3.50)

Therefore,

Np‖PNL { f}‖2
L2

x
� ‖PNL { f}‖2

L2
x
+‖PNL { f}‖L2

x

d
dt
‖PNL { f}‖L2

x

+‖PNΘ‖L2
x
‖PNL { f}‖L2

x
. (3.51)

Now, for t < 0 such that ‖PNL { f}‖L2
x
�= 0, we can divide both sides in (3.51) by

‖PNL { f}‖L2
x

to obtain

Np‖PNL { f}‖L2
x
� ‖PNL { f}‖L2

x
+

d
dt
‖PNL { f}‖L2

x
+‖PNΘ‖L2

x
. (3.52)

But, this last inequality is still true for t < 0 such that ‖PNL { f}‖L2
x
= 0. Indeed, t �→

‖PNL { f}‖L2
x

is non negative and so (d/dt)‖PNL { f}‖L2
x
= 0 whenever ‖PNL { f}‖L2

x

= 0. Therefore, (3.52) is valid for all t < 0. Integrating this inequality on ]t, 0[ we get

Np
∫ 0

t
‖PNL { f}‖L2

x
dt ′ �

∫ 0

t
‖PNL { f}‖L2

x
dt ′ − ‖PNL { f}‖L2

x
+

∫ 0

t
‖PNΘ‖L2

x
dt ′,
(3.53)

and so

‖Lp(PNL { f})‖L1
t<0L

2
x
∼ Np‖PNL { f}‖L1

t L2
x
� ‖PNL { f}‖L1

t L2
x
+‖PNΘ‖L1

t L2
x
, (3.54)

and we finish this case noting that, obviously, ‖PNL { f}‖L2
xL

1
t
� ‖PN f‖L2

xL
1
t
. �
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4. Bilinear estimates

In this section, we will need the elementary results in the Appendix and here we
establish the following important estimate:

PROPOSITION 4.1. For all u,v ∈ S
−p/2

, with p � 2 , we have

‖∂x(uv)‖N −p/2 � ‖u‖S −p/2 ‖v‖S −p/2 . (4.1)

Proof. Using dyadic decomposition, one can write the left-hand side of (4.1) as

‖∂x(uv)‖2
N −p/2 ∼ ∑

N

∥∥∥∥∥ ∑
N1,N2

PN∂x(PN1uPN2v)

∥∥∥∥∥
2

N −p/2

. (4.2)

Now, via Fx , because |ξ | ∼ N , |ξ1| ∼ N1 and |ξ2| ∼ N2 , where ξ = ξ1 + ξ2 (by
convolution), one can see that PN∂x(PN1uPN2v) vanishes unless one of the following
cases holds:

high-low interaction N ∼ N2 and N1 � N ;

low-high interaction N ∼ N1 and N2 � N ;

high-high interaction N � N1 ∼ N2 .

Thus, we have

(4.2) � ∑
N

∥∥∥∥∥ ∑
N�N1∼N2

PN∂x(PN1uPN2v)

∥∥∥∥∥
2

N −p/2

+∑
N

∥∥∥∥∥ ∑
N2∼N

∑
N1�N2

PN∂x(PN1uPN2v)

∥∥∥∥∥
2

N −p/2

+∑
N

∥∥∥∥∥ ∑
N1∼N

∑
N2�N1

PN∂x(PN1uPN2v)

∥∥∥∥∥
2

N −p/2

. (4.3)

The first sum is

∼
∥∥∥∥∥∑N ∑

N1�N1

PN∂x(PN1uPN1v)

∥∥∥∥∥
2

N −p/2

∼
∥∥∥∥∥∑N1

∑
N�N1

PN∂x(PN1uPN1v)

∥∥∥∥∥
2

N −p/2

� ∑
N1

‖P�N1∂x(PN1uPN1v)‖2
N −p/2 . (4.4)

The second sum is

� ∑
N

∥∥∥∥∥ ∑
N1�N

PN∂x(PN1uPNv)

∥∥∥∥∥
2

N −p/2

� ∑
N

∥∥PN∂x(P�NuPNv)
∥∥2
N −p/2 .
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By simetry with the second sum, we have analogous bound for the third sum. So,
taking account these estimates, in order to prove (4.1), we need to prove the following
estimates

‖P�N1∂x(PN1uPN1v)‖N −p/2 � ‖PN1u‖S −p/2 ‖PN1v‖S −p/2 , ∀ N1 dyadic, (HH)∥∥PN∂x(P�NuPNv)
∥∥
N −p/2 � ‖u‖S −p/2 ‖PNv‖S −p/2 , ∀ N dyadic, (HL)

and a similar estimate for the (symmetric) case low-high.
First, we start to prove the

4.1. (HL)-estimate

We can see that∥∥PN∂x(P�NuPNv)
∥∥
N −p/2 � ∑

N1�min{1,N}
‖PN∂x(PN1uPNv)‖N −p/2

+ ∑
1�N1�N

‖PN∂x(PN1uPNv)‖N −p/2 . (4.5)

Using the Hölder and Bernstein inequalities and remember that p � 2, the first sum is

� ∑
N1�min{1,N}

‖PN∂x(PN1uPNv)‖Y−p/2,−1/2
p

� ∑
N1�1

〈N〉−p/2N‖PN1uPNv‖
L1
t L2

x

� ∑
N1�1

‖PN1u‖L2
t L∞

x
‖PNv‖

L2
t L2

x
� ∑

N1�1

N1/2
1 ‖PN1u‖L2‖PNv‖

L2

� ‖u‖
L2‖PNv‖

L2 ∑
N1�1

N1/2
1 . (4.6)

Now, for the second sum we need to work a little bit more. Decomposing the bilinear
term as

PN∂x(P�NuPNv) = ∑
1�N1�N

∑
L,L1,L2

PNQL∂x(PN1QL1uPNQL2v), (4.7)

via F , because |ξ −τ| ∼ L , |ξ1−τ1| ∼ L1 and |ξ2−τ2| ∼ L2 , where ξ = ξ1 +ξ2 and
τ = τ1 + τ2 , and remembering the resonance relation

ξ 3− τ = (ξ1 + ξ2)3 − (τ1 + τ2) = ξ 3
1 − τ1 + ξ2− τ2 +3ξ ξ1ξ2, (4.8)

we can conclude that the right-hand side in (4.7) vanishes unless max{N2N1, Lmed} �
Lmax � 5max{N2N1, Lmed} , i.e.,

Lmax ∼ max{N2N1, Lmed}, (4.9)

where Lmax = max{L,L1,L2} , Lmin = min{L,L1,L2} and Lmed ∈ {L,L1,L2} \ {Lmax,
Lmin} .

In view of (4.9), we divide the proof in three cases, depending on the Lmax .



Differ. Equ. Appl. 13, No. 4 (2021), 431–466. 451

4.1.1. Lmax = L

In this case we have that L � N2N1 . Thus, by the Bernstein inequality (A.2) and
remember the estimates (2.9) and (2.20) we have that the second sum in (4.5) is

� ∑
1 � N1 � N

∑
L � N2N1

‖PNQL∂x(PN1uPNv)‖
X

− p
2 ,− 1

2 ,1
p

� ∑
1 � N1 � N

∑
L � N2N1

〈N〉−p/2〈L+Np〉−1/2N‖PN1uPNv‖
L2

� N−p/2+1 ∑
1 � N1 � N

‖PN1uPNv‖
L2 ∑

L � N2N1

L−1/2

� N−p/2+1 ∑
1 � N1 � N

‖PN1u‖L∞
t L2

x
‖PNv‖

L2 N
−1N1

−1/2N1/2

� N−p/2 ∑
1 � N1 � N

Np/2−1/2
1 ‖u‖

L∞
t H−p/2

x
N1/2‖PNv‖

L2

� ‖u‖S −p/2 ‖PNv‖S −p/2 ∑
1 � N1 � N

(N1/N)p/2−1/2

and this establishes the desired estimates, noting that the sum converge and is � 1,
because p � 1.

4.1.2. Lmax = L1

In this case, we have L1 ∼ N2N1 or L1 ∼ Lmed . The latter case implies that L1 ∼
Lmed � N2N1 and thus, we have two subcases

1. Lmed = L , and so Lmax = L1 ∼ L � N2N1 ;

2. Lmed �= L , and so Lmed = L2 and L1 ∼ L2 � N2N1 .

Therefore, we have that the second sum in (4.5) is

� ∑
1 � N1 � N

∑
L1∼N2N1

‖PN∂x(PN1QL1uPNv)‖N −p/2

+ ∑
1 � N1 � N

∑
L1∼L2 �N2N1

‖PN∂x(PN1QL1uPNQL2v)‖N −p/2

+ ∑
1 � N1 � N

∑
L�N2N1

‖PNQL∂x(PN1uPNv)‖N −p/2 . (4.10)

The last sum was treated in subsection 4.1.1. Now, by Hölder and Bernstein inequalities
and remembering the estimates (2.9) and (2.10), the first sum in (4.10) is

� ∑
1 � N1 � N

〈N〉−p/2N‖PN1QN2N1
uPNv‖

L1
t L2

x
� ∑

1 � N1 � N

〈N〉−p/2N‖PN1QN2N1
u‖

L2
t L∞

x
‖PNv‖

L2

� ∑
1 � N1 � N

〈N〉−p/2(N2N1)1/2‖QN2N1
PN1u‖L2

t L2
x
‖PNv‖S −p/2
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� ∑
1 � N1 � N

(N1/N)p/2

{
∑
L

[
L1/2‖QL〈N1〉−p/2PN1u‖L2

t L2
x

]2}1/2

‖PNv‖S −p/2

� ∑
1 � N1 � N

(N1/N)p/2‖〈N1〉−p/2PN1u‖S 0‖PNv‖S −p/2

� ‖u‖S −p/2‖PNv‖S −p/2 ∑
1 � N1 � N

(N1/N)p/2 ,

noting that the sum above is � 1, because p > 0.
It remains to treat the second sum in (4.10). Arguing as before, this term is

� ∑
1 � N1 � N

∑
L1 �N2N1

‖PN∂x(PN1QL1uPNQL1v)‖Y−p/2,−1/2
p

� ∑
1 � N1 � N

∑
L1 �N2N1

N−p/2+1N1/2
1 ‖PN1QL1u‖L2‖PNQL1v‖L2 . (4.11)

Also, is clear that ‖PN1QL1u‖L2‖PNQL1v‖L2 is � ‖PN1u‖S −p/2 ‖PNv‖S −p/2 . But, on the

other hand this same product is � L−1
1 ‖PN1u‖S 0 ‖PNv‖S 0 . So, if θ ∈ [0, 1]

‖PN1QL1u‖L2‖PNQL1v‖L2 � L−θ
1 ‖PN1u‖θ

S 0 ‖PN1u‖1−θ
S −p/2 ‖PNv‖θ

S 0 ‖PNv‖1−θ
S −p/2 . (4.12)

Using this estimate with θ = 1/2 and localization properties (see the Appendix), we
have

‖PN1QL1u‖L2‖PNQL1v‖L2 � L−1/2
1 Np/4

1 Np/4‖PN1u‖S −p/2 ‖PNv‖S −p/2 . (4.13)

Considering this inequality in the right-hand side of (4.11) we get

� ∑
1 � N1 � N

∑
L1 �N2N1

N−p/2+1N1/2
1 L−1/2

1 Np/4
1 Np/4‖PN1u‖S −p/2‖PNv‖S −p/2

� N−p/4+1‖PNv‖S −p/2 ∑
1 � N1 � N

N1/2+p/4
1 (N2N1)−1/2‖PN1u‖S −p/2

� N−p/4‖PNv‖S −p/2 ∑
1 � N1 � N

Np/4
1 ‖PN1u‖S −p/2

� N−p/4‖PNv‖S −p/2

(
∑

1 � N1 � N

Np/2
1

)1/2(
∑

1 � N1 � N

‖PN1u‖2
S −p/2

)1/2

� ‖PNv‖S −p/2

(
∑

1 � N1 � N

‖PN1u‖2
S −p/2

)1/2

, (4.14)

and using the localization property (A.7) the desired estimate follows.

4.1.3. Lmax = L2

In this case we have L2 ∼ N2N1 or L2 ∼ Lmed . The latter case implies that L2 ∼
Lmed � N2N1 , and thus we have two subcases



Differ. Equ. Appl. 13, No. 4 (2021), 431–466. 453

1. Lmed = L1 , and so L1 ∼ L2 � N2N1 ;

2. Lmed �= L1 , and so Lmed = L and L2 ∼ L � N2N1 .

Therefore, we have that

∑
1 � N1 � N

‖PN∂x(PN1uPNv)‖N −p/2 ∼ ∑
1 � N1 � N

∥∥∥∥∥ ∑
L, L1, L2

PNQL∂x(PN1QL1uPNQL2v)

∥∥∥∥∥
N −p/2

� ∑
1 � N1 � N

∑
L2∼N2N1

‖PN∂x(PN1uPNQL2v)‖N −p/2

+ ∑
1 � N1 � N

∑
L1∼L2 �N2N1

‖PN∂x(PN1QL1uPNQL2v)‖N −p/2

+ ∑
1 � N1 � N

∑
L�N2N1

‖PNQL∂x(PN1uPNv)‖N −p/2 . (4.15)

The last two sums were treated in subsection 4.1.2 item (ii) and in subsection 4.1.1,
respectively. For the first sum, as before, we can obtain that

∑
1 � N1 � N

∑
L2∼N2N1

‖PN∂x(PN1uPNQL2v)‖N −p/2

� ∑
1 � N1 � N

N−p/2+1N1/2
1 ‖PN1u‖L2‖PNQN2N1

v‖
L2

� ∑
1 � N1 � N

N−p/2‖PNu‖S −p/2

[
(N2N1)1/2‖PNQN2N1

v‖
L2

]
� N−p/2

{
∑

1 � N1 � N

‖PNu‖2
S −p/2

}1/2{
∑

N2 � L �N3

[
L1/2‖QLPNv‖

L2

]2

}1/2

� ‖u‖S −p/2‖PNv‖S −p/2 ,

and we finish the proof for the case HL-estimate.
Now, we finish the proof of (4.2), establishing the

4.2. (HH)-estimate

We can see that

‖P�N1∂x(PN1uPN1v)‖N −p/2 � ∑
N � min{1,N1}

‖PN∂x(PN1uPN1v)‖N −p/2

+ ∑
1 � N � N1

‖PN∂x(PN1uPN1v)‖N −p/2 . (4.16)

Again, the estimate for the first term is easier than for the second. In fact, if p � 0, the
first term is

� ∑
N � 1

‖PN∂x(PN1uPN1v)‖Y−p/2,−1/2
p

� ∑
N � 1

N−p/2N‖PN(PN1uPN1v)‖L1
t L2

x

� ∑
N � 1

N−p/2N3/2‖PN1u‖L2‖PN1v‖L2 � ‖PN1u‖S −p/2 ‖PN1v‖S −p/2 ∑
N � 1

N3/2.
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For the second term, using dyadic decompostion and triangular inequality

∑
1 � N � N1

‖PN∂x(PN1uPN1v)‖N −p/2 � ∑
1 � N � N1

∑
L, L1, L2

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2 .

(4.17)
Using again the resonance relation (4.8) and arguing as before, we may restrict ourself
to the region where

Lmax ∼ max{N2
1N, Lmed}, (4.18)

and this leads us to consider the following three cases. By simmetry we can suppose
that L1 � L2 .

4.2.1. Lmax = L

In this case we have L � N2
1 N . Also, for λ > 0 to be choosen later,

∑
L � N2

1 N

∑
L1,L2

= ∑
L � N2

1 N

∑
L1�λ ,

or
L2�λ

+ ∑
L � N2

1 N

∑
L1�λ ,
L2�λ

� ∑
L1�λ

+ ∑
L2�λ

+ ∑
L1�λ ,
L2�λ

. (4.19)

Therefore the right-hand side of (4.17) is

� ∑
1 � N � N1

∑
L � N2

1 N

∑
L1�λ ,

or
L2�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2

+ ∑
1 � N � N1

∑
L � N2

1 N

∑
L1,L2�λ ,

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2

� ∑
1 � N � N1

∑
L1�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2

+ ∑
1 � N � N1

∑
L2�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2

+ ∑
1 � N � N1

∑
L1�λ ,
L2�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖N −p/2

= L1(p)+L2(p)+L3(p). (4.20)

We will only estimate L1(p) and L3(p) , because the estimate of L2(p) is simi-
lar to the estimate of L1(p) . We consider the following three subcases:

Subcase I: If p > 3
Let λ = Nα

1 Nβ , where α and β will be choosen later. Taking advantage of the
X −p/2,−1/2,1

p part of N −p/2 and using (A.3) we obtain

L1(p) � ∑
1 � N � N1

∑
L1�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖X−p/2,−1/2,1

� ∑
1 � N � N1

∑
L�N2

1 N,
L1�λ

N−p/2+1L−1/2‖PN(QL1PN1uPN1v)‖L2 (4.21)
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� ∑
1 � N � N1

∑
L�N2

1 N,
L1�λ

N−p/2+1L−1/2N1/2L1/2
1 ‖PN1u‖L2‖PN1v‖L2

�‖PN1u‖L2‖PN1v‖L2N
α/2−1
1 ∑

1 � N � N1

N−p/2+1+β/2.

Thus for α = 2, β = 1− ε and 0 < ε < 1, we obtain

L1(p) �‖PN1u‖L2‖PN1v‖L2

�‖PN1u‖S −p/2‖PN1v‖S −p/2 .
(4.22)

For L3(p) , considering the norm Y −p/2,−1/2
p , we have

L3(p) � ∑
1 � N � N1

∑
L1,L2�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖Y−p/2,−1/2
p

� ∑
1 � N � N1

N−p/2+1‖PN
(
PN1Q�λ uPN1Q�λ v

)‖L1
t L2

x

� ∑
1 � N � N1

N−p/2+1N1/2‖PN1Q�λ u‖L2‖PN1Q�λ v)‖L2

�‖PN1u‖L2‖PN1v‖L2 ∑
1�N�N1

N−(p+3)/2

�‖PN1u‖S−p/2‖PN1v‖S−p/2 .

(4.23)

Subcase II: If p = 2
This case was treated in [14] also considering α = 2 and β = 1− ε . Indeed let

X (p) the right side of the second inequality in (4.21), using the Kato smoothing effect,
was proved in [14] that

L1(2) � ∑
1 � N � N1

∑
L1�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖X−1,−1/2,1

�X (2)
�‖PN1u‖S−1‖PN1v‖S−1 .

(4.24)

Let Y (p) the right side of the second inequality in (4.23), using the inequality (2.10),
was proved in [14] that

L3(2) � ∑
1 � N � N1

∑
L1,L2�λ

‖PNQL∂x(PN1QL1uPNQL2v)‖Y−1,−1/2

�Y (2)
�‖PN1u‖S−1‖PN1v‖S−1 .

(4.25)

Subcase III: If 2 < p � 3
Let p0 = 2 and we consider p1 > 3, therefore p = θ p0 +(1−θ )p1 , where θ ∈

(0,1) .



456 X. CARVAJAL, P. GAMBOA AND R. SANTOS

As above we have

L1(p) �X (p) = ∑
1 � N � N1

∑
L�N2

1 N,
L1�λ

N−p/2+1L−1/2‖PN(QL1PN1uPN1v)‖L2

= ∑
1 � N � N1

N−p/2
{

N ∑
L�N2

1 N,
L1�λ

L−1/2‖PN(QL1PN1uPN1v)‖L2

}

= ∑
1 � N � N1

N−θ p0/2H θ N(1−θ)p1/2H 1−θ ,

(4.26)

where
H = N ∑

L�N2
1 N,

L1�λ

L−1/2‖PN(QL1PN1uPN1v)‖L2 .

Using Hölder inequality (with p = 1/θ and q = 1/(1− θ )), Case I and Case II, we
arrive to

X (p) �X (p0)θ X (p1)1−θ

�
(‖PN1u‖S−p0/2‖PN1v‖S−p0/2

)θ (‖PN1u‖S−p/2‖PN1v‖S−p/2

)1−θ

∼N−p0θ/2
1 N−p1(1−θ)/2

1 ‖PN1u‖S 0N
−p0θ/2
1 N−p1(1−θ)/2

1 ‖PN1v‖S 0

∼N−p/2
1 ‖PN1u‖S 0N

−p/2
1 ‖PN1v‖S 0

∼‖PN1u‖S−p/2‖PN1v‖S−p/2 .

(4.27)

Similarly, the estimate for L3(p) follows using again the Cases I and II and the inter-
polation inequality

Y (p) � Y (p0)θ Y (p1)1−θ , p0 = 2, p1 > 3.

4.2.2. Lmax = L1

Using the relation (4.18), first we consider the case L1 ∼ N2
1N and we need to

estimate

‖ ∑
1 � N � N1

PN∂x(PN1QN2
1 NuPN1v)‖Y−p/2,−1/2

∼
(

∑
1 � N � N1

N−p+2‖PN(PN1QN2
1 NuPN1v)‖2

L1
t L2

x

)1/2

�
(

∑
1 � N � N1

N−p+3‖PN1QN2
1 Nu‖2

L2‖PN1v‖2
L2

)1/2

,

(4.28)

where was used the inequality (A.1). Let T (p) the sum in the right side of the second
inequality of (4.28). If p > 3 and considering the inequality (2.9) it is not hard to see
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that

T (p) := ∑
1 � N � N1

N−p+3‖PN1QN2
1 Nu‖2

L2‖PN1v‖2
L2

�‖PN1v‖2
L2‖PN1u‖2

L2 ∑
1 � N � N1

N−p+3

�‖PN1u‖2
S−p/2‖PN1v‖2

S−p/2 , p > 3.

(4.29)

Using a change of variable and (2.10), was proved in [14]

T (2) � ‖PN1u‖2
S −1‖PN1v‖2

S−1 .

An interpolation argument as above (see the Case Lmax = L ) proves the inequality in
the case 2 < p � 3.

Finally in the case L1 ∼ L2 � N2
1N , considering again the Y−p/2,−1/2

p norm we
have

‖ ∑
1 � N � N1

∑
L1∼L2�N2

1 N

PN∂x(PN1QL1uPN1QL2v)‖Y−p/2,−1/2
p

� ∑
1 � N � N1

∑
L1 � N2

1 N

‖PN∂x(PN1QL1uPN1QL1v)‖Y
−p/2,−1/2
p

�K (p) := ∑
1 � N � N1

∑
L1 � N2

1 N

N−p/2N‖PN(PN1QL1uPN1QL1v)‖L1
t L2

x
.

(4.30)

Was proved in [14] that K (2) � ‖PN1u‖S−1‖PN1v‖S−1 . Therefore by the interpolation
argument is sufficient to consider p > 3. In fact using (A.1) and Cauchy-Schwarz
inequality, we get

K (p) � ∑
1 � N � N1

∑
L1�N2

1 N

N−p/2+1N1/2‖PN1QL1u‖L2‖PN1QL1v‖L2

� ∑
1 � N � N1

N(−p+3)/2

(
∑
L1

‖QL1PN1u‖2
L2

)1/2(
∑
L1

‖QL1PN1v‖2
L2

)1/2

�‖PN1u‖L2‖PN1v‖L2 ∑
1�N�N1

N(−p+3)/2

�‖PN1u‖S−p/2‖PN1v‖S −p/2 . �

(4.31)

5. Well-posedness

In this section we obtain well-posedness results. In order to remove some restric-
tions on the size of the initial data, we change the metric of the resolution space used in
the previous sections. We define the space Zβ := S −p/2×S 0 and define, for β � 1,
the functional

‖u‖Zβ := inf
u = u1 +u2

u1 ∈ S −p/2,u2 ∈ S 0

{
||u1||S −p/2 +

1
β
||u2||S 0

}
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for all u ∈ Zβ . Which defines a new norm on S −p/2 . In addition, this norm is

equivalent to ||.||S −p/2 , i.e. ||u||Zβ ∼ ||u||S−p/2 , u ∈ S −p/2 .
In order to remove the restrictions said before, first we establish the following

nonlinear estimate

PROPOSITION 5.1. There exists ν > 0 such that for all (u,v) ∈ S 0 ×S −p/2

with compact support (in time) contained in [−T,T ] , then

‖∂x(uv)‖N −p/2 � T ν‖u‖S 0‖v‖S−p/2 . (5.1)

REMARK 5.2. For any θ > 0, there exists μ = μ(θ ) > 0 such that for any smooth
function f with compact support in time in [−T,T ] . We have to∥∥∥∥F−1

τ,ξ

{
f̂ (τ,ξ )
〈τ − ξ 3〉

}∥∥∥∥
L2

t,x

� T μ‖ f‖L2
t,x

. (5.2)

The proof of this remark can be found in [8] (Lemma 3.1) and [13] (Lemma 3.6).

Proof of Proposition 5.1. This proof is very similar with the proof of the Propo-
sition 4.1. For the sackness of completes we will proof the proposition in the more
difficult case: (H L)

i) Lmax = L . In this case observe that

∑
1 � N1 � N

‖PN∂x(PN1uPNv)‖N −p/2 � ∑
1 � N1 � N

∑
L � N2N1

‖PNQL∂x(PN1uPNv)‖
X

− p
2 ,− 1

2 ,1
p

� ∑
1 � N1 � N

∑
L � N2N1

〈N〉−p/2〈L+Np〉−1/2N‖PN1uPNv‖
L2

� N−p/2+1 ∑
1 � N1 � N

‖PN1uPNv‖
L2 ∑

L � N2N1

L−1/2

� N−p/2+1 ∑
1 � N1 � N

‖PN1u‖L2
t L∞

x
‖PNv‖

L∞
t L2

x
N−1N1

−1/2

� ∑
1 � N1 � N

N−1/2
1 ‖PNu‖

L2
t H

3/4
x

‖PNv‖
L∞
t H−p/2

x

� T μ(1/8)‖PNu‖S 0‖PNv‖S−p/2 ∑
1 � N1 � N

N−1/2
1 ,

where in the last line was used the following inequality (see [14]): for any w ∈ S 0

with compact support in [−T,T ]

‖PNw‖L2
t H3/4 � ‖PNw‖

X
0,3/8,2
p

� T μ(1/8)‖PNw‖
X

0,1/2,2
p

� T μ(1/8)‖PNw‖S 0 ,

that can be proved using (5.2).
ii) Lmax = L1 .
In the first sum in (4.10) we have

� ∑
1 � N1 � N

〈N〉−p/2N‖PN1QN2N1
uPNv‖

L1
t L2

x
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� ∑
1 � N1 � N

〈N〉−p/2N‖PN1QN2N1
u‖

L2
t L∞

x
‖PNv‖

L2

� ∑
1 � N1 � N

N−p/2+1N1/2
1 ‖QN2N1

PN1u‖L2
t L2

x
‖PNv‖S −p/2

� ∑
1 � N1 � N

N−p/2+3/4
1 ‖PN1u‖

L2
t H

3/4
x

‖PNv‖S −p/2

� T μ(1/8)‖PNu‖S 0‖PNv‖S −p/2 ∑
1 � N1 � N

N−p/2+3/4
1 .

The second sum is estimated similarly and the last sum was treated in the case i).
iii) Lmax = L2 . In this case is suffice to estimate the first sum (the other cases

follows of the above cases i) e ii))

∑
1 � N1 � N

∑
L2∼N2N1

‖PN∂x(PN1uPNQL2v)‖N −p/2

� ∑
1 � N1 � N

N−p/2+1N1/2
1 ‖PN1u‖L2‖PNQN2N1

v‖
L2

� ∑
1 � N1 � N

N−p/2+3/4
1 ‖PN1u‖

L2
t H

3/4
x

‖PNv‖S−p/2

� T μ(1/8)‖PNu‖S 0‖PNv‖S −p/2 . �

PROPOSITION 5.3. For any β � 1 there exists 0 < T = T (β ) < 1 such that for
any u,v ∈ Zβ with compact support in [−T,T ] , we conclude that

‖L ∂x(uv)‖Zβ � ‖u‖Zβ ‖v‖Zβ . (5.3)

Proof. For u,v ∈ Zβ , by definition of the infimum exist u1,v1 ∈ S −p/2, u2,v2 ∈
S 0 such that

u = u1 +u2, (5.4)

v = v1 + v2, (5.5)

satisfying

‖u‖Zβ < ‖u1‖S −p/2 +
1
β
‖u2‖S 0 � 2‖u‖Zβ , (5.6)

and

‖v‖Zβ < ‖v1‖S −p/2 +
1
β
‖v2‖S 0 � 2‖v‖Zβ . (5.7)

Moreover,

‖L ∂x(uv)‖Zβ � ‖L ∂x(u1v1)‖Zβ +‖L ∂x(u1v2 +u2v1)‖Zβ +‖L ∂x(u2v2)‖Zβ , (5.8)

where L is defined in Proposition 3.3.
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Because ||u||Zβ ∼ ||u||S−p/2 , for u ∈ S −p/2 , from (5.8), we obtain that

‖L ∂x(uv)‖Zβ � ‖L ∂x(u1v1)‖S−p/2 +‖L ∂x(u1v2 +u2v1)‖S −p/2

+‖L ∂x(u2v2)‖S −p/2 ,

� (I)+ (II)+ (III). (5.9)

Now let’s estimate each term on the right-hand side. Applying the results (3.36) and
(4.1), we obtain

(I) � ‖∂x(u1v1)‖N −p/2 � ‖u1‖S −p/2‖v1‖S−p/2 ,

� ‖u1‖Zβ ‖v1‖Zβ .
(5.10)

In the third term on the right-hand side, applying (5.1), we get

(III) � ‖∂x(u2v2)‖N −p/2 � T ν‖u2‖S 0‖v2‖S −p/2 ,

� T ν‖u2‖S 0‖v2‖S 0 .
(5.11)

By (5.6), (5.7) and (5.11), we have that

(III) � T ν4β 2‖u‖Zβ ‖v‖Zβ ,

� ‖u‖Zβ ‖v‖Zβ ,
(5.12)

if 0 < T � β−2/ν < 1.
In the second term on the right-hand side, we have that

(II) � ‖∂x(u1v2)‖N −p/2 +‖∂x(u2v1)‖N −p/2 ,

� T ν4β‖u‖Zβ ‖v‖Zβ
� ‖u‖Zβ ‖v‖Zβ ,

(5.13)

if 0 < T � β−1/ν < 1. �
We define the operator

FT
u0

: u ∈ Zβ �→ η(t)Wp(t, t)u0−η(t)L ∂x(ηT u)2.

We will show that the operator FT
u0

is a contraction on the closed ball

BR :=
{

w ∈ Zβ : ‖w‖Zβ � R
}

.

Let u0 ∈ H−p/2 and ε > 0, we make the following decomposition

u0 = P�Nu0 +P�Nu0,

where N is a dyadic number that we will choose later. By Proposition 3.1we have,

‖η(t)Wp(t, t)P�Nu0‖Zβ ∼ ‖η(t)Wp(t,t)P�Nu0‖S−p/2 � ‖P�Nu0‖H−p/2 � ε,
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where N = N(ε) is large enought. Also

‖η(t)W (t)P�Nu0‖Zβ � 1
β
‖η(t)Wp(t,t)P�Nu0‖S 0

�Np/2

β
‖η(t)Wp(t,t)P�Nu0‖S −p/2

�Np/2

β
‖P�Nu0‖H−p/2

�Np/2

β
‖u0‖H−p/2 � ε,

(5.14)

if

β � Np/2

ε
‖u0‖H−p/2 .

Thus, for u ∈ BR , we obtain

‖FT
u0

u‖Zβ � Cε +C‖ηTu‖2
Zβ

� R
2

+CR2 � R, (5.15)

where was considered R = 2Cε , 0 < ε < 1/(4C2) . Also,

‖FT
u0

u1−FT
u0

u2‖Zβ �C‖ηT (u1 +u2)‖Zβ ‖ηT (u1−u2)‖Zβ

�2CR‖(u1−u2)‖Zβ

�4C2ε‖(u1−u2)‖Zβ ,

(5.16)

and taking 4C2ε < 1, FT
u0

is a contraction . By standard arguments, the uniqueness

holds in the space S
−p/2
T endowed with the norm

‖u‖
S

−p/2
T

:= inf
v∈S −p/2

{‖v‖S−p/2 , v ≡ u on ]0,T [}.

6. Ill-posedness results

LEMMA 6.1. Let g : Rn → R be a continuous function and f : Rn → R be a
positive function. If for all x ∈ Rn , |g(x)| � c0 � 0 , then∣∣∣∣∫

Rn
f (x)g(x)dx

∣∣∣∣ � c0

∫
Rn

f (x)dx. (6.1)

REMARK 6.2. Observe that the estimate (6.1) in Lemma 6.1 is false if g is a
complex valued function. In fact, if we consider n = 1, g(x)= eix and f (x) = χ[−π ,π ](x)
the hypotheses of Lemma 6.1 are satisfied but the estimate (6.1) does not hold. Also
(6.1) is false if f is a positive function such that there exist ξ with | f̂ (ξ )| < f̂ (0) and
g(x) = e−ixξ .
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Let N � 1, IN = [N,N +2] , α = p/2 and

Φ̂N(ξ ) = Nα(χIN (ξ )+ χIN (−ξ )), (6.2)

then
‖ΦN‖2

H−p/2 = 2N2α
∫
|ξ |∼N

〈ξ 〉−pdξ ∼ 1, (6.3)

and
‖ΦN‖2

Hs = 2N2α
∫
|ξ |∼N

〈ξ 〉dξ ∼ Np+2s, (6.4)

then ΦN → 0 in Hs if s < − p
2 .

For t > 0 we define

A2(t,h,h) =
∫ t

0
Sp(t − t ′)∂x(Sp(t ′)h)2dt ′, (6.5)

taking Fourier transform we have

Fx(A2(t,ΦN ,ΦN))(ξ ) = iξ e−t|ξ |p+itξ 3
∫

R
Φ̂N(ξ1)Φ̂N(ξ − ξ1)

(
etϕ −1

ϕ

)
dξ1, (6.6)

where ϕ = ϕ1 + iϕ2 := |ξ |p−|ξ1|p−|ξ − ξ1|p + i(−ξ 3 + ξ 3
1 +(ξ − ξ1)3) , and conse-

quently

‖A2(t,ΦN ,ΦN)‖2
Hs =

∫
R

N2pe−2t|ξ |p〈ξ 〉2s|ξ |2
∣∣∣∣∣
∫

Kξ

etϕ −1
ϕ

dξ1

∣∣∣∣∣
2

dξ , (6.7)

where

Kξ = {ξ1 /ξ − ξ1 ∈ IN , ξ1 ∈−IN}∪{ξ1 /ξ − ξ1 ∈−IN , ξ1 ∈ IN}.
We note that if |ξ | � 1/2, then |Kξ | � 1 and ξ1 ∈ Kξ implies ϕ2 = 3ξ ξ1(ξ − ξ1) ∼
−N2ξ . Let∣∣∣∣∣e−t|ξ |p

∫
Kξ

etϕ −1
ϕ

dξ1

∣∣∣∣∣ =

∣∣∣∣∣
∫

Kξ

et(−|ξ1|p−|ξ−ξ1|p)−3itξ ξ1(ξ−ξ1)− e−t|ξ |p

ϕ1 + iϕ2
dξ1

∣∣∣∣∣
:=

∣∣∣∣∣
∫

Kξ

f
g

dξ1

∣∣∣∣∣ �
∣∣∣∣∣
∫

Kξ
Re

{
f
g

}
dξ1

∣∣∣∣∣ .
(6.8)

Observe that ∣∣∣∣Re

{
f
g

}∣∣∣∣ =
|Re f Reg+ Im f Img|

|g|2 � |Re f Reg|
|g|2 − |Im f |

|g| . (6.9)

For 0 < γ � 1, N � 1, |ξ | ∼ γ and ξ1 ∈ Kξ , one can obtain

Re f = Re{et(−|ξ1|p−|ξ−ξ1|p)−3itξ ξ1(ξ−ξ1)− e−t|ξ |p} �et(−|ξ1|p−|ξ−ξ1|p) − e−tγ p

�e−ctNp − e−tγ p

�−e−tγ p

2
,

(6.10)
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|Reg| = |ϕ1| = | |ξ |p−|ξ1|p −|ξ − ξ1|p | ∼ Np, |Img| = |ϕ2| ∼ N2|ξ | (6.11)

and also

|Im f | = |Im{et(−|ξ1|p−|ξ−ξ1|p)−3itξ ξ1(ξ−ξ1) − e−t|ξ |p}| � e−ctNp
. (6.12)

using (6.9)–(6.12) and N � 1, it follows that∣∣∣∣Re

{
f
g

}∣∣∣∣ � e−tγ p
Np

N2p + γ2N4 − e−ctNp

Np + γN2 � e−tγ p
Np

N2p + γ2N4 . (6.13)

Considering γ ∼ 1, p � 2 and combining (6.7), (6.8) and (6.13) we have

‖A2(t,ΦN ,ΦN)‖2
Hs �

∫
|ξ |∼γ

N2p〈ξ 〉2s|ξ |2
∣∣∣∣ e−tγ p

Np

N2p + γ2N4

∣∣∣∣2 dξ

�N2p e−2tγ p
N2p

N4p + γ4N8

∫
|ξ |∼γ

〈ξ 〉2s|ξ |2dξ

�γ3e−2tγ p
N4p

N4p + γ4N8 .

(6.14)

Therefore

‖A2(t,ΦN ,ΦN)‖Hs � C0 > 0. (6.15)

By Theorem 1.1, there exist T > 0 and 0 < ε0 � 1 such that for any |ε|� ε0 , any
‖h‖H−p/2 � 1 and t ∈ [0,T ] ,

u(t,εh) = εSp(t)h+
∞

∑
k=2

εkAk(t,hk), (6.16)

where hk := (h, . . . ,h) , hk → Ak(t,hk) is a k-linear continuous map from
[
H−p/2(IR)

]k

into C([0,T ]; H−p/2(IR)) and the series converges absolutely in C([0,T ]; H−p/2(IR)) .
If h = ΦN , from (6.16) we get

u(t,εΦN)− ε2A2(t,ΦN ,ΦN) = εS(t)ΦN +
∞

∑
k=3

εkAk(t,Φk
N), (6.17)

if k � 3, then |ε|k = |ε|3|ε|k−3 � |ε|3|ε0|k−3 , thus using (6.3) we obtain

‖
∞

∑
k=3

εkAk(t,Φk
N)‖H−p/2 � |ε|3

∞

∑
k=3

|ε0|k−3‖Ak(t,Φk
N)‖H−p/2

� |ε|3
∞

∑
k=3

|ε0|k−3‖ΦN‖k
H−p/2 � |ε|3.

(6.18)

Now combining (6.4), (6.17) and (6.18) we conclude that, for s < − p
2 ,

ε2‖A2(t,ΦN ,ΦN)‖Hs −‖u(t,εΦN)‖Hs �
∥∥u(t,εΦN)− ε2A2(t,ΦN ,ΦN)

∥∥
Hs

� C|ε|3 +C|ε|Ns+p/2,
(6.19)
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hence

‖u(t,εΦN)‖Hs � ε2‖A2(t,ΦN ,ΦN)‖Hs −C|ε|3−C|ε|Ns+p/2, (6.20)

and considering (6.15)

‖u(t,εΦN)‖Hs � ε2C0−C|ε|3−C|ε|Ns+p/2 � ε2(C0 −C|ε|)−C|ε|Ns+p/2,

� 3
4
C0ε2 −C|ε|Ns+p/2, (6.21)

if |ε| < c0/(4C) . Since u(t,0) = 0 and ΦN → 0 in Hs for s < − p
2 and p � 2, thus

we conclude that the flow-map from Hs(IR) into Hs(IR) , for s < −p/2 and p � 2, is
discontinuous at the origin by letting N tend to infinity.

Finally, to prove the Remark 1.3, it is suffices to follow the steps (6.2)–(6.15) with
Φ̂N(ξ ) = Nα(χIN (ξ )+ χIN (−ξ )) for N � 1, IN = [N,N + 2] , α > 0 (to be choosen
later). Indeed, for s � −α

‖ΦN‖Hs ∼ Ns+α � 1 and ‖A2(t,ΦN ,Φn)‖Hs � N4αN2pγ3

N4p + γ4N8 .

So, taking γ ∼ Np−2 � 1 (in order to get N4p ∼ γ4N8 ) we obtain ‖A2(t,ΦN ,Φn)‖Hs �
C0 , if α = 3/2− p/4 when 0 � p � 2.

A. Elementary estimates

LEMMA A.1. (Bernstein type estimates)

‖PN( f g)‖L2
x
� N1/2‖ f‖L2

x
‖g‖L2

x
, (A.1)

‖PN f PN1g‖L2
x
� N1/2

1 ‖PN f‖L2
x
‖PN1g‖L2

x
, (A.2)

‖PN (QL PN1 f PN1g)‖L2 � N1/2L1/2‖PN1 f‖L2‖PN1g‖L2 , (A.3)

‖PNQ�λ f‖L2 � 1

λ 1/2
‖PN f‖S 0 . (A.4)

Proof. In order to prove (A.1), using Plancherel’s identity and properties of Fourier
transform

‖PN( f g)‖L2
x
= ‖ϕN‖L2

x
‖Fx{ f g}‖L∞

x � N1/2‖ f‖L2
x
‖g‖L2

x
.

The inequality (A.2) is a consequence of properties of convolution and Cauchy-Schwartz
inequality:

‖PN f PN1g‖L2
x
� ‖PN f‖L2

x
‖Fx{PN1g}‖L1

x
� N1/2

1 ‖PN f‖L2
x
‖PN1g‖L2

x
,
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To prove (A.3), let ξ2 = ξ −ξ1 , τ2 = τ − τ1 , using Minkowsky’s inequality, properties
of the Fourier transform and Cauchy-Schwarz two times, we have,

‖PN (QL PN1 f PN1g)‖L2

=‖ϕN(ξ )
∫

IR2
ϕN1(ξ2)g̃(ξ2,τ2)ψL1(ξ1,τ1)ϕN1(ξ1) f̃ (ξ1,τ1)dξ1dτ1‖L2

ξ ,τ

�
∫

IR2
‖ϕN(ξ )ϕN1(ξ2)g̃(ξ2,τ2)‖L2

ξ ,τ
|ψL1(ξ1,τ1)ϕN1(ξ1) f̃ (ξ1,τ1)|dξ1dτ1

�‖PN1g‖L2

∫
IR
‖ψL1(ξ1,τ1)‖L2

τ1
|ϕN1(ξ1)|‖ f̃ (ξ1,τ1)‖L2

τ1
dξ1

�‖PN1g‖L2L1/2N1/2‖PN1 f‖L2‖PN1g‖L2 .

(A.5)

Now we will prove (A.4). Using Cauchy-Schwarz and inequality (2.10), we obtain

‖PNQ�λ f‖L2 =‖PN1( ∑
L�λ

QL f )‖L2

�
(

∑
L�λ

L‖PNQL f‖2
L2

)1/2(
∑
L�λ

1
L

)1/2

� 1

λ 1/2
‖PN f‖S 0 . �

(A.6)

We also have the following localization properties

‖ f‖S θ ∼
(

∑
N
‖PN f‖2

S θ

)1/2

, ‖ f‖N θ ∼
(

∑
N
‖PN f‖2

N θ

)1/2

, (A.7)

‖PN f‖S θ ∼ 〈N〉θ‖PN f‖S 0 , ‖PN f‖Xθ ,1/2,1 ∼ 〈N〉θ‖PN f‖X0,1/2,1 ,

and
‖PN f‖Y θ ,1/2 ∼ 〈N〉θ‖PN f‖Y 0,1/2 .
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