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SHARP WELL-POSEDNESS AND ILL-POSEDNESS RESULTS
FOR DISSIPATIVE KDV EQUATIONS ON THE REAL LINE

XAVIER CARVAJAL, PEDRO GAMBOA AND RAPHAEL SANTOS

(Communicated by P. I. Naumkin)

Abstract. This work is concerned about the Cauchy problem for the following generalized KdV-
Burgers equation

du+d3u + Lpu+udu =0,

u(0,x) = uo(x),
where L, is a dissipative multiplier operator. Using Besov-Bourgain Spaces, we establish a
bilinear estimate and following the framework developed in [14] we prove sharp local and global
well-posedness in the Sobolev spaces H~?/2(IR) and ill-posedness in H*(IR) when s < —p/2,
both when p > 2. Also, we prove C? -ill-posedness in H*(IR), for s <3/2—p/4 and 0< p <2.

1. Introduction

In this paper we study the well-posedness of the generalized Korteweg-De Vries-
Burgers equation

O+ Rdu+ Lyu+udu=0, xR, t>0, (g-KdV-B)

where u = u(t,x) is a real-valued function and .Z,{Lyu}(t,&) = |§ |7 Fu(t,&), for
p € RT. When p =2 we have the well-known KdV-Burgers equation. This equation
arises in some different physical contexts as a model equation involving the effects of
dispersion, dissipation and nonlinearity. When p = 1/2 the related equation models the
evolution of the free surface for shallow water waves damped by viscosity. For these
models, see e.g. [9], [10], and [15].

The well-posedness for the equation (g-KdV-B) has been studied for many authors.
In 2001, using the Bourgain spaces, related only to the KdV equation (see e.g. [1] and
[7]), and the bilinear estimate due to Kenig, Ponce and Vega (see [11]), Molinet and
Ribaud obtained the local and global well-posedness in H*(IR), for s > —3/4 and
p > 0. In the particular case of p =2 (KdV-Burgers equation), they proved local
and global well-posedness in H*(IR), for s > —3/4 — 1/24 (see [12]). In 2002, they
improved the result when p =2, by using the Bourgain space but now, associated to the
KdV-Burgers equation, getting local and global well-posedness in H*(IR), for s > —1
(see [13]). Also, in this paper they pointed out that the Cauchy problem (g-KdV-B),
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with 0 < p < 2 is ill-posed in the homogeneous Sobolev space HS(IR) for s <sp,
where s, = (p —6)/2(4—p), and conjectured that H*»(IR) is the critical Sobolev
spaces and the Cauchy problem for (g-KdV-B) is well-posed in H*(IR) for s > s,,.
In 2010, Xue and Hu proved the local well-posedness (1.w.p.) for the (g-KdV-B) in the
homogeneous Sobolev spaces H'(IR), with (p —6)/2(4 —p) <s<0,when 0< p< 2,
giving a partial answer for this open problem (see [19]). In 2011, Vento proved local
and global well-posedness for the (g-KdV-B) in H*(IR), for s > s, where

o —3/4, 0<p<l,
P -3/(5-p), 1<p<2,

improving the early results in the case 1 < p <2 (see [18]). Also, in 2011 Molinet and
Vento completes the result for the KAV - Burgers equation (p = 2), using the Besov
refinement of Bourgain’s spaces. They obtained the sharp g.w.p. in H~'(IR) (see [14]).
In 2016 Carvajal and Mahendra studied, among other things, the well-posedness of the
following dissipative versions of the generalized KdV equation

(1.1)

{vt+vmx+nLv+(v2)x:07 x€IR, >0, (12)

v(x,0) = vo(x),

where 1 > 0 and the linear operator L is defined via the Fourier transform by .7 {Lf} =
@(-)Zf, where the symbol

O(E) ="+ Di(8), (1.3)

where p is a positive real number and |®;(&)| S 14 ]&]9, with 0 < g < p. They
proved that the Cauchy problem for (1.2) is locally well-posed in H*(IR), s > —p/2,
with p > 3. Also, they showed that for p > 2, there does not exist any 7 > 0 such
that the data-solution map vo € H*(R) — v € C([0, 7] : H*(IR)) is C2- differentiable at
the origin (see [3]). When the nonlinearity in (1.2) is (ka)x , k> 1 (generalized KdV
nonlinearity), they obtain some local well-posedness results for the data with Sobolev
regularity below L*(IR), see [2]. Also, an n-dimensional dissipative version of the KdV
equation (1.2) was considered in Carvajal, Esfahani and Panthee [4], where they prove
well-posedness and ill-posedness results in anisotropic Sobolev spaces, they also study
the dissipative limit of the solution when 11 goes to zero. Finally, in [6] Carvajal and
Esquivel proved local well-posedness for (g-KdV-B) in H*(IR) for s > —p/2, when
2 < p < 3, improving the result in [12]. In the next figure we have a resume of the
former results.

In our work, we use the framework developed in [14] to establish the following
results:

THEOREM 1.1. Let p > 2. The Cauchy problem associated to (g-KdV-B) is lo-
cally analytically well-posed in H=P/*(R). Moreover, at every point ug € H=?/?(IR)
there exist T =T (ug) >0 and R =R(up) > 0 such that the solution-map uy — u is ana-
Iytic from the ball centered at uo with radius R of H=P/>(IR) into C([0,T]; H~?/?(IR)).
Also, the solution u belongs to C((0,0); H*(IR)).
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THEOREM 1.2. Let p > 2. The Cauchy problem associated to (g-KdV-B) is ill-
posed in H*(IR) for s < —p/2: there exist T > 0 such that for any t € [0,T] the flow-
map uy — u(t) constructed in Theorem 1.1 is discontinuous at the origin from H*(IR)
to H*(IR).

REMARK 1.3. i) Following the same steps in the proof of Theorem. 1.2 we also
obtain that the flow-map is not C2 at the origin for s < 3/2 — p/4, when 0 < p < 2.
This allow us to conclude that we can not use contraction method to prove local well-
posedness in this regularity.

ii) We observe that if u is a solution of the (g-KdV-B) then ||u||;2 < ||uo||;2 . Also,
the local well-posedness result in [3] and [6] gives a global well—pésedness result in
L?(R) with u € C((0,%0); H*(IR)) (see [3] and [6]) and on the other hand the inequality
(2.9) and the Section 5 imply that, for any 0 < ¢ < T there exists ¢’ €]0,¢[, such that
u(t") € L*(R). Thus the solution in Theorem 1.1 also belongs to C((0,0); H*(R)).

These results extends the previous results in [3] (with ®; =0 and n = 1) and in
[6] for s=—p/2 and p > 2.

The plan of this paper is as follows. In Section 2 we fix some notations, define
the spaces when we perform the iteration process, prove some useful inequalities and
recall some important results. In Section 3 we establish linear estimates related to the
Duhamel operator, associated to the (g-KdV-B) equation. In Section 4, we prove the
crucial result in this work: the bilinear estimates. In Section 5 we prove the Theorem
1.1 and finally, in the Section 6 we prove the ill-posedness results.
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2. Notations and preliminaries results

For A,B > 0, we write A < B when there exists ¢ > 0 such that A < ¢B. When the
constant ¢ is small we write A < B. We write A ~ B to denote that A < B < A. Also,
we may write A <, B, to express that the constant ¢ depends on . Given u = u(t,x) €
7! (]Rz), we denote by Fu (or i), Fu (or ii) and .%u its Fourier transform in space-
time, space and time respectively. Analogously, for the inverse Fourier transform we
write .Z lu, ﬁglu and .7, 'u.

We work with the usual Lebesgue spaces as L (IR), L (IR) and LYL{. By sim-
plicity we write LYL! as L”. The non-homogeneous Sobolev spaces are endowed with
the norm || f||gs = ||{-)° f]| ;2 , where (x) = (1+|x|>)!/2 ~ 14 |x] is the japanese bracket.

In order to define our functional spaces, we recall the Littlewood-Paley multipliers.
Let us fix n € C5(IR), such that 1 > 0, suppn C [-2,2] and n =1 on [-1,1]. A
dyadic number is any number N of the form 2/, where j € Z. With this notation, any
sum over the dummy variable M, N or L is understood to be over dyadic numbers
unless otherwise specified. Define @(&) =n (&) —n(2E) and y(t, &) = (1 —E3).
Using the notation fy(y) = f(y/N), we define, for u € .(IR?) the Fourier multipliers

Fu{Pyu(t,)} () = on(8)a(t,8) and F{Qru}(1,8) = wi(7, §)i(z, §).

Because, rougly speaking, Py localizes in the annulus {|&| ~ N} and Q. localizes
in the region {|t — &3| ~ L}, they are so-called the Littlewod-Paley projections. We
can define more projections like

Poyu= Y Pyu or Qeru= Y, Ouu,
M<N M<L

and etc.

Associated to the equation (g-KdV-B), we have the following integral equation

1
u(t) = sp(z)uo—% /O S,(t — ) a2 (1)dr', 130, @.1)

where the linear semi-group S,(1) = e ~/(%+1p) = ¢ 1% ¢ 1Ly associated to (g-KdV-B),
is given by
FASHO1HE) =R fE), 1> 0. 2.2)

—10;7 tLp
9

We observe that e is the unitary group associated to KdV equation and also, e™
given by e 'l f = ﬁgl{e”‘ I’ £(-)} is the semi-group associated to dyu -+ Lyu = 0.

o191 |Ly

We define the two-parameter linear operator W, (") = , given by

~

FAW,(1,0)FY(E) = & WIE (&), 1,4 e R, 2.3)

If t =1, 1€ R~ Wy(t,1) is clearly an extension to IR of S,(r). Instead of use the
integral equation (2.1), we will apply a fixed-point argument to the following extension

u(t) = n(OWy(t,0)tt0 = 31(0) 1, (1) /0th7 (t =11 — ) Al (¢)a

—%n (t)xmi(t)/oth (t—1't+1")ou* ()dr, (2.4)
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t € IR. Of course, if u solves (2.4), then uljo 7 solves (2.1)in [0, T], T < 1.

The iteration process will be applied in the Besov version of classical Bourgain
Spaces, which we will be defined now, following [14]. For s,b € IR, the space X; b.a
(g = 1) 1is the weak closure of the test functions that are uniformly bounded by the norm

2/q 1/2
ll ,,., = 2[2<N>““1<L+N”>”qPNQLufZ] : (2.5)

P N | L

In order to control the high-high interaction in the nonlinearity, we introduce' for b =
+1/2, the space Y** endowed with the norm

o 1/2
-1 . ~
lull =2 |17 {(i(r=&) +[E1P+ 1) g, i} ., (26
vy’ N 112
such that
N 1/2
—p/2 3
”"Hyp—p/z#n/z: (% {(N) r/ ||(3,+3X+LP+I)PNu||L}L%] ) ) (2.7)
Thus, we form the resolution space .¥° =X s120 L ysY2 and the nonlinear space
P p p p

N =Xy ' Yy endowed with the usual norm:
|| x+y = inf{|Juy|[x + ||luzlly : u=w +uz, with u; € X, up €Y},

From now on we work with the resolution space . 7*/> and the nonlinear space .4/ /.
Remembering that e ~% f = ﬂ; {e" o8 ()} is the group associated to the KdV equa-
tion, we have the following result:

LEMMA 2.1. Forany ¢ € L2(R), we have

1/2
(z[Ll/2QL<ef93¢>Lz]2> < 11013

L
Proof. See [14]. O

LEMMA 2.2. 1. For each dyadic N, we have

3
100+ 3Pl S 1Bty 2.8)

2. Forall uec "7, with p >0,
lull , < Mull.sr-rn (2.9)

'The authors in [14] were inspired by [17].
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3. Forall ue .9,

L

1/2
(Z[Ll/zQL”Lz]2> < lullzo- (2.10)

Proof. We will prove only (2.9), the proofs of (2.8) and (2.10) practically are given
in [14]. As
1/2 1/2
2 2
ol 2 ~ (Z IIPNML2> and |lul| y-rp ~ (E PN””y::/Z) ;
N N
it is sufficient to prove that

||PNuHL2 5 HPNquyfp/z. (211)

Remembering the definition of our resolution space, it suffices to prove (2.11) with
|| Pvut||x -p2121 and with ||Pyul|,—,/2.1/2 in the right-hand side. For the first, noting that
(L+NP)1/2 > (N)P/2 we have

1Ptz ~ 3 (N) P2 (LA+NP) | Py Q|
L

12
2 > |I1PvOrull;2 > (2 IIPNQLM||22>
L L

~ || Pyul| 2.

For the second inequality, since ||Pyvu||;2 = |l @nitl;2 = || Z7 ! (onid) |12, then

177 (rgigpen) + 7 (=80 i 1

<7e (g ) 19 (= 8+ 817+ 1 o) Ly

On
i(t—83)+|ElP+1

<17 (g ) i 190 (= £ +187+ 1 on) gy

iz 175" (165 84167+ 1) o)
(2.12)

Using the definition of || - ||,0.1/2 we get

- (Y
P < |7t - ||P . 2.13
H NuHLZ ~ ” T (i(’[—§3)+ ‘§|p+ l) HL/ZL,;- H Nu||y0‘1/2 ( )
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To estimate the norm of inverse Fourier transform above, we note that

'%1(:’<r—53>¢ié|ﬂ+l)@ :

2mitT
= drt
Ll /1Re (T—E)+[EP+1

) 1
2Titx
= e ———dx 2.14
Ll /m ix+EP+1 @14
. 1
2mitx
= — dx|.
Ll /nze (e ™
Now, if k # 0 is a constant, we have that
X _ ; —27k|r] k _ =2kl 215
m (t)——msgnte s x2—|—k2 (t)—ﬂ:e . ( . )

For the first and the second identities we refers, e.g. [5] pg. 49 and [16] pg. 127,
respectively. With these identities in hands, we obtain

7 () 0= (ae ) 047 (5 ) ©

=i (1 + sgnr) e 27| (2.16)
| 2omie7 i 1 >0,
o, if <0

Combining (2.14) and (2.16) we get

3;( o )t‘:m e
‘ Fo\i(r—&3)+[E[P+1 ) ol e (1) 2.17)
<6727'L'N”t% (t)
Using (2.13) and (2.17), we conclude that
1Pyl 2 SN2 [Pyl yous S (| Pautllypae. O (2.18)

LEMMA 2.3. (Extension lemma) Let Z be a Banach space of functions on IR X
IR with the property that

18 @)u(t, )z < 8l [lue(t, )|

holds forany u € & and g € L7 (IR). Let T be a spatial linear operator for which one
has the estimate ;
IT (e Pyg)

7 S 1Pvo|l2

for some dyadic N and for all ¢. Then one has the embedding

1T (Pvu)llz < [ Pyullso-
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Proof. See in [14] the comments before the Lemma 3.3 or see [17]. [

As a consequence of this abstract result, using the Kato smoothing effect
—t83 < 2
1o %0l S 0ll2 Vo € L2, (2.19)
and that e~'% isa unitary operator in L?, we obtain the following results

COROLLARY 2.4. For any u, we have, for p >0, that

el e S Nl (2.20)
|Pyull ..., SN[ Pyul| 50, 2.21)
T ‘X

provided the right-hand side is finite.

3. Linear estimates

In this section we prove linear estimates related to operator W), as well to the
extension of the Duhamel operator introduced in (2.4). We will do some adaptations of
the arguments in [14], in order to get the necessary estimates.

PROPOSITION 3.1. Forall ¢ € HP/(IR) and p >0, we have

IM@OWp (&, O] -2 S 191l g-r/2- (3.1)

Proof. Clearly, the left-hand side in (3.1) is bounded by Hn(t)W(t,t)q)HX,g_,%J It
suffices to show !

3L+ NP) Py (O W, (1, 1)9)1,2 S 1P - (3.2)

L

After this, multiplying both sides by (N) /2, squaring and summing in N, we get the
desired. In order to prove (3.2), first we note that

VLW, (1.1)0)]].2, (3.3)
=0y (&)o, (1= &) Z (" (1) ()b (&)
Sloy@e(r =) F(e 1= (n))( - EN ()0l

g, (M F (e @) (29 ()

2) , _
< (@) F (™ )@l gzl Pvoll.z
=l @)Pele™ E n @)l 21z 1Pv iz, G
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where we using in (1) the translation invariance of the L” -norms and in (2) the Holder
inequality.
Adding in L we obtain

%<L+N1’>l/2|HPNQL(W(I)WP(I’t)(p)HLi/

(3.5)
S PNl 2, Z<L+N”>1/2H<P (&)Pu(e 1P M) ezzz-
To get the bound in (3.2) we will prove that
2L+NT) P (©)Ple )l gr S 1. (3.6)

L

Spliting the summand into L < (N)? and L > (N)?, the proof will be done in two cases.
For the first case, applying Bernstein inequality in time, we have

Z <L+Np>1/2‘|§° (E)Pe(e ltHélp ())HL‘E’L}
LS(N)P

<Y PP sup e ()]
LSNP |&|~N '

(3.7)

Noting that
_ 4 i B
He lt]1€] n(t)l\L; < mln{l, |§‘ p}7

~

then we have

> (LN PllovP(e N ©) |y S V) min{L, NTES T (B8)
LS (NP

For the second case, using the following rearrangement

%%GM’NZZ D aunty, D aun =3, Y aun+, D, avm,

M N<M M N>M M N<M M N<M
one can see that
Ple e n(0) = Py | Y (Pun(t)Pee™ &7 4 Peym () Puye ISV )
M>L 3.9
= P (I)+ P.(II).

For the term P (I), using Holder inequality

Y, (LN onPL(D)|| 22
L3 (NP ¢

<2L1/2 > 1oy (&)Pun( )HL‘EL,Z||¢N(€)P§M67IIH§IPHL;’:,
MoL

<2L1/2 2 oy (&)Pum( )HL‘EL%||§0N(§)P5M€7IIH‘§IPHL;:,
L<M

S 2 M2 ()P () lzizll oy (§)Pawe™ 1 (3.10)
M



440 X. CARVAJAL, P. GAMBOA AND R. SANTOS

But, because qu(é)PSMe_"Hé‘p < @, (&)arctan(M/EP), then the right-hand side of
(3.10) is bounded by

2
SMP Pl Sy 1
M B}

Proceeding in a similar way for Py (II), we obtain

D (L—l—Np)l/z\|(pNPL(H)|\LmLz < le/z gy Prre V|| 2 < Sy L G

LZ(N)? By}

remembering that the homogeneous Besov space le/ f has a scaling invariance and
|| 1/2
e e B

LEMMA 3.2. Let p > 0. For o € ./ (IR?), consider K, ¢ defined on R by

it To(—INIEP _ o—[rlIEI”
%5(0) = N0gu(8) | e a(r.far
Then, for all & € IR, it holds
SUL+NP)||PLk g\|Lz<2L+N’7 )l (t)n(§) @] 2. (3.12)
L

Proof. As in [14], adding and subtracting 1(z)e!"~*DI5I” inside the integral (nu-
merator), we can rewrite kpg as

it (E=ltDIEP _ Il
_ <t—|t|>\é|ﬁ/ Kl S / ¢ ¢ e
1) =n(t d t d
Kpe(t) =mit)e \r|<1i1+\§|1’mN Thni) 7l<1 T+ over
it NHG
(t—ltl)\él"/ e / e~
+n(z wydT t - wydT,
ne st i r B AT [ e Y
= (D) + () + (11— (1V),
(3.13)

where @y is defined by wy (7, &) = @y (&)
ﬁces to prove the estimate (3.12) w1th Pl

Kp.&-

Term (1V). With (3.6) in mind and performing a straighfoward calculations we get

@(t, &). By triangular inequality, it’s suf-
), PL(II), PL(III) and P.(IV) in place of

1PLV)lzz 5 oy (©R e s [ (i (21 v,

[7>1

< (it+&|") " ovdr. (3.14)

j2>1
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Also, because (it+ |E|P) 2 (14 |£|P) then we have

[ e+ I8 avar S X (L+N) g vl
‘TI}I L>1

S YALAND) LY g a2 (3.15)
L

where in the last line we use the Cauchy-Schwarz in 7. This yields the desired bound.

Term (II). Taking account that

|an(7)] o (E)IGT+E[) |\ (P \'"
/Irélif+§|”d1<</rl<l it E]P ‘”) (/,,@@-Hmdf)
(N)P/2
NP

< AL+NP) g an (7)) 2 (3.16)

L

thus

S ALANP) ||| 2
L
S )N TSN Plipdg @n (el I = M 1)

X Y AL+NP) 2oLyl 2-
L

We need to prove that

SALAN P2 S XAL+NP) Pl granll2,  VNdyadic.  (3.18)
L L

In view of (3.17) it suffices to prove that

SLANY Py (§)n () (DI — IS

S (NYP/2. (3.19)
L

For technical reasons, we will divide the proof in two cases, namely, N > 1 and N < 1.
For the first case, by triangular inequality, we have

> (L N?) 2Py (E)n(r) (e DEY — e HIE) )

S YALA+NPY2[PL (g (E)n(0)et IR 2
L

~

J

+ DULAND)PL(@y (E)n()e )| (3.20)
L

K
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One can see that K < 1, thanks to estimate (3.6). We will estimate the first term.
Denoting 6, (r) = 1(r)e " NIE" | the estimates

16,(1)] S 17! and [6,(7)| S (€)7|7] 2, (3.21)

yields from one and two integrations by parts, respectively. Now, splitting the summand
in a convenient way and use the estimates in (3.21) we get

J= Y LN o (0o )6l + X LN (0)e,(E)6,(T)ll

L<1 ISL(N)P

+ Y (LN, (009, (8)0p(7)l] 2

L=(N)P

NPPLPG, )+ Y NP6,

L<1 1KLL (NP
+ (L)' 2L L2161 (N)P
L>(N)P '
< (NP2

(3.22)

Therefore, remembering that K < 1 < (N)”/? and combining this fact, the estimates
(3.22) and (3.20) with (3.17) we conclude the estimate (3.18) for N > 1. The case
N < 1 will be treated in a different way: we will use a Taylor expansion. The identity

(et=DIEP _ 1) _ (o=IEl _ 1) = Zm()( 0" e Z( \t\) a

n=1 n=1

allows us to conclude that

UL+ NPY P, (E)n (1) (e IDIE — ~FIEI )

2 t
Z
n=1

\”"

A

S0 (IR 0) 3 + 2" NP6 (1) ]

! L

> 1
g,n—[llﬂn )ll, 1/z+2n|\t n(t)xr (Z)|Bé(12:|. (3.23)

Because H' <—>B and R fHHI < HfHHl if £(0) =0, the right-hand side of (3.23)
is

=

1 n n
SN Y =2 [l ()| < N (3.24)

n=1

Combining this last estimate with (3.17) we conclude the estimate (3.18) for N < 1.
This finishes the estimate of Term (II).
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Term (I). Using a Taylor expansion of 7, the Cauchy-Schwarz inequality in T
and remembering the estimates of the integrals in (3.16), we obtain

7"

T .
Pr( < E)PL(1"6 / —— oy (7)|dT
H L HL2 2 H(pN L )HL <1 |ZT+|§‘17|| N( )|

- ~ /2
1 |y () !
< _ P L
Nzn ‘ L(PN t 917)HL,2 [/|1<1 < drt

n=1 ZT+|€‘p>
, 1/2
y U o (Ol (T +1817) dT] !
rl<1 \w+\élp\2
S (N)PPN- ”Z —H(PN E)PL"0p)l 2 X (L1 +NP) ™2l gr, @ -
Ly
(3.25)
Thus, it suffices to show that
S(L+NP)I? 2 HrpN EVPL("6,(1))ll 2 S ()72, (3.26)
L
Again, using (3.21), we get
[176()(7) | < 210l < 2"min{z[ ™!, (£)7[7] 72} (3.27)

With this in hands and arguing as in (3.22), we have that the left-hand side of (3.26) is

p/2 2 ' < p/2
n!

the desired bound.

on(T)
Te II1). Writti , dt that
erm (III). Writting g(7) := zt+|’g’\l’x{m>l} so we need to prove tha
S AL+NDYPPUOp0) |2 S X AL+NP)]|Prgl 2, (3.28)
L L

noting that [|Prgl[;> < (L+NP)~ eoronal| 12 - First, using a paraproduct decomposi-
tion as in (3.9) we have

PL(Gpg) =P ( 2 (PSMGPPMg+PM9pP§Mg)> = PL(IIh) +PL(IIIQ).
M>L

We estimate the contributions of these terms separately. In both cases, we divide
the proof when L < (N)? and L > (N)”.
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Term (I11}). For the sum over L > (N)?, rearranging the sums we have

> <L+Np>1/2\|PL(1Ul)HL,2 S Y (Y Y IP<mOplir ||Pugll 2
L=(N)P L>(N)P MZL

I T il

(N)P LM

Z M)'2||Pugl | 2. (329)
M

2/\

Now we deal with the sum over L < (N)”. Because supp(m) c{l|z] ~M}U
{Jt| <M} ﬁsupp(OA ). this case is divided into two subcases, namely, when supp(OAp) C

{|t| ~ M} or when supp(6, ) C {|T] < M}.
For the first subcase, applying the Bernstein inequality and rearranging the sums,
we obtain

Y (AN PRI S Y, (LN Y |IPL(PerOpPug)l 2

L(N)P LE(N)P MZL
<Y Ry |1PL(Py6pPug)ll 2
L(N)P MZL
S X NP Y L Pubyll 2Pl
L<(N)P M>L

<)M 2] Py6 o 1Pl 2

S X NP2 1Pugll 2 (3.:30)

<M =M

where in the last inequality we used the estimate ||Py6)|| 2 S z] = on ()] 2 S

M2,
Now, for the second subcase, we must have M ~ L. Thus we have

Y (LN PRI S Y, (LN Y|P (P OpPug)l 2
LE(N)P L(N)P MZL

S Y NS IPPerOPug)ll2
L<(N)P M~L

>, (N)?(|PerBplliz|Prell,2
L<@y

S 2N |Prgll 2, (331)
L

A

and we finished this subcase and therefore the desired estimate for (/11 ).
Term (I1L). For the sum over L > (N)?, since \GAP| < (E)P|t|72, then we have
by Young’s inequality

HPL(PMGPPSMg)HL,Z N H(PMepHLmPsMgHL} N <N>p/2M_1HP5MgHL,2~
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Therefore

> LN S Y LN Y ([Pub,Pesl |

L>(N)P L>(N)P M>L
< 2 LY2NYP | |P<prgllz Y, M
L> MZL
SV >”/2|\P5Mg|\L,z- (3.32)

For the case L < (N )p , first one can see that

Y, (LANPIL) 2 S Y, (LN Y |IPL(Pu6,Pyg)ll 2
LK(N)? L<(N)P M>L

S Y LN (PP, Pug) 2
L<(N)P M>L

+ z <L—|—N’7>l/2 2 HPL(PM9P<<M8)HL,2'
LE(N)P MZL

(3.33)

The first term has already been estimated (see (3.30)). For the second term, observing
that we are in the case supp(g) C {|7| < M}, thus M ~ L and

> (LN (IPUPuO P )|z S D NP6y |2l P gl

LS(NYP MZ>L L
SSNPPLT2Y M2 8l
L M<L !
S 2N Pyl 2, (3.34)
M

and we complete the estimate of term (/11 ) and therefore the proof of Lemma 3.2. [

PROPOSITION 3.3. Let p >0 and & : N "P/* — 7P/ the linear operator
defined by

Lf(1,) = g OM(0) / Wyttt — ) ()’
+xr-( /W t—tt+1)f(¢)dt'. (3.395)
If fe NP2 then
LAl yrre S WALy (336)

Proof. By the definition of .#~#/> and .4 ~*/? it suffices to prove that

Hongxfﬁ/ll/ll S HfHX*P/Zfl/Z,L (3.37)
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and
||$f”Y*I’/2~,1/2 5 Hf”yfﬁ/l*l/% (3.38)

Noting that W, (,1') = e % e In | then
L et |Lp 133 £t g0
LU0 =00 (1) [ e P (¢
4 ! !
() xR (t)/o o 1R oI+ ILp 1 agf(t/)dt/
4 ! / !
— o1 [n(t)/ {le+ (e 1 4y (1) 1t \Lp}et aé‘f(t/)dt,}
0
1 ! !
1 [n@) [ ettt f(t’)dt’] . (3.39)
0
Writing o(f', x) = e f (', x), and observe that

o=y g o', x) = ﬁé ( ~IEP 18I g2 1{(9(1 5)})

= | el IS Gy (7, &)da, (3.40)
R

then we can conclude that
£ et T et=ltDIE _ o= ItIE1”

it+|EJP

T 1=INIEP _ - IlIEI?
133 | g1 €
e lyé {n(z)/IR " w(r,g)dTH. (3.41)

The estimate (3.37) follows from Proposition 3.3, noting that

IPNOLZ{ S 12,

0E)o1-8)7 {n(t) L=

LUfY(x) = [n oy ot é)drd&]

et =INISI _ o—ltl1E17

w(ﬁé)df}(f—?)

iT+|E|P 2,
= 9, (1= &) F ()t =)z,
— 1P iz (3.42)
where k), ¢(t) was defined in Lemma 3.2.
Now we establish the estimate (3.38). It suffices to prove that
19+ 07 + Ly + DL {f Y 12 S BN Al 12 (3.43)

After this, squaring and summing in N, we get the estimate (3.38). In order to prove
(3.43), because ||g|[,1,2 = HgHLl 2T ||g||L1 2> We will treat the cases 7 >0 and 1 <0
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separately. So, in the first case, using (3.35), one can see that
0+ 32+ Ly + D) (LAfD)
= (n0) [ Wyte =105} m(0) [ B3+ Ly Wyla )0
+000) [ Wy~ =)0 )ar
=10+ (00 +0@) [ S0 —)7 )
#10) [ @+ 32+ L), 08y~ (W)
= NSO+ 0+ 1) [ Sp0—0s @' (3.44)

where the last line was obtained by remembering that W, (r,7) = S,(z) (¢ > 0) and
S,(t)F = —(92 +L,)S,(t)F . Thus, we have

10+ 9 + Ly + NP (L)l 12

oo A
S 1Pl +In =+l [ e ©FC. )z
SIPfll 25 (3.45)
the desired estimate. Now we treat the case t < 0. As mentioned in [14], this is harder
than the former case, because the presence of W),(r —1',7 +1') implies that £ {f} does
not satisfy the same equation for negative times. Indeed, with 1 < ¢ < 0, we have
W,(t—1', 1 +1") = e (@ ~Lp) ¢ (% +Lp) and ¢~'(%~Lp) s the semi-group associated to
another PDE: (9, + 93 — L,,)u = 0. In order to avoid this problem we decompose
O+ Ly+1= (0 +3—L,+1)+2L,. (3.46)
With this in hands, first we see that
(0 497 = Ly +1)(L{f})
1 T
P (n O Wyle—t'1~1) f(z’)dt') 00 [ (02~ Lp)Wyle — 't +)f (1)
0 0
1
+ n(t)/ W,(t—t' e +1")f(t")dt'
0
1
=n(O)Wp(0,20) (1) + (n'(t) + Tl(t))/O Wyt =1t +1") f(¢)ar'
4 !
+1(r) / (0 + 03 — Ly)e % o)/ 5 4Ly) (4 af!
0

=n)W,(0,20)f(1) + (n'(t) +n (1)) /(: W,(t—t't+1') f(t)dr'. (3.47)
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Thus, doing the same calculations as in (3.45) one can see that
13+ 02— L+ DL D e S ISz (3.48)

So it remains to prove a similar estimate for the term 2L, (Py.Z{f}). First, we observe
that

1o (Py-Z U Dl gz ~ N IPZASH

Denoting by © the right-hand side of (3.47) we can see that
PyvZL{f} = (0 + 9] —Lp)(PvnZL{f}) + PvO. (3.49)
Thus, integrating by parts and using Cauchy-Schwarz inequality we obtain

IPv-2{f}H 72
_ <PN.${ FHPvZAfY)

— LU L LN+ (Lo (P, By + (VO PVZ LAY

2dt
Z _”PNDE/ﬂ{f}”L)%EHPND%{f}HL% +N”HPN${f}Hig — | ENOl 2 | PN 2L fHl 2
(3.50)
Therefore,
N”IIPND?{f}IILz S IIPN«i”{f}IILz + Hszf{f}lle CIBvZ {312
+ |1PNO|| 2 [|PvZL{fH 12- (3.51)

Now, for # < 0 such that |[Pv.Z{f}| 2 # 0, we can divide both sides in (3.51) by
|PvZ{f} 2 to obtain

NPI\PNZ{f e S IBvZAf I + o IIPN«i”{f}IILz +[[PvOll 2. (3.52)

But, this last inequality is still true for # < 0 such that [|[Py.Z{f}([;> = 0. Indeed, 7 —
|PvZ{f} 2 is non negative and so (d/dt)||Pv-Z{f}||;2 = 0 whenever |[Pv.Z{f}| 2
= 0. Therefore, (3.52) is valid for all 7 < 0. Integrating this inequality on ]z, O] we get

0 0 0
N7 [Pz (Mt S [ IV U ade' = IPvZ A iz + [ 1Bv sz’
1 t 1
(3.53)
and so

HLP(PNX{JC})HL;@LE NNpHPNg{f}HL}Lg < HPNg{f}HL}L% + HPN@HL}L%v (3.54)

and we finish this case noting that, obviously, ||Pv-Z{f} 2 SNl - O
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4. Bilinear estimates

In this section, we will need the elementary results in the Appendix and here we
establish the following important estimate:

PROPOSITION 4.1. Forall u,v e 7" , with p > 2, we have

[P (4.1)

19 (v) Ly S lluell g

Proof. Using dyadic decomposition, one can write the left-hand side of (4.1) as

2

2 PNax (1“"1\/1 MPNZV)
Ny, Ny

102 () |2y ~ (4.2)
N

N -r/2

Now, via %, because |E| ~ N, || ~ Ny and |&| ~ N, where & =&+ &, (by
convolution), one can see that Pyd,(Py,uPy,v) vanishes unless one of the following
cases holds:

high-low interaction N ~ N, and Ny <N
low-high interaction N ~ N; and N; <N;
high-high interaction N < Ny ~ N,.

Thus, we have

2 2
GOSN Y Pvo(PyuPy,y) 1Y Y Pvoc(PyuPy,y)
N ||[N<N|~N, 2 N ||Na~NN N, s
2
30X Y Pyou(PyuPy,y) (4.3)
N NINNNz/SNl /2
The first sum is
2 2
2 2 PNgx(PNluPNl V) ~ 2 2 PNgx(PNluPNl V)
N Ni>N; N2 Ni NN, W
2
< ZHP<<N1 (PN1MPN1 )”(/pr/z' (4.4)
N
The second sum is
2

S Y| Pud(Peyu )|y
NP2

S

2 PN(9 I“"}\l1 I/LPNV)
N SN
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By simetry with the second sum, we have analogous bound for the third sum. So,
taking account these estimates, in order to prove (4.1), we need to prove the following
estimates

||P<<Nlax(PN1”PN1V)H/—p/z S HPNluH,y—m'z HPvaH,y—m'z , V Ni dyadic, (HH)

|Pxou(PeyuP)[| ;o S lullyos |PVV]Lpe . VN dyadic,  (HL)

and a similar estimate for the (symmetric) case low-high.
First, we start to prove the

4.1. (HL)-estimate

We can see that

[Byos(Psyubiv)|| e S X [BYO(PyuPyv)l| e
Ny <min{1,N}

+ Y POk (PyuPn) || e - (4.5)
1<N; <N

Using the Holder and Bernstein inequalities and remember that p > 2, the first sum is

—p/2
S X IPvaByuby)ly e S Y (N) v/ NBwu Pyl

Ny Smin{1,N} Nisl1
1/2

< 3 1Pl NPwl],, S 3 N Byl P,

N <1 T =X T =X N <1

1~ 1=
1/2
<l el 3 M2 (4.6)
N <1

Now, for the second sum we need to work a little bit more. Decomposing the bilinear
term as

Pyox(PeyuPyv) = %, Y PyvOrou(Py,Qr,uPyOr,v), 4.7)
1SN SN L,Ly, Ly

via .% , because |E — 1|~ L, |E — 11| ~ Ly and |& — To| ~ Ly, where € =& + & and
T = T| + T», and remembering the resonance relation

E-r1=CE+&)’ - (n+n) =& -u+&L—n+3885, (4.8)

we can conclude that the right-hand side in (4.7) vanishes unless max{Nle7 Limed} <
Linax < 5max{N?Ny, Lyeq}, i.€.,

Linax ~ max{N°N{, Lmea}, (4.9)
where Lyax = max{L,Lj,Ls}, Lyin = min{L,L;, Ly} and Lieq € {L,L1,Lz} \ {Lmax,

Lmin} .
In view of (4.9), we divide the proof in three cases, depending on the L,y .
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41.1. Ly =L

In this case we have that L > N?N; . Thus, by the Bernstein inequality (A.2) and
remember the estimates (2.9) and (2.20) we have that the second sum in (4.5) is

S Y Y P PyuPw)l,
I’

LSNISN LZNN,

S Y Y (PN 1/2NHPN114PNV||2

LSN SN L2 NN

§N‘P/2+1 Z ||PN1”PNVHL2 Z L-1/2

1SN SN L> NN,

§N*P/2+l 2 ”PNlu”L;OL%HPNVHLszllel/2N1/2

1SN SN

SNPES NP

1SN SN

Pvllgwe Y, (M JN)PI21/2

1SN SN

N'2|| Pyl ,

,,/ 2

s-p)2

<1,

~

and this establishes the desired estimates, noting that the sum converge and is
because p > 1.

4.1.2. Lyax =1L

In this case, we have L; ~ N2N; or L; ~ Lieq. The latter case implies that L ~
Lined 2 N 2N, and thus, we have two subcases

. Lyed =L,and so Lyax = Ly ~ L > N*Ny;
2. Lmed #L,and so Lyeq = Ly and Ly ~ Ly > N?Nj.

Therefore, we have that the second sum in (4.5) is

<Y Y IBvou(Py, QL u Py e

LSNISN Li~N?N,

+ Z Z ”PN‘;X(PNlQLl”PNQL2V)||¢/V7p/2

ISN SN L~ 2NN,

+ Y Y 1Pv0LO(Pyu Py e (4.10)

LSNI SN LZNN

The last sum was treated in subsection 4.1.1. Now, by Holder and Bernstein inequalities
and remembering the estimates (2.9) and (2.10), the first sum in (4.10) is

2 —p/2
< S N TNP Qe Py, S S (N PPN By Qe 1P
LSN SN 1SN SN et

S S PN 2Oy, Pl [P e

1SN SN
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1/2
< 3 (Nl/N)p/z{Z[LI/QHQL(Nl) ”/ZPNIulleLz]} 1Pyl

1SN SN L

SOY (N /NP TP Pyl || Pev o

1SN SN
S ullyoe [ BPyvlison Y, (N1/N)PP2,

1SN SN

noting that the sum above is < 1, because p > 0.
It remains to treat the second sum in (4.10). Arguing as before, this term is

S Z Z ‘PNa PNIQLIMPNQLI )HY p/2.-1/2

LSN SN L 2NN,

— 1/2
S Y Y N 1Py, Oyl | PN Qry V]I, - (4.11)

LSN SN LiZNN,

Ul pp ~—p2 . But, on the
. So,if 6 € [0, 1]

Also, is clear that ||Py, O, u| , [|[PNQL, V|,
other hand this same productis < L

—9 0
1P, Oyl 5 | PV QL vl 2 S Ly IPwyul| S | Pyl 6 [P o PV 5 5 (412)

Using this estimate with 6 = 1/2 and localization properties (see the Appendix), we
have

—1/2,.p/4
|1Pw, Or,ull, || Pv QL v, S Ly N

2~

y . (4.13)

—p/2 ‘
Considering this inequality in the right-hand side of (4.11) we get

S Y X NPUNPLTNENTE Ryl

~Y
LSN SN LiZNN,

_ 1/2 4 —
SN B X NN T Py

1SN SN

[

SN PPy Y NPy ully o
1SN SN
1/2 1)2
—p/4 ) p/2
<N P W 3
1SN SN 1SN SN

1/2
/> : (4.14)

and using the localization property (A.7) the desired estimate follows.

§PNV.7P/2< > |

1SN SN

413, Lyax =Ly

In this case we have Ly ~ N?>N; or Ly ~ Lpeq. The latter case implies that Ly ~
Liyea 2N 2Ny, and thus we have two subcases
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1. Lnea=Li,andso L| ~ L, ZNle;
2' Lmed?’éLl, and SO Lmed:L and L2 NLZN2N1

Therefore, we have that

2 HPNax(PNll"PNVML/V*/J/Z ~ 2

1SN SN 1SN SN

S X X IPvo(PyuPNOLY) |y

LSNI SN [,~N?N

+ 2 Z ”PN&X(PNl QL[“PNQLzV)”(/pr/2

LSNI SN Li~L, 2NN

+ Y, IPNOLO(PyuPyv)| oy (415)

LSN SN LZNN

2 PNQLQX(PM QLluPNQLZV)

L L, Ly

Ve

The last two sums were treated in subsection 4.1.2 item (ii) and in subsection 4.1.1,
respectively. For the first sum, as before, we can obtain that

> D PN (PyuPyOr,v)ll e

1SN SN L ~N2N,
—»/2 1/2
< YN r/ “Nl/ [[Pvyull,» 1PN Oy, v

1SN SN

S Y NP Pyullyon (NN PyQpa, v, ]

1SN SN

12 1/2
) 2
<N p/z{ 3 ||pNu§M/2} { Y [L1/2||QLPNV||L2] }

1SN SN N><L<N?
S lu

-p/2 ‘PNVH,yf/)/%

and we finish the proof for the case HL-estimate.
Now, we finish the proof of (4.2), establishing the

4.2. (HH)-estimate

‘We can see that
Py O (Piyu Pyl e S D, |PvOc(PyuPyyv) ||y
N < min{1,N;}

+ ) ([PNO(Pru Py V)| - (4.16)

ISNKN

Again, the estimate for the first term is easier than for the second. In fact, if p > 0, the
first term is

S X IPvos(Pr Py )y o S Y N~P/2N||Py(Py,uPy,v)
NZ1 NZ1

S Z N_p/2N3/2||PN1uHL2 ||PN1VHL2 5 HPN1”H(771’/2 ”PvaHyfn/Z Z N3/2~

NS NI

HL}L}
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For the second term, using dyadic decompostion and triangular inequality

> Pno(PvuPy)| e <Y, Y, [1PNOLO(Py, QL u Py QL) e -

1SN<EM ISN<EN, L L, L
(4.17)

Using again the resonance relation (4.8) and arguing as before, we may restrict ourself
to the region where
Linax ~ Max{N{N, Lied}, (4.18)

and this leads us to consider the following three cases. By simmetry we can suppose
that L} > L.

4.2.1. Ly =L

In this case we have L 2, N12N . Also, for A > 0 to be choosen later,

2 X=2 X+ Y XYY+ (4.19)

LZNiN Ly,Ly LZNIN LiSA, L2ZNIN LiZA, LiSA LSA Li2A,
or > >
LA LyZ A LyZA

Therefore the right-hand side of (4.17) is

< Y DY IPvQLo(Py, QL u PO, ||y

LSN<SMLZNN L1 <A,
or
LA
+ 2 2 2 ||PnOr0x (PNI QLIMPNQLZV) H/*V/Z

LSNSNLZNINL Ly 2 A,

< Y Y IPvOLO(Py, O uPN QL) ||y vre

ISNKNILISA

+ Y Y IPvOLO(Py, QL uPyOLV)I| 41

LSN <N L, <A

+ 2 2 ||PNQL8X(PN1QLluPNQLZV)“JV*/’/Z

ISNEM LA,
7255

=2 (p)+2%(p) +Z(p). (4.20)

We will only estimate %} (p) and Z3(p), because the estimate of %5 (p) is simi-
lar to the estimate of %} (p) . We consider the following three subcases:

Subcase I: If p >3

Let A = Nf‘Nﬁ, where oo and B will be choosen later. Taking advantage of the
X, "> 711 part of 47/ and using (A.3) we obtain

Zip)< Y, Y IPNOLO(Py, QL uPyOL, V) |Ix o212

LSN<N L <A

<Y Y NPPHLTV2) Py (Qy, Py uPy) || 2 4.21)
15N<<N‘LZN12N7
Li<A
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_ — 1/2
S Y Y NPHLANYLY Byl | Py o

~Y
< 2
LEN<NL>N2N,
Li<A

2— _
<[Pl 2PVl NPT Y NP,
ISNKN

Thus for =2, f =1—¢€ and 0 < € < 1, we obtain

21(p) Sl g2l By vl 12

4.22)
rSHPNl u”y—p/z

| Pyyvl|gr-vre-

/2,-1/2

For .%5(p), considering the norm Y, ” , we have

Lp)< X X IPNOLO(Pr, Quyu Py QLyv)lly i

ISNKNIL,[hZA

< Z N—P/2+1||PN(PNle)LuPNlel")HL,‘L%

ISN<EN

< Y NPPEINY2|Py Qs qull || Pr Q5a0) 2 (4.23)

I1SNKN
- 3)/2
Sevulp vl Y N
ISN<N|

SHBvyull -2l By VI go-pr2-

Subcase II: If p =2

This case was treated in [14] also considering o =2 and =1 — €. Indeed let
Z (p) the right side of the second inequality in (4.21), using the Kato smoothing effect,
was proved in [14] that

fl(Z)g 2 2 ||PNQL8X(PN1QLIMPNQLZV)HX—I.—I/Z.I
ISN<KNLSA
SZ(2)
SIPvull g1 || Py vl -1

(4.24)

Let # (p) the right side of the second inequality in (4.23), using the inequality (2.10),
was proved in [14] that

AR Y Y PPy, 0L uPvQL )y 1
LSNKNILLhZA
SY(2)
SHBwyull -1 1By v| -1

(4.25)

Subcase III: If 2 < p <3
Let po = 2 and we consider p; > 3, therefore p = 0po+ (1 — 0)p1, where 6 €
(0,1).
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As above we have

AP)SZ(p) = Y, X, NPFILTVRy(Qr Py uPyy) |

1SN<N L>N12N,

Li<A
=Y N—P/2{N > L_l/2HPN(QL1PNluPN1V)”LZ} (4.26)
1SN<N, L2N?N,
Li<A
_ z N—OpO/Z%ON(l—G)pl/Q%I—G’
ISNKN
where
H =N Y L™/2|| Py (Qr, Py, Py, v) |2
LZN?N,
Li<A

Using Holder inequality (with p =1/60 and ¢ = 1/(1 — 0)), Case I and Case II, we
arrive to

2 (p) <2 (po)? 2 (p1)'~°

7} 1-6
S (”PM”‘Hy*Po/Z HPMVHy*Po/Z) (”PM”H(?*P/Z ||PN1V||E5W*/7/2)

—p00/2,,—p1(1-6)/2 —p00/2,,—p1(1-6)/2
~N; Po /N1 pi1(1-6)/ 1Py, ul| 0N, Po /N1 pi1(1-6)/ [Py, V]| 0 4.27)

—p/2 —p/2
~N P Byl oy P By vl o

1By | g2 1By ] g2

Similarly, the estimate for .23 (p) follows using again the Cases I and II and the inter-
polation inequality

Y(p) <Y (po)°?(p1)' % po=2,p1>3.

4.2.2. Lyax =1Ly

Using the relation (4.18), first we consider the case L ~ leN and we need to
estimate

I Z PxOx(Py, QleNuPNl ly-p2-12

ISN<N

12
N( 2 Np+2PN(PN1QN%N“PN1V)]%;L§> (4.28)

ISN<N

1)2
- 2 2
5( 2 Np+3PN1QN12Nu||L2PN1V||L2> )

ISN<N,

where was used the inequality (A.1). Let 7 (p) the sum in the right side of the second
inequality of (4.28). If p > 3 and considering the inequality (2.9) it is not hard to see
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that
ﬂ(p) 2 N~ p+3||PN1 NZN’/‘HLZHPMVHLZ
ISN<KN
SIBvovL Pyl Y, NP (4.29)

ISNKN;

rSHPNlu”,zyfp/Z v 2( —p/29 P > 3

Using a change of variable and (2.10), was proved in [14]
T12)3

=

An interpolation argument as above (see the Case L, = L) proves the inequality in
the case 2 < p < 3.
1/2

Finally in the case L; ~ Ly > NN, considering again the Y, ” /2712 orm we
have

2 2 PN&X(PNI Or,uPy, QLz")”Y’;p/Zrl/Z

1§N<<N1L1NL2>N2N

2 2 || PvOx(Py, QL uPy, Or, v )Hyfp/Z 1/2 (4.30)

1<N<<N1L1>N]N

SH(p)= Y Y NPN|Py(Py, O, uPy, QL V)|l 1 12-
ISN<NIL 2NN ‘
Was proved in [14] that JZ"(2) < ||Pv, u|| -1 || Py, v|| 51 . Therefore by the interpolation
argument is sufficient to consider p > 3. In fact using (A.1) and Cauchy-Schwarz
inequality, we get

H(p)S Y Y NPPENY2| Py O ull 2] Py, Oy vl 2

1SN<N leleN

1/2 1/2
2 N p+3/2<2QL1PN1uL2> <ZQL1PN1V22> (4.31)
2 :

1<N<<N|
—p+3)/2
SHPNl””LZHPva”LZ 2 N rt3)/
ISN<N;

SHEwull g-prz 1By V] p-pr2- - B

5. Well-posedness

In this section we obtain well-posedness results. In order to remove some restric-
tions on the size of the initial data, we change the metric of the resolution space used in
the previous sections. We define the space ,ﬁ’}; = P2 Y and define, for B > 1,
the functional

[l 2 = o +inf
1 2

1
g-pi2+ EHMzHyO }

uy € :77’)/2.142 e
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for all u € 373 Which defines a new norm on .¥?/2. In addition, this norm is
equivalent to ||.|[ 5p/2.i.e. [[ul] 2 gopp, UES TP

In order to remove the restrictions said before, first we establish the following
nonlinear estimate

PROPOSITION 5.1. There exists v > 0 such that for all (u,v) € 0 x .7 P/?
with compact support (in time) contained in [—T,T], then

10 @)l g2 S TV [lutll polIV]] 55-p2- (5.1)

REMARK 5.2. Forany 6 >0, there exists tt = 1(6) > 0 such that for any smooth
function f with compact support in time in [—7,7]. We have to

a—1 f(T7€)
H%,g {m} N STHIA I, - (5.2)

The proof of this remark can be found in [8] (Lemma 3.1) and [13] (Lemma 3.6).

Proof of Proposition 5.1. This proof is very similar with the proof of the Propo-
sition 4.1. For the sackness of completes we will proof the proposition in the more
difficult case: (HL)

1) Lyqc = L. In this case observe that

S By e S Y Y IPVQLABy P
1SN SN LSNI SN LZNN, Xp®

<Y Y (N TPRLANP) T 1/2NHPNluPNvH2

LSN SN LZ NN

§N7P/2+1 2 ||PN1MPNV||L2 2 L*1/2

1SN SN L> N*N;
—p/2 -1/2
<N p/2+1 2 ||PN1uHLt2L°°||PNVHL°°L2 NN 1/
1SN SN
—1/2
<Y N /HPNM||2 3/4H NV HL&,H?,,/Z
1<N <N *
—1/2
gT” (1/8) HPNtuoHPNVHy*P/Z 2 N, / )
1<N <N

where in the last line was used the following inequality (see [14]): for any w € .#°
with compact supportin [—7,T]

1wl zgsis S [Pl ovsa < THO [yl o122 <
P 4

that can be proved using (5.2).
i) Lygy =Ly
In the first sum in (4.10) we have

< Y <N>_p/2N||PN1QN2Nl”PNVH

1,2
1SN SN Ltz
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< Y (N)PN||Py Qe ull , PV
L7LS L

1SN SN

—_p/2 1/2
S X NN Qg Pl By

1SN SN
—p/2+3/4
< S NP Rl Bl
1SN SN LyHy
5Tu(1/8)||pNu 0l Pwv]| 2 Nf”/2+3/4.

1SM SN

The second sum is estimated similarly and the last sum was treated in the case 1).
iii) L;qc = Ly. In this case is suffice to estimate the first sum (the other cases
follows of the above cases i) e ii))

Z Z HPNax(PM”PNQsz)H(/V*I’/Z

ISNISN L~N’N,

—»/2 1/2
< Y N r/ “Nl/ [[Pvyull,» 1PN Oaw, VI

1SN SN

—p/243/4
< 3 Nlp/ /||PN1u||Lt2H§/4||PNvH57p/z

~Y
1SN SN

5T”(l/g)HPNthyoHPNVH,yfp/Z' 0

PROPOSITION 5.3. For any 3 > 1 there exists 0 <T = T(B) < 1 such that for
any u,v € 2 with compact support in [-T,T], we conclude that

2 (5.3)

123wl 2, < Nl v

Proof. For u,v € Zg, by definition of the infimum exist u,v| € S P2 s v €
.79 such that

U= uj+uy, 5.4)
V= vi+y, (5.5)

satisfying
25 < ol =z + gl 0 < 2l 2, (56)

and
W23 < Ill s+ a0 <20l 5.7)
Moreover,

120k (uv)|| 25 < 1L 0x(wrv1)[| 25 + 1€ (wrv2 +uavi) [ 2 +[| L0k (uav2) | 5, (5.8)

where % is defined in Proposition 3.3.
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Because Huﬂgfﬁ ~ | y-p2, forue #=P/% from (5.8), we obtain that

1L 0k (uv)ll 25 S L0 (rvi)l gopr2 + 1L (urva + uzvi) |l -2
+[|-Z0x(u2v2)|| -2,
< (1) + (1) + (I11). (5.9)

Now let’s estimate each term on the right-hand side. Applying the results (3.36) and
(4.1), we obtain
(1) SN (uv)ll g2 S Nluill gprallvill -ps2,

(5.10)
S

2 lIvill2-
In the third term on the right-hand side, applying (5.1), we get

(1) S N Ox(uava)ll y—pre S TV[u2

gollvall -2,
) sHE (5.11)
STV |Juall ollval| o-
By (5.6), (5.7) and (5.11), we have that
(1) STY4B%ul| 2 |[v]| 2,

5.12
<l 12

EAETS

if 0<T<B V<l
In the second term on the right-hand side, we have that
(1) SN Ox(urv2)ll yp2 + 1 0c(u2vi) || y—ps2
STV |ul| 2 1v]] (5.13)
S Moell 2 vl 2,

if 0<T<p<1. O
We define the operator

Fliue 25— n()Wy(t, t)uo — n(t).ZL0x(nru)’.
We will show that the operator FMT0 is a contraction on the closed ball
Bg = {WE Qpﬁ : HWH;% <R}
Let ug € H 7/ and £ > 0, we make the following decomposition

ug = P<yuo+ Psnuo,

where N is a dyadic number that we will choose later. By Proposition 3.1we have,

M)Wy (2,0)Ponuoll 25 ~ (1IN ()W, (1,0)Ponuoll 5-p2 S [[Ponuolly-n2 < €,
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where N = N(¢) is large enought. Also

In()w ()P<Nuonﬁ\ﬁHn() p(t,1)Pg

S In@O)Wy(t,1)P<yuol| 5—p/2
(5.14)

S B 1P<nttoll g-p/2

NP/2
fSTHuOHH*p/Z <E,

if
NP/2

>
ﬂ ~Y 8

HuOHH*p/%

Thus, for u € Bg, we obtain
T R 2
|l 25 < Ce+Clnpully, < 5 +CRE <R, (5.15)
where was considered R = 2Ce, 0 < & < 1/(4C?). Also,

<ClInr(ur + u2) || 2 [In7 (w1 — u2)

<2CR||(u1 — uz)| 2

<AC%e||(ur — u)]| -

(5.16)

and taking 4C%¢ < 1, Fu{) is a contraction . By standard arguments, the uniqueness

holds in the space .7 P2 endowed with the norm

Hu\\y;p/z = ,,e;l—fp/z{Hv”’yfp/z’ v=uon|0,T[}.

6. Ill-posedness results

LEMMA 6.1. Let g: R" — R be a continuous function and f: R" — R be a
positive function. If for all x € R", |g(x)| > ¢o = 0, then

/(08

CO/ F) ©6.1)

REMARK 6.2. Observe that the estimate (6.1) in Lemma 6.1 is false if g is a
complex valued function. In fact, if we consider n =1, g(x) = e™ and f(x) = ¥|_ £ (x)
the hypotheses of Lemma 6.1 are satisfied but the estimate (6.1) does not hold. Also
(6.1) is falsg if f is a positive function such that there exist & with [f(&)| < f(0) and
glx)=e""s.
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Let N>> 1, Iy = [N,N+2], 0. = p/2 and

Oy (&) = N (o (&) + a1y (=€), (6.2)
then
2 _ 20 -p ~
Jnlfy =28 [ (E)PaE ~ 1, ©3)
and
@l =28 [ (E)dE ~ N, ©4)
[gl~N

then ®y — 0 in H* if s < —L.
For t > 0 we define

Ay(t,h,h) = /0 [ Syt —1")0u(S,(¢"h)*ar’, (6.5)

taking Fourier transform we have

yx(Az(z,qmq)N))(é):ige—fél”+”53/RcITN(él>@v(é—él)(

e —1

where ¢ = @1 +ig 1= &7 —[&1]P — 1§ — &P +i(—&> + & + (6 — &)?), and conse-
quently
P —1
/ dé
K @

Ke={&/E-&ely, Gie-Iv}U{&/E-& eIy, & elv}

We note that if [§] < 1/2, then |Kg| > 1 and &; € K¢ implies ¢ = 38&,(§ —&1) ~
—N?E . Let

19 _
o1IE / g
Ky

2
I4a(e,@n. @) = [ NP8 ()2 e a6

where

(1811 =8 =81 P)=3it 581 (E—=G1) _ 1157
Ji 1

¢ Q) +ip
(6.8)
_ / Lag,| > / Re{J—c}d’él .
K 8 K 8
Observe that
Re fR Imf1 Re fR 1
'Re{f}' _ [Ref eg+2mf mg| _ [Ref 2eg| mf] 69)
g K 8] 8]
For 0<y<1,N>1, || ~yand § € K¢, one can obtain
Ref = Re{et(—|§1|p—|§—§1\”)—3it551(5—51) _ e—f\élp} <! CIEIP=IE=8ilP) _ ot
_¢tNP P
e e (6.10)

—tyP
e tY

<2,
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Reg| =g =[] — &P = |§ = &i|P [~ NP, |Img| = |go| ~N?[E]  (6.11)
and also

[Imf| = |Im{et(—|§1|p—|§—§1|p)—3if§§1(5—51) _ e—tlé\”}‘ <e N, (6.12)

using (6.9)—(6.12) and N > 1, it follows that

71)/”Np —ctNP 71)/”Np
Re{f}'> 2 g T ‘ 52 g INA (6.13)
NP +v>N* NP+ vYN NP 4+ y-N
Considering Y~ 1, p > 2 and combining (6.7), (6.8) and (6.13) we have
NP |2
|42 (r, Dy, Pw) || 75 N/ N?P(g)% m dg
721)/’ N2p
Sy ¢ TN / 218124 (6.14)
N s [ (€I A
- P27 NP
~ N4 4 yN8
Therefore
||A2(l,q)N7(DN)HHs >Coy>0. (6.15)

By Theorem 1.1, there exist T > 0 and 0 < & < 1 such that for any |e| < g, any
Al -2 < 1andze€[0,T],

u(t,eh) = &S, (t)h + i ek AL (1, Y, (6.16)
k=2

where i := (h,...,h), h* — A(t,h") is a k-linear continuous map from [H~"/2(IR)] ¢

into C([0,T]; H~?/?(IR)) and the series converges absolutely in C([0,T]; H ?/*(R)).
If h = dy, from (6.16) we get

u(t, e®y) — £2A45(1, Dy, Dy) = eS(1) Dy + Y, e Ar(t, DY), (6.17)
k=3
if k>3, then |e|* = |e|3|e[F=3 < |e|*|&o|*~3, thus using (6.3) we obtain

1Y e Akt @3 )l < [P Y leol | Ak(t, @Y )l y-p2
k=3 k=3

(6.18)
< e z el @,z < lef
Now combining (6.4), (6.17) and (6.18) we conclude that, for s < —5,
82||A2(t,q)N,q)N)HHs— H (l‘ Sq)N |H3 || t 8¢N)—82A2(l q)Naq)N) (6 19)

< Cle]® +Cle|N*+P/2,
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hence
u(t,e®y) || s = €2||Aa(t, Dy, Py)|| s — Cle|* — Cle|N*TP/2, (6.20)
and considering (6.15)
u(t,e®y)|| s > €Co — Cle|* — Cle|N*P/2 > £2(Cy — Cle]) — Cle|N*+P/2,

> ZCye? — Cle|N*TP/2, 6.21)

W

if |&| < co/(4C). Since u(z,0) =0 and ®y — 0 in H* for s < —£& and p > 2, thus
we conclude that the flow-map from H*(IR) into H*(IR), for s < —p/2 and p > 2, is
discontinuous at the origin by letting N tend to infinity.

- Finally, to prove the Remark 1.3, it is suffices to follow the steps (6.2)—(6.15) with
Dy (&) =N*(uy (&) + xiy(—E)) for N> 1, Iy = [N,N+2], o > 0 (to be choosen
later). Indeed, for s < —o

N406N2p,y3

s ~ NSTO < 5 > ——
H‘DNHH- N <1 and HA2(t7q)qu)n)HH > N4P+Y4Ng'

So, taking ¥ ~ NP~2 < 1 (in order to get N*” ~ ¥*N®) we obtain ||A; (¢, Dy, D,)||zs >
Co,if ¢ =3/2—p/4 when 0 < p <2.

A. Elementary estimates

LEMMA A.l. (Bernstein type estimates)

1PV (£l 2 S NNzl 2 (A.])

1Bvf Pyiglliz S NP IPef 2 1 Pvigl iz, (A.2)

Py (QLPy,f Py, 8) Iz < NYPLY2 | B, f1] 2| Pl 2. (A3)
1PV i S 577511l o (A4

Proof. Inorderto prove (A.1), using Plancherel’s identity and properties of Fourier
transform

1By (f&)llz2 = lowllzz | 2ol fo} e SN2IIf N2l 2

The inequality (A.2) is a consequence of properties of convolution and Cauchy-Schwartz
inequality:

1/2
1Pnf Poiglliz S 1Bl -7 P g}l sy 1Bnf1l 22 1 Pvi 8l 22
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To prove (A.3), let & =& — &1, 1, = T — 11, using Minkowsky’s inequality, properties
of the Fourier transform and Cauchy-Schwarz two times, we have,

[Py (QL Py, f Py 8) |l 2
=lov(®) [, o (E)8(E mwa, (G m)gw (€0 (&1, 7)dEdn
g/mz lon(8)om (&2)8(52 )l v, (G, 7)ew (E0F (G m)ldbidn - (A5)
<IPigllez [ v G0 20lz o (G011 (G170 5, 48
<||Pw,gll L' N2 Py, £l 21| Py gl 2
Now we will prove (A.4). Using Cauchy-Schwarz and inequality (2.10), we obtain

1PvO>a fll2 =P (Y, Quf)ll 2

L>A

1/2 1 1/2
< (2 L||PNQLfiz> (2 Z) (A.6)

LA

1
5WHPNf z0. U

We also have the following localization properties

12

1/2
[1f1.570 ~ (Zvilliw) o A llye ~ (ZPNfiVe> . (AT
N N

IPVf | 0 ~ NPy fllso s [1PNSllgoazn ~ (N)|PNFllg0u/21
and
IPxfllyoz ~ (N)E 1Py £l yousa-
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