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THREE SOLUTIONS FOR A NEW KIRCHHOFF–TYPE PROBLEM

YUE WANG, QI-PING WEI AND HONG-MIN SUO ∗

(Communicated by D. Kang)

Abstract. This article concerns on the existence of multiple solutions for a Kirchhoff-type prob-
lem with positive and negative modulus. By applying the variational methods and algebraic anal-
ysis, we prove that there exist the only three solutions when the parameter is absolutely small
than a constant, only two solutions when the parameter is absolutely equals with the constant
and an unique solution when the parameter is absolutely greater than the constant. Moreover, we
use the algebraic analysis to calculating the constant with the help of one of the Mountain Pass
Lemma, Ekeland variational principle, and Minimax principle.

1. Introduction and main results

This paper mainly study the following nonlocal problem{
−

(
a−b

∫
Ω
|∇u|2dx

)
Δu = μ f (x), in Ω,

u = 0, on ∂Ω,
(1)

where the constants a,b ∈ R with |a|+ |b| > 0, Ω is a bounded domain in RN with
smooth boundary ∂Ω , N � 1, μ ∈R is a parameter and f (x) is a nonnegative-nonzero
function. The analysis developed in this paper corresponds to propose an approach
based on the idea of considering the nonlocal term with negative modulus, which is
presents interesting difficulties.

Problem (1) is related with the Kirchhoff-type equation as following:

−
(
a+b

∫
Ω
|∇u|2dx

)
Δu = f (x,u), in Ω, (2)

where a � 0, b > 0, Ω is a bounded domain in RN with smooth boundary ∂Ω or
Ω = RN , f : Ω×R → R is a continual function. Mentioned that Eq. (2) is a steady-
state subproblem of model

ρh
∂ 2u
∂ t2

−
(

p0 +
Eh
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx
)∂ 2u

∂x2 = f (x,u) (3)
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with 0 < x < L and t � 0, where u = u(x,t) is the lateral displacement, ρ the mass
density, E the Young’s modulus, h the cross-section area, L the length and p0 the
initial axial tension. Eq. (3) named the Kirchhoff problem as an extension of classical
D’Alembert’s wave equation for free vibration of elastic strings by Kirchhoff in [16]
before 1876. When finding the existence of stationary solution, Eq. (3) may be express
as Eq. (2) and therefore Eq. (2) was named the Kirchhoff-type problem. Eq. (2) has
been studied by many researchers on RN and bounded domain with some extra condi-
tions, such as [2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 19, 20, 21, 27, 37, 39] and their
references. Eq. (2) contains a nonlocal coefficient (a+b

∫
Ω |∇u|2dx) , this leads to that

Eq. (2) is often called nonlocal problem. A nonlocal coefficient (a− b
∫

Ω |∇u|2dx) is
included in Kirchhoff-type problem, may be an interesting model (see [28, 31]) since
the problem involving the minus Young’s modulus. It is possible to restate that the re-
search interesting in [38] is that the nonlocal coefficient (a+b

∫
Ω |∇u|2dx) is bounded

below but the nonlocal coefficient (a− b
∫

Ω |∇u|2dx) is not. It is different with [38],
the research interesting in [31] is that the Kirchhoff-type equation with the nonlocal
coefficient (a−b

∫
Ω |∇u|2dx) is a negative modulus problem. Furthermore, some use-

ful conclusion are concluded in [28], there the research history of negative modulus
is summarized. It is worth to paying more attentions to Young’s modulus, which can
also be used in computing tension, when the atoms are pulled apart instead of squeezed
together, the strain is negative because the atoms are stretched instead of compressed,
this leads to minus Young’s modulus, which is the reason why we call the problem (1)
as a Kirchhoff-type problem with negative modulus before.

Indeed, there are some results in Eq. (2) with positive a and negative b . Let Ω
is a bounded domain in RN with smooth boundary, denote 2∗ = 2N

N−2 as N � 3 and
2∗ = +∞ as N = 1,2 below. For the positive constants a and b , some researchers
consider the following problem{

−
(
a−b

∫
Ω
|∇u|2dx

)
Δu = |u|p−2u, in Ω,

u = 0, on ∂Ω.
(4)

A result of the existence of infinitely many solutions for Eq. (4) were got in [33] by
Wang and Yang, where 2 � p < 2∗ and the tool is the Ljusternik-Schnirelman type
minimax method. Moreover, an example with one dimensional case for p = 2 is given
in [33]. Shi and Qian in [24] replaced |u|p−2u by λ |u|p−2u with 1 < p < 2 on Eq. (4),
they got the existence of two positive solutions by using the Nehari manifold if λ > 0
enough small. Yin and Liu in [38] got that there exist at least a nontrivial non-negative
solution and a nontrivial non-positive solution with 2 < p < 2∗ for Eq. (4).

If there is no boundary condition on Eq. (4), infinitely many interesting classical
solutions can be found in [30] with all exponents p �= −1 on bounded domain and
in [32] with all exponents p ∈ [0,2∗) on unbounded domain, where all functions are
constructed by authors skillfully. Wang et al in [31] obtained that there exist at least
two positive solutions when f (x) ∈ L4/3(R4) with μ > 0 enough small and infinitely
many positive solutions with μ = 0 via variational method mainly for the problem

−
(
a−b

∫
R4

|∇u|2dx
)

Δu = |u|2u+ μ f (x), in R4.
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Recent studies shown that the problem or Eq. (2) with positive a and negative
b is not only the Kirchhoff problem with negative modulus, but also a conveyor belt
boundary vibration problem (see some statement in [36]). Moreover, infinitely many
solutions were proved in [36] for subcritical exponents and finite positive solutions were
concluded for critical exponent with the help of the Symmetric Mountain Pass Lemma
and Nihari manifold. For more details about this kind problem with negative modulus,
we refer readers to the papers [17, 18, 22, 23, 29, 34, 35, 40], there include Hardy-
Sobolev critical exponent, singularity, ground state solution, sign-changing potential,
and so on. The papers above are consider no our results in the problem (1), so our
research do not conflict. The conclusion in this article state as following theories mainly
via variational method and algebraic analysis.

THEOREM 1. Assume that a,b > 0 and f ∈ L
2∗

2∗−1 (Ω) is positive a.e. x∈Ω , then,
there exists μ∗ > 0 , such that the problem (1) has at least three nontrivial solutions for
μ ∈ (0,μ∗) and a nontrivial solution for μ ∈ [μ∗,+∞) .

As the proof as Theorem 1, the proof of the existence of solutions for μ < 0 may
be miscellaneous by variational method, we shall use new method to overcome it.

THEOREM 2. Assume that a,b > 0 and f ∈ L
2∗

2∗−1 (Ω) is positive a.e. x ∈ Ω ,
then, there exists a constant μ∗∗ > 0 such that problem (1) has only three solutions for
0 < |μ | < μ∗∗ , only two solutions for μ = ±μ∗∗ and unique solution for |μ | > μ∗∗ .
Moreover, problem (1) has infinitely many solutions if a,b > 0,μ = 0 .

Indeed, the condition of f (x) can be replace weakly by f ∈H−1(Ω) and f (x) > 0

a.e. x ∈ Ω , where H−1(Ω) is the dual space of H1
0 (Ω) and L

2∗
2∗−1 (Ω) � H−1(Ω) .

COROLLARY 1. Assume that ab > 0 and f (x) ∈ H−1(Ω) is positive a.e., then,
for μ∗∗ defined by Theorem 2, problem (1) has only three solutions for 0 < |μ | < μ∗∗ ,
only two solutions for μ = ±μ∗∗ and unique solution for any |μ | > μ∗∗ .

The novelty of our results lies in three aspects for positive a and b . Firstly, we
prove the (PS)c condition by new method and c ∈ [− a2

12b ,+∞)\{ a2

4b} . What’s more, it

is not satisfy (PS)c condition with c ∈ (−∞,− a2

12b)∪{ a2

4b} . Secondly, with the help of
algebraic analysis, we got that the uniqueness of three, two or one solution although we
got that there are at least three nontrivial weak solutions by using one of the Mountain
Pass Lemma, Ekeland variational principle, and Minimax principle. Thirdly, through
of a basic fundamental result, we obtain the specific form of μ∗∗ .

This article is organized as follows. In section 2, we give some basic knowledge
which use to solving the problem. Section 3 contains elementary results and proof
of theorem 1. In section 4, for the Theorem 1, with the help of algebraic analysis,
we prove that the existence of three nontrivial weak solutions only by using one of the
Mountain Pass Lemma, Ekeland variational principle, and Minimax principle. By using
the similar method, we prove the Theorem 2 and calculate the μ∗∗ exactly. In section
5, we give an example for one dimensional case and make a summary.
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2. Preliminaries

Throughout this paper we denote by → (resp. ⇀) the strong (resp. weak) con-
vergence. For any u,v ∈H1

0 (Ω) , the inner product is 〈u,v〉=
∫

Ω ∇u∇vdx and the norm

‖u‖ =
(∫

Ω |∇u|2dx
) 1

2 . ‖ f‖H−1 = supu∈H1
0 (Ω) |

∫
Ω f udx|‖u‖−1 is the norm in the dual

space H−1(Ω) of H1
0 (Ω) . Denote the Ls -norm ‖u‖s =

[∫
Ω |u|sdx

] 1
s for 0 < s < +∞ .

We set, as we known in [3, 26], S be the best Sobolev embedding constant for the
embedding H1

0 (Ω) ↪→ L2∗(Ω) and λ1 be the first eigenvalue of −Δ , namely

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx(∫

Ω |u|2∗dx
) 2

2∗
, λ1 = inf

u∈H1
0 (Ω)\{0}

∫
Ω |∇u|2dx∫
Ω |u|2dx

.

We recall that a function u ∈ H1
0 (Ω) is called a weak solution of Eq. (1) if(

a−b
∫

Ω
|∇u|2dx

)∫
Ω

∇u∇vdx = μ
∫

Ω
f vdx, ∀ v ∈ H1

0 (Ω).

Let I(u) : H1
0 (Ω) �→ R be the functional defined by

I(u) =
a
2
‖u‖2− b

4
‖u‖4− μ

∫
Ω

f udx, (5)

it can be verify that I(u) ∈C(H1
0 (Ω),R) and the Gâteaux derivative of I given by

〈I′(u),v〉 = (a−b‖u‖2)
∫

Ω
∇u∇vdx− μ

∫
Ω

f vdx, ∀ v ∈ H1
0 (Ω). (6)

If u ∈ H1
0 (Ω) such that I′(u) = 0, then u is a weak solution of problem (1).

3. Proof of the Theorem 1

LEMMA 1. Assume that a,b,μ > 0 , f ∈ L
2∗

2∗−1 (Ω) and f (x) � 0 a.e. x∈Ω , then,

I satisfies the (PS)c condition with c ∈ [− a2

12b ,+∞)\ { a2

4b} , and I does not satisfy the

(PS)c condition at c = a2

4b . That is, for c ∈ [− a2

12b ,+∞)\{ a2

4b} , every (PS) sequence at
c has a converge subsequence.

Proof. We recall that {un}∞
n=1 ⊂H1

0 (Ω) is a (PS) sequence at c , so that I(un)→ c
and I′(un) → 0 as n → ∞ . Let {un}∞

n=1 be a (PS)c sequence, then⎧⎪⎨
⎪⎩

I(un) =
a
2
‖un‖2− b

4
‖un‖4− μ

∫
Ω

f undx → c,

〈I′(un),v〉 =
(
a−b‖un‖2)∫

Ω
∇un∇vdx− μ

∫
Ω

f vdx → 0
(7)

for any v ∈ H1
0 (Ω) as n → ∞ . Especially, for any ε > 0, taking v = un in (7) to find

−ε‖un‖ < 〈I′(un),un〉 =
(
a−b‖un‖2)‖un‖2− μ

∫
Ω

f undx < ε‖un‖
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by |〈I′(un),un〉| � ‖I′(un)‖H−1‖un‖ and I′(un) → 0 as n → ∞ . So, we have

−ε‖un‖+ c � I(un)−〈I′(un),un〉 =
3b
4
‖un‖4− a

2
‖un‖2

� c+ ε‖un‖ � |c|+ ε2

2a
+

a
2
‖un‖2.

Taking ε =
√

2a to find

3b
4
‖un‖4−a‖un‖2−|c|−1 � 0.

This shows that

0 � ‖un‖2 � a+
√

a2 +3b(|c|+1)
2 · 3b

4

.

Obviously, {un}∞
n=1 is bounded with a bounded c . Therefore, it holds that

I(un)−〈I′(un),un〉 =
3b
4
‖un‖4− a

2
‖un‖2 → c (8)

and we can obtain that

lim
n→∞

‖un‖2 =
a
2 ±

√
a2

4 +3bc

2 · 3b
4

=
a±a

√
1+ 12bc

a2

3b
=

a
3b

(
1±

√
1+

12bc
a2

)
.

From the equality above, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

‖un‖2 < 0 ⇔ c < − a2

12b
;

0 � lim
n→∞

‖un‖2 � 2a
3b

⇔ − a2

12b
� c � 0;

2a
3b

< lim
n→∞

‖un‖2 <
a
b

⇔ 0 < c <
a2

4b
;

lim
n→∞

‖un‖2 =
a
b

⇔ c =
a2

4b
;

lim
n→∞

‖un‖2 >
a
b

⇔ c >
a2

4b
.

(9)

Therefore, from (9), we can obtain that c � − a2

12b is well defined, and there exists no

lim
n→∞

‖un‖2 in R for c < − a2

12b .

Case lim
n→∞

‖un‖2 = a
b , we have a−b‖un‖2 → 0 as n→ ∞ . By (3,1), we can choose

a function v ∈ H1
0 (Ω) such that

∫
Ω

f vdx = 1 and it holds that ‖v‖ < +∞ and

(
a−b‖un‖2

)∫
Ω

∇un∇vdx → μ ,
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this leads to that

lim
n→∞

‖un‖‖v‖ � lim
n→∞

∫
Ω

∇un∇vdx = μ lim
n→∞

(
a−b‖un‖2)−1 = +∞,

and therefore lim
n→∞

‖un‖→+∞ . Which is a contradiction with ‖un‖2 → a
b . So, (7) does

not hold with all v ∈ H1
0 (Ω) and I has no (PS)c sequence with c = a2

4b .

Case lim
n→∞

‖un‖2 �= a
b , we have a−b‖un‖2 �→ 0 and c �= a2

4b .

Since {un}∞
n=1 is bounded in H1

0 (Ω) , if necessary, pass to a subsequence (still
denoted by {un}∞

n=1 ) and u0 in H1
0 (Ω) such that, for n → ∞ ,⎧⎪⎪⎨

⎪⎪⎩
un ⇀ u0, weakly in H1

0 (Ω),

un → u0, strongly in Lq(1 � q < 2∗),

un(x) → u0(x), a.e. x ∈ Ω.

Hence there is⎧⎪⎨
⎪⎩
〈I′(un),un〉 =

(
a−b‖un‖2)∫

Ω
∇un∇undx− μ

∫
Ω

f undx → 0,

〈I′(un),u0〉 =
(
a−b‖un‖2)∫

Ω
∇un∇u0dx− μ

∫
Ω

f u0dx → 0.

(10)

Lebesgue’s dominated convergence theorem (see [25, pp.27]) leads to

lim
n→∞

∫
Ω

f undx =
∫

Ω
f u0dx. (11)

From (10) and (11), we have(
a−b‖un‖2)∫

Ω
∇un∇(un−u0)dx → 0.

If a−b‖un‖2 �→ 0, one has un → u0 in H1
0 (Ω) . This proof is complete.

In order to prove main results, it is necessary to make some notes, that is

D+ =
{

u ∈ H1
0 (Ω);

∫
Ω

f udx > 0
}
, D− =

{
u ∈ H1

0 (Ω);
∫

Ω
f udx < 0

}
.

Setting u ∈ D± , then, there is tu ∈ D± with t > 0 and tu ∈ D∓ with t < 0. For any
u ∈ D± , it is easy to see that |∫Ω f udx| > 0, and therefore, we shall let

Λ := min
u∈D+ ⋃

D−

{
‖u‖−1

∣∣∣∫
Ω

f udx
∣∣∣} = min

u∈D+

{
‖u‖−1

∫
Ω

f udx
}

� 1√
S
‖ f‖ 2∗

2∗−1
.

LEMMA 2. Assume that a,b > 0 , f ∈ L
2∗

2∗−1 (Ω) and f (x) � 0 a.e. x ∈ Ω , then,

(i) there exist r,ρ ,μ∗1 > 0, such that for any μ ∈ (0,μ∗1] , it holds

inf
‖u‖=r

I(u) � ρ and inf
‖u‖�r

I(u) := c1 < 0;
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(ii) There exists R > 0, such that sup‖u‖�R I(u) � 0 for any μ > 0.

Proof. (i) By using the Sobolev imbedding inequality on (5), we obtain

I(u) � a
2
‖u‖2− b

4
‖u‖4− μ√

S
‖ f‖ 2∗

2∗−1
‖u‖ = ‖u‖

(a
2
‖u‖− b

4
‖u‖3− μ√

S
‖ f‖ 2∗

2∗−1

)
.

We can see that for any μ < a
9b(6abS)

1
2 ‖ f‖−1

2∗
2∗−1

:= μ0 with r0 = ( 2a
3b )

1
2 , there is

I(u)
‖u‖=r0, μ<μ0

�
(2a

3b

) 1
2
[a
3

(2a
3b

) 1
2 − μ√

S
‖ f‖ 2∗

2∗−1

]
:= ρ0 > 0.

Consequently, in order to calculate its conveniently, it is easy to see that there exist
r = ( 2a

3b )
1
2 , ρ = a2

9b , μ∗1 = a
18b(6abS)

1
2 ‖ f‖−1

2∗
2∗−1

, such that, for any μ ∈ (0,μ∗1] , one has

I(u)
‖u‖=r, μ�μ∗

�
(2a

3b

) 1
2
[a
3

(2a
3b

) 1
2 − μ√

S
‖ f‖ 2∗

2∗−1

]
�

(2a
3b

) 1
2
[a
3

(2a
3b

) 1
2 − μ∗√

S
‖ f‖ 2∗

2∗−1

]

�
(2a

3b

) 1
2
[a
3

(2a
3b

) 1
2 − a

18b
(6abS)

1
2 ‖ f‖−1

2∗
2∗−1

· 1√
S
‖ f‖ 2∗

2∗−1

]

=
(2a

3b

) 1
2
[a
3

(2a
3b

) 1
2 − a

6

(2a
3b

) 1
2
]

=
a2

9b
= ρ .

Taking ũ ∈ D+ ⊂ H1
0 (Ω) with ‖ũ‖ = r , it holds ‖tũ‖ � r with t → 0+ , and

lim
t→0+

I(tũ)
t

= lim
t→0+

1
t

{a
2
‖tu‖2− b

4
‖tu‖4− μ

∫
Ω

f · (tu)dx
}

= −μ
∫

Ω
f ũdx = − μr

‖ũ‖
∫

Ω
f ũdx

� −μrΛ = −
(

2a
3b

) 1
2

Λμ < 0.

Therefore, c1 := inf‖u‖�r I(u) � −( 2a
3b)

1
2 Λμ < 0 is well defined.

(ii) For any μ > 0, by Young’s inequality, we have

I(u) � a
2
‖u‖2− b

4
‖u‖4 + μ

∣∣∣∫
Ω

f udx
∣∣∣

� a
2
‖u‖2− b

4
‖u‖4 +

a
2
‖u‖2 +

μ2

2aS
‖ f‖2

2∗
2∗−1

= a‖u‖2− b
4
‖u‖4 +

μ2

2aS
‖ f‖2

2∗
2∗−1

. (12)

So, there exists R = 2
b

[
a+

(
a2 + bμ2

2aS ‖ f‖2
2∗

2∗−1

) 1
2
]
, such that I(u) � 0 with ‖u‖ � R ,

thus the conclusion sup‖u‖�R I(u) � 0 can be true. This completes the proof.
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3.1. Proof of the first and second solutions of problem (1)

THEOREM 3. Assume that a,b > 0 and f (x) ∈ L
2∗

2∗−1 (Ω) is positive a.e. x ∈ Ω ,
then, for any μ ∈ (0,μ∗1)(μ∗1 is defined by lemma 2), the problem (1) has at least two
positive solutions.

Proof.

Existence of the first solution. Taking Br := {u ∈ H1
0 (Ω);‖u‖ � r} , where r =

( 2a
3b)

1
2 . By the Lemma 2, there exists μ∗1 > 0 such that

inf I(Br) � −
(2a

3b

) 1
2 Λμ < 0

for any μ ∈ (0,μ∗1) . By the Ekeland variational principle (see [9, Lemma 1.1]), there
is a minimizing sequence {un}∞

n=1 ⊂ Br such that

I(un) � inf I(Br)+
1
n

and I(u) � I(un)− 1
n
‖u−un‖ (13)

for all n ∈ N and for any u ∈ Br . Therefore, we can get I(un) → c1 and I′(un) → 0
in dual space of H1

0 (Ω) as n → ∞ . By Lemma 1, there exist a subsequence (still
denoted by {un} ) and u∗1 ∈ Br such that un → u∗1 as n → ∞ . Then, I(u∗1) = c1 < 0
and I′(u∗1) = 0. Moreover, u∗1 ∈ D+ and ‖u∗1‖2 < a

3b . This implies that u∗1 is a local
minimizer for I . Hence u∗1 is a weak solution of problem (1).

Existence of the second solution. For any u ∈ D+ , there exists θ ∈ (0,1) , such
that

sup I(u) � sup
{a

2
‖u‖2− b

4
‖u‖4− μΛ‖u‖

}

� a2

4b
−θ

(a
b

) 1
2 μΛ <

a2

4b
.

According to Lemma 2, I has mountain pass geometry for any μ ∈ (0,μ∗1) . For any
e ∈ H1

0 (Ω) with ‖e‖ � R(where R defined in the lemma 2), we set

Γ =
{

τ(t) ∈C1([0,1],H1
0 (Ω)

)
;τ(0) = 0,τ(1) = e

}
.

By (5)–(6), I
(
τ(t)

)
has continuity, I

(
τ(0)

)
= 0, I

(
τ(1)

)
� 0. So, there is

0 < ρ � c2 := inf
τ∈Γ

sup
t∈[0,1]

I
(
τ(t)

)
� sup

u∈D+
I(u) <

a2

4b
.

By the mountain pass theorem (see [1, Theorem 2.1–2.4]), there exist u∗2 and a sequence
{uk}∞

k=1 in H1
0 (Ω) , moreover in D+ , such that uk ⇀ u∗2 in H1

0 (Ω) and I′(uk) → 0 in
dual space of H1

0 (Ω) . Lemma 1 means that uk → u∗2 in H1
0 (Ω) , I(uk)→ c2 = I(u∗2) and
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I′(uk) → 0 = I′(u∗2) in dual space of H1
0 (Ω) . Hence u∗2 is a weak solution of problem

(1) with ‖u∗2‖ > ( 2a
3b)

1
2 . Since I(u∗1) < 0 < I(u∗2) , we get u∗2 �= u∗1 .

Proof of that u∗1 and u∗2 are positive. Since u∗i ∈ D+(i = 1,2) are the weak solu-
tions of problem (1), we have(

a−b
∫

Ω
|∇u∗i |2dx

)∫
Ω
|∇u∗i |2dx = μ

∫
Ω

f u∗i dx > 0.

Hence a−b‖u∗i ‖2 > 0. This means that −Δu∗i = μ(a−b‖u∗i ‖2)−1 f (x) � 0 and u∗i �≡ 0.
According to the strong maximum principle, we obtain u∗i are positive solutions.

3.2. Proof of the third solution of problem (1)

LEMMA 3. Assume that a,b,μ > 0 , f ∈ L
2∗

2∗−1 (Ω) and f (x) � 0 a.e. x∈ Ω , then

a2

4b
< sup I(u) � a2

b
+

μ2

2aS
‖ f‖2

2∗
2∗−1

.

Proof. For any u ∈ D+ , tu ∈ D− with t < 0 and we have

sup
t<0

I(tu) � sup

t=−( a
b )

1
2 ‖u0‖−1

{
a
2
‖tu‖2− b

4
‖tu‖4− μ

∫
Ω

f · (tu)dx

}

=
a2

4b
+

(a
b

) 1
2 μ
‖u‖

∣∣∣∣
∫

Ω
f u0dx

∣∣∣∣ >
a2

4b
. (14)

So, sup I(u) � sup
u∈D−

I(u) >
a2

4b
. Moreover, via the Young’s inequality, we obtain

sup I(u) � a
2
‖u‖2− b

4
‖u‖4 + μ

∣∣∣∫
Ω

f udx
∣∣∣

� a
2
‖u‖2− b

4
‖u‖4 +

a
2
‖u‖2 +

μ2

2aS
‖ f‖2

2∗
2∗−1

� max
t>0

{
at2− b

4
t4 +

μ2

2aS
‖ f‖2

2∗
2∗−1

}

=
a2

b
+

μ2

2aS
‖ f‖2

2∗
2∗−1

.

Consequently, sup I(u) � a2

b + μ2

2aS‖ f‖2
2∗

2∗−1

. This with the (14), our proof is complete.

THEOREM 4. Assume that a,b > 0 and f (x) ∈ L
2∗

2∗−1 (Ω) is a positive function
a.e. x ∈ Ω , then, for any μ > 0 , the problem (1) has at least a negative solution.
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Existence of the third solution. From Lemma 3, the functional I has the supre-
mum. Set

F =
{

Tt ∈C1(H1
0 (Ω),H1

0 (Ω)
)
;Tt (u) = tu,t ∈ R

}
,

A =
{
tu;u ∈ D+ ∪D−,t ∈ R

}
,

Then, for all A ∈ A , Tt(A) ∈ A are hold for any Tt ∈ F . Therefore, there is

a2

4b
< inf

A∈A
max
t∈R

sup
ũ∈A

I(tũ) := c3 � a2

b
+

μ2

2aS
‖ f‖2

2∗
2∗−1

.

for any μ > 0. By applying Lemma 1 and the Minimax principle (see [3, Theorem 1.5
& Corollary 1.3 in Chapter 3]) for I , there exist u∗3 and a sequence {um} in H1

0 (Ω) ,
moreover in D− , such that um → u∗3 in H1

0 (Ω) , I(um) → c3 = I(u∗3) and I′(um)→ 0 =
I′(u∗3) in H−1(Ω) . Hence u∗3 is a weak solution of problem (1) and ‖u∗3‖2 > a

b .

Indeed, instead of the Minimax principle, taking BR := {u ∈ H1
0 (Ω) | ‖u‖ � R}

and applying the Ekeland variational principle for −I , we can obtain the existence of

u∗3 by Lemma 1, where R = 2
b

[
a+(a2 + bμ2

2aS ‖ f‖2
2∗

2∗−1

)
1
2
]
.

Proof of the negativity for u∗3 . Since u∗3 ∈ D− is a weak solution of problem (1)
with ‖u∗3‖2 > a

b , we have a−b‖u∗3‖2 < 0 and

μ
∫

Ω
f u∗3dx =

(
a−b

∫
Ω
|∇u∗3|2dx

)∫
Ω
|∇u∗3|2dx < 0.

Hence u∗3 �≡ 0 and

−Δu∗3 = μ(a−b‖u∗3‖2)−1 f (x) � 0.

By the strong minimum principle, we obtain that u∗3 is negative. This proof is complete.

3.3. Proof of the Theorem 1

It is clear that problem (1) has at least two positive solutions u∗1 and u∗2 for μ ∈
(0,μ∗1] by Theorem 3 and a negative solution u∗3 by Theorem 4. Since

I(u∗1) < 0 < I(u∗2) <
a2

4b
< I(u∗3),

we get that u∗1 , u∗2 and u∗3 are different solutions with

0 < ‖u∗1‖2 <
a
3b

<
2a
3b

< ‖u∗2‖2 <
a
b

< ‖u∗3‖2.

For μ ∈ [μ∗1,+∞) , Theorem 4 leads to that problem (1) admits at least a negative solu-
tion. Hence there exists μ∗1 > 0 such that the problem (1) has at least three nontrivial
solutions for μ ∈ (0,μ∗1) , and a nontrivial solution for μ ∈ [μ∗1,+∞) .
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Moreover, for ‖u‖2 = 4a
3b and μ � a

72b(3abS)
1
2 ‖ f‖−1

2∗
2∗−1

, we have I(u)� a2

4b , sup I(u)

is achieved on a
b < ‖u‖2 < 4a

3b . So, there exists μ∗ = a
72b (3abS)

1
2 ‖ f‖−1

2∗
2∗−1

< μ∗1 , such

that, problem (1) has at least three nontrivial solutions u∗1 , u∗2 and u∗3 for μ ∈ (0,μ∗) ,
and a nontrivial solution u∗3 for μ � μ∗ . In addition, it holds that a

b < ‖u∗3‖2 < 4a
3b for

μ ∈ (0,μ∗) . This proof is completed.

4. Proof of main results via algebraic analysis

Step 1. Let u be a solution, we shall give the calculated method to other solutions
with the help of algebraic analysis. Since u is a solution of problem (1), one has

(
a−b‖u‖2)∫

Ω
∇u∇vdx = μ

∫
Ω

f (x)vdx, ∀ v ∈ H1
0 (Ω). (15)

For given u , we have ‖u‖2 =
∫

Ω
|∇u|2dx := α > 0 and it is easy to see that α �= a

b .

The existence of three solutions via algebraic analysis, if and only if there exist three
values of t such that tu ∈ H1

0 (Ω) and

(
a−b‖tu‖2)∫

Ω
∇(tu)∇vdx = μ

∫
Ω

f (x)vdx, ∀ v ∈ H1
0 (Ω). (16)

It follows from (15)–(16) that our goal is equivalent to finding all t ∈ R such that

t
(
a−bt2α

)
= a−bα. (17)

It is easy to see that t0 = 1 is a solution of Eq. (17), and for addition, Eq. (17) has

the solutions t1 = 1
2

(
− 1+

√
4a
bα −3

)
and t2 = 1

2

(
− 1−

√
4a
bα −3

)
when α < 4a

3b ,

t1 = t2 = − 1
2 when α = 4a

3b and no real solution when α > 4a
3b . There is t1 = t0 = 1

and t2 = −2 when α = a
3b in addition.

We set u, u are different solutions of problem (1) with μ �= 0, then,

−(
a−b‖u‖2)Δu = μ f (x) = −(

a−b‖u‖2)Δu.

It holds that a−b‖u‖2 �= 0 and a−b‖u‖2 �= 0 are constants by (15). Consciously,

− (a−b‖u‖2)Δu+(a−b‖u‖2)Δu = 0, (18)

and
[
(a−b‖u‖2)u− (a−b‖u‖2)u

] ∈ H1
0 (Ω) by u, u ∈ H1

0 (Ω) . Multiplying the equa-
tion (18) by

[
(a−b‖u‖2)u− (a−b‖u‖2)u

]
and integrating over Ω , we obtain that

∥∥∥(a−b‖u‖2)u− (a−b‖u‖2)u
∥∥∥2

= 0.

Hence u = a−b‖u‖2

a−b‖u‖2 u . Thus all solutions of problem (1) are linear dependence.
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Step 2. A proof will be give for three solutions with μ > 0 enough small only by
using one of the Mountain Pass Lemma, Ekeland variational principle, and Minimax
principle.

Three solutions of Theorem 1. According to the informationwe state above, Eq. (1)
has at least a nontrivial solution (here we denote by u∗1 , u∗2 or u∗3 ) with all a,b > 0 and
μ ∈ (0,μ∗) by using one of the Mountain Pass Lemma, Ekeland variational principle,
and Minimax principle. Moreover, one has

0 < ‖u∗1‖2 <
a
3b

<
2a
3b

< ‖u∗2‖2 <
a
b

< ‖u∗3‖2 <
4a
3b

.

Choosing one of the solutions u∗1 , u∗2 and u∗3 denoted by u , then, Eq. (17) has three
different solutions t0,t1,t2 and problem (1) has three different solutions u, t1u,t2u , them
are linear dependence.

REMARK 1. From the step 1, we obtain that Eq. (1) has at most three different
solutions. We have been proved that Eq. (1) has at least 3 solutions with μ > 0 enough
small in Theorem 1. Therefore, Eq. (1) has only three solutions with{

u∗1,u
∗
2,u

∗
3

}
=

{
u∗1,t1u

∗
1,t2u

∗
1

}
=

{
u∗2,t

′
1u

∗
2,t

′
2u

∗
2

}
=

{
u∗3,t

′′
1 u∗3,t

′′
2 u∗3

}
if μ > 0 small enough, where t ′1,t

′
2,t

′′
1 ,t ′′2 are four constants.

Step 3. The specific form of μ∗∗ is given exactly and the Eq. (1) has only three
solutions for 0 < |μ | < μ∗∗ , two solutions for |μ | = μ∗∗ and a solution for |μ | > μ∗∗ .

Proof of Theorem 2 with μ �= 0 . Research the following elliptic problem:{−Δu = f (x), in Ω,
u = 0, on ∂Ω,

(19)

where f ∈ L
2∗

2∗−1 (Ω) and f (x) � 0 a.e. x ∈ Ω . Then, it is well known that problem
(19) has an unique positive solution U ∈ H1

0 (Ω) . Moreover,⎧⎪⎨
⎪⎩

‖U‖2 =
∫

Ω
fUdx � 1√

S
‖ f‖ 2∗

2∗−1
‖U‖ =⇒‖U‖−1 �

√
S‖ f‖−1

2∗
2∗−1

,

‖U‖2 =
∫

Ω
fUdx � ‖ f‖2‖U‖2 � 1

λ1
‖ f‖2‖U‖ =⇒‖U‖−1 � λ1‖ f‖−1

2 .
(20)

Consider the function g(t) as following:

g(t) =
(
a−b‖tU‖2)t− μ , (21)

where t ∈ R is variable, μ > 0 is a parameter. If t = T is a zero-point of g(t) , then(
a−b

∫
Ω
|∇(TU)|2dx

)∫
Ω

∇(TU)∇vdx = μ
∫

Ω
f vdx, ∀ v ∈ H1

0 (Ω).
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This means that TU is a solution of Eq. (1). g′(t) = a − 3b‖U‖2t2 implies that
the extreme-points of g(t) are tm = −√

3ab(3b‖U‖)−1 and tM =
√

3ab(3b‖U‖)−1 .
Hence, g(t) is decreasing in (−∞,tm) , increasing in [tm, tM] and decreasing in (tM,+∞) ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
min g(t) = g(tm) =

(
b‖U‖2 · a

3b‖U‖2 −a
)
·
√

3ab
3b‖U‖ − μ = −2a

√
3ab

9b‖U‖ − μ ,

max g(t) = g(tM) =
(
a−b‖U‖2 · a

3b‖U‖2

)
·
√

3ab
3b‖U‖ − μ =

2a
√

3ab
9b‖U‖ − μ .

(22)

Consciously, by (22), it is easy to get that, there exists μ∗∗ = 2a
√

3ab(9b‖U‖)−1 such
that Eq. (21) has three solutions T1,T2,T3 for 0 < |μ | < μ∗∗ with

T1 < −
√

3ab(3b‖U‖)−1 < T2 <
√

3ab(3b‖U‖)−1 < T3,

two solutions T2 and ‘T1 or T3 ’ for |μ | = μ∗∗ with

T1 = −2
√

3ab(3b‖U‖)−1 < T2 =
√

3ab(3b‖U‖)−1

or
T2 = −

√
3ab(3b‖U‖)−1 < T3 = 2

√
3ab(3b‖U‖)−1,

and a solution T1 or T3 for |μ | > μ∗∗ with

T1 < −
√

3ab(3b‖U‖)−1 or T3 >
√

3ab(3b‖U‖)−1.

Besides, we can state that the problem (1) has

(i) three solutions ‘T1U,T2U,T3U ’ for 0 < |μ | < μ∗∗ ;

(ii) two solutions ‘−2
√

3ab(3b‖U‖)−1U ,
√

3ab(3b‖U‖)−1U ’ for μ = μ∗∗ ;

(iii) two solutions ‘−√
3ab(3b‖U‖)−1U , 2

√
3ab(3b‖U‖)−1U ’ for μ = −μ∗∗ ;

(iv) a solution ‘T1U ’ for μ > μ∗∗ and a solution ‘T3U ’ for μ < −μ∗∗ ,

where U is the unique positive solution of problem (19) and μ∗∗ = 2a
√

3ab(9b‖U‖)−1 .
Comparing with the Step 1, all solutions of problem (1) are linear dependence,

there are no more solutions than those mentioned above. Consequently, a conclusion
can be get that there exists a constant μ∗∗ = 2a

√
3ab(9b‖U‖)−1 such that problem (1)

has only three solutions for 0 < |μ | < μ∗∗ , two solutions for μ = ±μ∗∗ and a solution
for |μ | > μ∗∗ . And by (20), μ∗∗ = 2a

√
3ab(9b‖U‖)−1 � 2a

√
3abS(9b‖ f‖ 2∗

2∗−1
)−1 .

At last, we prove the existence of infinitely many solutions for μ = 0.

Proof of Theorem 2 with μ = 0 . For this case, we fix any V ∈H1
0 (Ω) and let u :=√

ab(b‖V‖)−1V ∈ H1
0 (Ω) , it is clear that a−b‖u‖2 = 0 and

∫
Ω ∇u∇vdx are bounded

with all v ∈ H1
0 (Ω) . So, u is a solution of problem (1). According to the arbitrary of

V ∈ H1
0 (Ω) , problem (1) has infinitely many solutions when μ = 0.

We replace the condition f (x) ∈ L
2∗

2∗−1 (Ω) by f (x) ∈ H−1(Ω) and f (x) > 0 a.e.
x∈ Ω , we can obtain that the Corollary 1 is clear by ‖U‖� ‖ f‖H−1 , where U ∈H1

0 (Ω)
is the unique positive solution of problem (19). Similarly, we can obtain the constant
μ∗∗ = 2a

√
3ab(9b‖U‖)−1 .
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5. A example for one dimensional case

EXAMPLE 1. Let a = b = 1, Ω = (0,1) , f (x) = 1. Eq. (1) becomes⎧⎨
⎩−

(
1−

∫ 1

0
|u′|2dx

)
u′′ = μ , in (0,1),

u = 0, on {0,1}.
(23)

(i) For μ > 4
3 , u(x)= 1

2

[(−6μ +2
√

9μ2−16
) 1

3 +
(−6μ−2

√
9μ2−16

) 1
3
]
x(1−

x) is the unique solution of the Eq. (23); and the next results show that μ∗∗ = 4
3 ;

(ii) For μ = 4
3 , Eq. (23) has only two solutions u1(x) = −2x(1− x) , u2(x) =

x(1− x) ;
(iii) For μ ∈ (0, 4

3) , Eq. (23) has only three solutions ui(x) = ti
2 x(1−x) , i = 1,2,3,

where ti ( i = 1,2,3) are the roots of the algebraic equation t3−12t +12μ = 0;

(iv) for μ = 0, un(x) =
√

2sinnπx
nπ are the solutions of Eq. (23), n∈ Z\{0} , but not

all.

Indeed, our conclusion is applicable to all a,b ∈ R if |a|+ |b| > 0. If ab > 0, the
fact is in Corollary 1. If ab � 0, Eq. (1) has an unique solution for any μ ∈ R .
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