
D ifferential
Equations

& Applications

Volume 14, Number 1 (2022), 17–30 doi:10.7153/dea-2022-14-02

COMPARISON THEOREMS ON THE OSCILLATION OF

THIRD–ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH MIXED DEVIATING ARGUMENTS IN NEUTRAL TERM

ORHAN ÖZDEMIR ∗ AND ŞEHRI KAYA

(Communicated by R. S. Hilscher)

Abstract. This study purposes to present some new comparison theorems that guarantee the
oscillation of all solutions of third-order functional differential equations with mixed neutral
term i.e., the neutral term contains both retarded and advanced arguments. The obtained results
are based on comparisons with associated first-order delay differential inequalities and first-order
delay differential equations, and they are applicable to both cases where the neutral coefficients
of differential equation are unbounded and/or bounded. Illustrative examples are also provided
to validate the main results.

1. Introduction

This article deals with the oscillation of all solutions to a class of third-order non-
linear mixed neutral differential equation of the form

(
r(t)
(
y′′(t)

)γ
)′

+q(t)xβ(σ(t)
)

= 0, t � t0 > 0, (1.1)

where the neutral term y(t) is defined by

y
(
t
)

:= x
(
t
)
+ p1

(
t
)
x
(
η1(t)

)
+ p2

(
t
)
x
(
η2(t)

)
. (1.2)

Throughout this work, it will be assumed that the following conditions are always ful-
filled:

( i) p1, p2 ∈C
(
[t0,∞),R

)
with p2(t) > 0, p1(t) � 1 and p1(t) �≡ 1 for large t ;

( ii) γ and β are quotients of odd positive integers;

( iii) η1,η2,σ : [t0,∞) → R are real-valued continuous functions such that η1(t) � t ,
η2(t) � t , η1,η2 are strictly increasing, and limt→∞ η1(t) = limt→∞ σ(t) = ∞ ;
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( iv) q ∈ C
(
[t0,∞), [0,∞)

)
and q does not vanish identically on any half-line of the

form [tx,∞), tx � t0 ; r ∈C
(
[t0,∞),(0,∞)

)
with

∫ ∞

t0

1

r1/γ (s)
ds = ∞.

By a solution of equation (1.1) we mean a function x ∈ C ([tx,∞),R) which has
the properties y ∈ C2 ([tx,∞),R) , r(y′′)γ ∈ C1 ([tx,∞) ,R) and satisfies equation (1.1)
on [tx,∞) . Without further mention, we will assume throughout that every solution x(t)
of (1.1) under consideration here is continuable to the right and nontrivial, i.e., x(t) is
defined on some ray [tx,∞) , for some tx � t0 , and

sup{|x(t)| : t � T1} > 0 for every T1 � tx.

Moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative.
Otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions oscillate.

Since the functional differential equations have applications in various problems of
engineering, physics and economics, there is increasing interest in obtaining sufficient
conditions for the oscillation and asymptotic properties of the solutions of varietal types
of equations; see, e.g., papers [1]-[40]. In reviewing the related literature, it becomes
apparent that some of such results have been devoted to special forms of Eq. (1.1) with
p2(t) = 0, see for example [1, 2, 19, 23, 26, 27, 36], where the neutral delay differential
or dynamic equations are mainly studied under various conditions.

On the other hand, oscillation results which guarantee that all solutions of third-
order neutral delay differential equations are oscillatory have been obtained in the litera-
ture, and we refer the reader to the papers [11, 12, 17, 28, 29, 38] as examples of recent
results on this topic. It is seen that some of these results were established under the
restrictive conditions such as commutativity of the deviating arguments, [17, 28, 29].

However, in the presence of an advanced and a delayed argument in the neutral
term, determining oscillation criteria for third–order functional differential equations
and dynamic equations on time scales has not received a great deal of attention in the
literature. To the best of the authors’ knowledge, there is nothing known regarding the
oscillation of all solutions of equation (1.1) under the assumptions (i)–(iv) or under
the assumptions (ii)–(v) , please see Theorem 2 for condition (v) . In view of above
observation, we attempt to fill this gap by extending the ideas exploited in [11, 12],
based on comparisonswith associated first-order delay differential inequalities and first-
order delay differential equations.

We note that the results established in this study do not require the commutativity
of the deviating arguments, and they are new even for the linear case when γ = β = 1,
for r(t) = 1, for discrete deviating arguments such as η1(t) = t − k1 , η2(t) = t + k2

and σ(t) = t− k3 with k j > 0 are real constants for j = 1,2,3.
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2. Main results

For the reader’s convenience, we list the functions to be used in the paper. So, for
t � t1 � t0 , we employ the following notation:

ϑ1 (t) :=
∫ t

t1

1

r1/γ (s)
ds, ϑ2 (t) :=

∫ t

t1
ϑ1 (s)ds, ϑ (t) := exp

(∫ t

t1

ϑ1 (s)
ϑ2 (s)

ds

)
,

K (t) :=

η−1
1 (h(t))∫

η−1
1 (σ(t))

⎛
⎜⎝

η−1
1 (h(t))∫

u

1

r1/γ(v)
dv

⎞
⎟⎠du,

m2(t) :=
1

p1(t)

[
1− 1

p1(η−1
1 (t))

− p2(t)
p1(η−1

1 (η2(t)))

]

and

m1(t) :=
1

p1(t)

[
1− 1

p1(η−1
1 (t))

ϑ(η−1
1 (t))

ϑ(t)
− p2(t)

p1(η−1
1 (η2(t)))

ϑ(η−1
1 (η2(t)))
ϑ(t)

]

where η−1
1 denotes the inverse function of η1 , and the function h(t) to be specified

later. Throughout the paper we assume that m1(t) > 0 and m2(t) > 0 for all t large
enough.

The following lemma whose validity can be easily established is required in our
main results. The proof follows by the similar argument as in [3, Lemma 3] and hence
the details are left to the reader.

LEMMA 1. Suppose that conditions (i)–(iv) hold and x(t) is an eventually pos-
itive solution of equation (1.1). Then for sufficiently large t , corresponding function
y(t) satisfies one of the following two cases:

(I) y(t) > 0 , y′(t) > 0 , y′′(t) > 0 , and
(
r(t)
(
y′′(t)

)γ
)′

� 0 ,

(II) y(t) > 0 , y′(t) < 0 , y′′(t) > 0 , and
(
r(t)
(
y′′(t)

)γ
)′

� 0 .

LEMMA 2. Assume that conditions (i)–(iv) hold and let x(t) be an eventually
positive solution of (1.1) with y(t) satisfying Case (I) of Lemma 1 for all t � t1 . Then,

y′(t) � ϑ1(t)r1/γ(t)y′′(t), (2.1)

y(t) � ϑ2(t)r1/γ(t)y′′(t), (2.2)

y(t) � ϑ2(t)
ϑ1(t)

y′(t) (2.3)

and (
y(t)
ϑ(t)

)′
� 0 for all t � t1. (2.4)
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Proof. Since r(t)
(
y′′(t)

)γ is nonincreasing for all t � t1 , we see that

y′(t) � y′(t1)+
t∫

t1

(
r(s)
(
y′′(s)

)γ
)1/γ

r1/γ(s)
ds � r1/γ(t)y′′(t)ϑ1(t).

Integrating the latter inequality from t1 to t , we have

y(t) � r1/γ(t)y′′(t)
t∫

t1

ϑ1(s)ds = r1/γ(t)y′′(t)ϑ2(t).

Moreover, from (2.1), we see that y′(t)/ϑ1(t) is nonincreasing for all t � t1 . Therefore,

y(t) = y(t1)+
t∫

t1

ϑ1(s)y′(s)
ϑ1(s)

ds � y′(t)
ϑ1(t)

t∫
t1

ϑ1(s)ds =
ϑ2(t)
ϑ1(t)

y′(t).

In view of the last inequality, we obtain

(
y(t)
ϑ(t)

)′
=

[
ϑ2(t)
ϑ1(t)

y′(t)− y(t)
]

ϑ1(t)
ϑ2(t)

ϑ(t)
� 0.

Hence, y(t)/ϑ(t) is nonincreaing for all t � t1 which completes the proof. �

THEOREM 1. Assume that conditions (i)−(iv) hold and suppose that there exists
a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If both first-
order delay differential equations

z′(t)+q(t)mβ
1

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)
zβ/γ(η−1

1 (σ(t))
)

= 0 (2.5)

and

ω ′(t)+q(t)mβ
2

(
η−1

1 (σ(t))
)
Kβ(t)ωβ/γ(η−1

1 (h(t))
)

= 0 (2.6)

are oscillatory, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(η1(t)) >
0, x(η2(t)) > 0 and x(σ (t)) > 0 for all t � t1 . The proof if x(t) is eventually negative
is similar, so we omit the details of that case here as well as in the remaining proofs
in this paper. By conclusion of Lemma 1, the function y(t) satisfies either Case (I) or
Case (II) for sufficiently large t . We will consider each case separately.
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First, assume that Case (I) holds. Then, from definition of y(t) , we have

x(η1(t)) =
y(t)
p1(t)

− x(t)
p1(t)

− p2(t)x(η2(t))
p1(t)

=
y(t)
p1(t)

− 1
p1(t)

[
y(η−1

1 (t))
p1(η−1

1 (t))
− x(η−1

1 (t))
p1(η−1

1 (t))
− p2(η−1

1 (t))x(η2(η−1
1 (t)))

p1(η−1
1 (t))

]

− p2(t)
p1(t)

[
y(η−1

1 (η2(t)))
p1(η−1

1 (η2(t)))
− x(η−1

1 (η2(t)))
p1(η−1

1 (η2(t)))

− p2(η−1
1 (η2(t)))x(η2(η−1

1 (η2(t))))
p1(η−1

1 (η2(t)))

]

� y(t)
p1(t)

− 1
p1(t)

y(η−1
1 (t))

p1(η−1
1 (t))

− p2(t)
p1(t)

y(η−1
1 (η2(t)))

p1(η−1
1 (η2(t)))

. (2.7)

On the other hand, since η1(t) � t � η2(t) and η1,η2 are strictly increasing functions,
we see that

t � η−1
1 (t) (2.8)

and
t � η−1

1 (η2(t)). (2.9)

Since, y(t)/ϑ(t) is nonincreasing for all t � t1 , we obtain from (2.8) and (2.9) that

y(η−1
1 (t)) � ϑ(η−1

1 (t))
ϑ(t)

y(t) (2.10)

and

y(η−1
1 (η2(t))) � ϑ(η−1

1 (η2(t)))
ϑ(t)

y(t), (2.11)

respectively. Thus, from (2.7), we conclude

x(η1(t)) � y(t)
p1(t)

[
1− 1

p1(η−1
1 (t))

ϑ(η−1
1 (t))

ϑ(t)
− p2(t)

p1(η−1
1 (η2(t)))

ϑ(η−1
1 (η2(t)))
ϑ(t)

]

which implies that

x(t) � m1
(
η−1

1 (t)
)
y
(
η−1

1 (t)
)
. (2.12)

Since limt→∞ σ (t) = ∞ , we can choose t2 � t1 such that σ(t) � t1 for all t � t2 . Thus,
from (2.12), we have

x
(
σ(t)

)
� m1

(
η−1

1 (σ(t))
)
y
(
η−1

1 (σ(t))
)

(2.13)

for all t � t2 . Combining inequality (2.13) with equation (1.1) yields(
r(t)
(
y′′(t)

)γ
)′

+q(t)mβ
1

(
η−1

1 (σ(t))
)
yβ (η−1

1 (σ(t))
)

� 0, t � t2. (2.14)
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Moreover, from (2.2), we see that

y
(
η−1

1 (σ(t))
)

� ϑ2
(
η−1

1 (σ(t))
)
r1/γ(η−1

1 (σ(t))
)
y′′
(
η−1

1 (σ(t))
)
. (2.15)

In view of (2.15), we obtain from (2.14) that(
r(t)
(
y′′(t)

)γ
)′

+q(t)mβ
1

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)[

r
(
η−1

1 (σ(t))
)(

y′′
(
η−1

1 (σ(t))
))γ]β/γ

� 0

for t � t2 . Letting z := r
(
y′′
)γ , we obtain that z(t) is a positive solution of the first-

order delay differential inequality

z′(t)+q(t)mβ
1

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)
zβ/γ(η−1

1 (σ(t))
)

� 0. (2.16)

Therefore, by Corollary 1 of [31], we conclude that equation (2.5) also has a positive
solution, which is a contradiction.

Next, assume that Case (II) holds. Then, from condition (iii) , it is obvious that
(2.8) and (2.9) hold again. Since y(t) is strictly decreasing, we obtain from (2.8) and
(2.9) that

y(η−1
1 (t)) � y(t) (2.17)

and
y(η−1

1 (η2(t))) � y(t), (2.18)

respectively. Using (2.17) and (2.18) in the inequality (2.7), we get

x(η1(t)) � y(t)
p1(t)

[
1− 1

p1(η−1
1 (t))

− p2(t)
p1(η−1

1 (η2(t)))

]

which implies that

x(t) � m2
(
η−1

1 (t)
)
y
(
η−1

1 (t)
)

(2.19)

for all t � t1 . Since limt→∞ σ (t) = ∞ , we can choose t2 � t1 such that σ(t) � t1 for
all t � t2 . Thus, from (2.19), we have

x
(
σ(t)

)
� m2

(
η−1

1 (σ(t))
)
y
(
η−1

1 (σ(t))
)

(2.20)

for all t � t2 . Combining inequality (2.20) with equation (1.1), we conclude that(
r(t)
(
y′′(t)

)γ
)′

+q(t)mβ
2

(
η−1

1 (σ(t))
)
yβ (η−1

1 (σ(t))
)

� 0, t � t2. (2.21)

On the other hand, for t � s � t2 � t1 , we can write

y′(t)− y′(s) =
t∫

s

r1/γ(u)y′′(u)
r1/γ(u)

du
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which gives

−y′(s) � r1/γ(t)y′′(t)

⎛
⎝ t∫

s

1

r1/γ(u)
du

⎞
⎠ .

Integrating the latter inequality from s to t again, we obtain

−y(t)+ y(s) � r1/γ(t)y′′(t)

⎛
⎝ t∫

s

⎛
⎝ t∫

u

1

r1/γ(v)
dv

⎞
⎠du

⎞
⎠ ,

and

y(s) � r1/γ(t)y′′(t)

⎛
⎝ t∫

s

⎛
⎝ t∫

u

1

r1/γ(v)
dv

⎞
⎠du

⎞
⎠ . (2.22)

Since σ(t) � h(t) < η1(t) for all t � t0 and η1(t) is strictly increasing, it is clear
that η−1

1 (σ(t)) � η−1
1 (h(t)) . Here, if we set s = η−1

1 (σ(t)) and t = η−1
1 (h(t)) in the

inequality (2.22), we have

y(η−1
1 (σ(t))) � r1/γ(η−1

1 (h(t)))y′′(η−1
1 (h(t)))

⎛
⎜⎝

η−1
1 (h(t))∫

η−1
1 (σ(t))

⎛
⎜⎝

η−1
1 (h(t))∫

u

1

r1/γ(v)
dv

⎞
⎟⎠du

⎞
⎟⎠ .

Substituting this last inequality in (2.21) yields

(
r(t)
(
y′′(t)

)γ
)′

+q(t)mβ
2

(
η−1

1 (σ(t))
)
Kβ (t)[r(η−1

1 (h(t))
)(

y′′
(
η−1

1 (h(t))
))γ]β/γ

� 0

for t � t2 . Letting ω := r
(
y′′
)γ

, we obtain that ω(t) is a positive solution of the first-
order delay differential inequality

ω ′(t)+q(t)mβ
2

(
η−1

1 (σ(t))
)
Kβ (t)ωβ/γ(η−1

1 (h(t))
)

� 0.

Therefore, by Corollary 1 of [31], we conclude that equation (2.6) also has a positive
solution, which is a contradiction. The proof of the theorem is complete. �

From [25], it is well known that if

liminf
t→∞

t∫
g(t)

A(s)ds >
1
e
, (2.23)

then the first-order delay differential equation

y′(t)+A(t)y(g(t)) = 0 (2.24)

is oscillatory, where A,g ∈ C ([t0,∞),R) , A(t) � 0, g(t) < t and limt→∞ g(t) = ∞ .
Hence, by virtue of Theorem 1, we have the following result.
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COROLLARY 1. Assume that conditions (i)− (iv) hold, γ = β and suppose that
there exists a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If

liminf
t→∞

t∫
η−1

1 (σ(t))

q(s)mβ
1

(
η−1

1 (σ(s))
)
ϑ β

2

(
η−1

1 (σ(s))
)
ds >

1
e

(2.25)

and

liminf
t→∞

t∫
η−1

1 (h(t))

q(s)mβ
2

(
η−1

1 (σ(s))
)
Kβ (s)ds >

1
e
, (2.26)

then equation (1.1) is oscillatory.

Next, we give following corollary in the case when γ > β .

COROLLARY 2. Assume that conditions (i)− (iv) hold, γ > β and suppose that
there exists a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If

∞∫
T

q(t)mβ
1

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)
dt = ∞ (2.27)

and

∞∫
T

q(t)mβ
2

(
η−1

1 (σ(t))
)
Kβ (t)dt = ∞ (2.28)

for all t � T � t0 , then equation (1.1) is oscillatory.

Proof. A direct application of [24, Theorem 2] shows that if (2.27) holds, then
equation (2.5) oscillates, and if (2.28) holds, then equation (2.6) oscillates. Hence, by
Theorem 1, equation (1.1) oscillates. �

LEMMA 3. [32] Suppose that α > 1 be a quotient of odd positive integers and
δ > 0 is constant. If

liminf
t→∞

[
α− t

δ log
(
R(t)

)]
> 0,

where R ∈C
(
[t0,∞),(0,∞)

)
, then the first-order delay differential equation

y′(t)+R(t)yα (t− δ ) = 0

is oscillatory.

According to Lemma 3, we obtain the following oscillation result for equation
(1.1). In this result, we assume that σ(t) = t − a , h(t) = t − b , η1(t) = t − c and
η2(t) = t +d where a,b,c and d are positive real numbers.
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COROLLARY 3. Assume that conditions (i)− (iv) hold, γ < β and a � b > c. If

liminf
t→∞

[(β
γ

)− t
a−c

log
(
q(t)mβ

1

(
t −a+ c

)
ϑ β

2

(
t−a+ c

))]
> 0 (2.29)

and

liminf
t→∞

[(β
γ

)− t
b−c

log
(
q(t)mβ

2

(
t−a+ c

)
Kβ(t))]> 0, (2.30)

then equation (1.1) is oscillatory.

In the remaining part of our paper, instead of condition (i) , we assume that:

(v) p1, p2 : [t0,∞) → R are continuous functions such that p1(t) � 1, p2(t) � 1,
p1(t) �≡ 1 and p2(t) �≡ 1 for all t large enough.

To simplify our notation, we set

m3(t) :=
1

p1(t)

[
1− 1

p2(η−1
2 (t))

− p2(t)
p1(η−1

1 (η2(t)))
ϑ(η−1

1 (η2(t)))
ϑ(t)

]

where η−1
1 and η−1

2 denote the inverse functions of η1 and η2 , respectively. We also
assume that m3(t) > 0 for all sufficiently large t .

THEOREM 2. Assume that conditions (ii)−(v) hold and suppose that there exists
a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If both first-
order delay differential equations (2.6) and

Φ′(t)+q(t)mβ
3

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)
Φβ/γ(η−1

1 (σ(t))
)

= 0 (2.31)

are oscillatory, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(η1(t)) >
0, x(η2(t)) > 0 and x(σ (t)) > 0 for all t � t1 . By conclusion of Lemma 1, the
function y(t) satisfies either Case (I) or Case (II) for sufficiently large t . If Case (II)
holds, then we obtain a contradiction to (2.6) by second part in the proof of Theorem 1.

Now, assume that Case (I) holds. Then, from definition of y(t) , we have

x(η1(t)) =
y(t)
p1(t)

− 1
p1(t)

[
y(η−1

2 (t))
p2(η−1

2 (t))
− x(η−1

2 (t))
p2(η−1

2 (t))
− p1(η−1

2 (t))x(η1(η−1
2 (t)))

p2(η−1
2 (t))

]

− p2(t)
p1(t)

[
y(η−1

1 (η2(t)))
p1(η−1

1 (η2(t)))
− x(η−1

1 (η2(t)))
p1(η−1

1 (η2(t)))

− p2(η−1
1 (η2(t)))x(η2(η−1

1 (η2(t))))
p1(η−1

1 (η2(t)))

]

� y(t)
p1(t)

− 1
p1(t)

y(η−1
2 (t))

p2(η−1
2 (t))

− p2(t)
p1(t)

y(η−1
1 (η2(t)))

p1(η−1
1 (η2(t)))

. (2.32)
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Meanwhile, since η1(t) � t � η2(t) and η1,η2 are strictly increasing functions, we see
that

η−1
2 (t) � t (2.33)

and (2.9) hold. Since y(t)/ϑ(t) is nonincreasing for all t � t1 , then (2.11) is satisfied
by (2.9). We also obtain from (2.33) that

y(η−1
2 (t)) � y(t), (2.34)

due to y is increasing. Using (2.34) and (2.11) in (2.32) yields

x(η1(t)) � y(t)
p1(t)

[
1− 1

p2(η−1
2 (t))

− p2(t)
p1(η−1

1 (η2(t)))
ϑ(η−1

1 (η2(t)))
ϑ(t)

]

which implies that,

x(t) � m3
(
η−1

1 (t)
)
y
(
η−1

1 (t)
)
. (2.35)

Since limt→∞ σ (t) = ∞ , we can choose t2 � t1 such that σ(t) � t1 for all t � t2 . Thus,
from (2.35), we have

x
(
σ(t)

)
� m3

(
η−1

1 (σ(t))
)
y
(
η−1

1 (σ(t))
)

(2.36)

for all t � t2 . Combining inequality (2.36) with equation (1.1) yields(
r(t)
(
y′′(t)

)γ
)′

+q(t)mβ
3

(
η−1

1 (σ(t))
)
yβ (η−1

1 (σ(t))
)

� 0, t � t2. (2.37)

Letting Φ := r
(
y′′
)γ

, the rest of the proof is similar to that of Theorem 1. The details
are left to the reader. �

By virtue of (2.23), (2.24) and Theorem 2, we have the following result.

COROLLARY 4. Assume that conditions (ii)− (v) hold, γ = β and suppose that
there exists a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If

liminf
t→∞

t∫
η−1

1 (σ(t))

q(s)mβ
3

(
η−1

1 (σ(s))
)
ϑ β

2

(
η−1

1 (σ(s))
)
ds >

1
e

(2.38)

and (2.26) hold, then equation (1.1) is oscillatory.

As a direct application of [24, Theorem 2], the following corollary is an immediate
result of Theorem 2.

COROLLARY 5. Assume that conditions (ii)− (v) hold, γ > β and suppose that
there exists a function h ∈C ([t0,∞),R) such that σ(t) � h(t) < η1(t) for all t � t0 . If

∞∫
T

q(t)mβ
3

(
η−1

1 (σ(t))
)
ϑ β

2

(
η−1

1 (σ(t))
)
dt = ∞ (2.39)

and (2.28) hold for all t � T � t0 , then equation (1.1) is oscillatory.
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According to Lemma 3, we obtain the following oscillation result for equation
(1.1). In this result, we assume that σ(t) = t − a , h(t) = t − b , η1(t) = t − c and
η2(t) = t +d where a,b,c and d are positive real numbers.

COROLLARY 6. Assume that conditions (ii)− (v) hold, γ < β and a � b > c. If

liminf
t→∞

[(β
γ

)− t
a−c

log
(
q(t)mβ

3

(
t −a+ c

)
ϑ β

2

(
t−a+ c

))]
> 0 (2.40)

and (2.30) hold, then equation (1.1) is oscillatory.

3. Examples

EXAMPLE 1. Consider third-order Emden–Fowler neutral differential equation(
t2/3

[
x(t)+ t2x

( t
3

)
+ tx(2t)

]′′)′
+ tx1/3

( t
5

)
= 0 (3.1)

for t � 4. Here we have

• β = 1/3, γ = 1, r(t) = t2/3 and q(t) = t ;

• η1(t) = t/3, η2(t) = 2t , σ(t) = t/5, p1(t) = t2 and p2(t) = t .

It is obvious that conditions (ii)− (v) hold with
∫ ∞
t0

1
r1/γ (s)

ds =
∫ ∞
4 s−2/3ds = ∞ .

Note that η−1
1 (σ(t)) = 3t

5 < t . Letting h(t) = t
4 , we see that η−1

1 (h(t)) = 3t
4 < t .

A direct calculation shows that

ϑ1(t) ≈ 3t1/3, ϑ2(t) ≈ 9
4
t4/3, ϑ(t) ≈ t4/3 and K(t) ≈ (0.014)t4/3.

Meanwhile, we have

m2(t) =
1
t2

[
1− 1

9t2
− t

36t2

]
=

36t2− t−4
36t4

> 0

and

m3(t) ≈ 1
t2

[
1− 1

t/2
− t

36t2
(6t)4/3

t4/3

]
=

36t−72−64/3

36t3
> 0

for t � 4. Thus, condition (2.39) becomes

∞∫
4

t

(
108t/5−72−64/3

972t3/125

)1/3(
9
4

(
3t
5

)4/3
)1/3

dt

� κ
∞∫

4

t

(
1

972t3

)1/3

(t)4/9 dt = ∞
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where κ > 0 is a constant, and condition (2.28) becomes

∞∫
4

t

(
144t2/25−3t/5−4

2916t4/625

)1/3(
(0.014)t4/3

)1/3
dt

� θ
∞∫

4

t

(
1

2916t4

)1/3

t4/9dt = ∞

where θ > 0 is a constant. Hence, equation (3.1) is oscillatory by Corollary 5.

EXAMPLE 2. Consider third-order Emden–Fowler neutral differential equation(
t10/9

[(
x(t)+ tx

( t
5

)
+8x(3t)

)′′]5/3
)′

+ tx
( t

7

)
= 0 (3.2)

for t � 32. Here we have

• β = 1, γ = 5/3, r(t) = t10/9 and q(t) = t ;

• η1(t) = t/5, η2(t) = 3t , σ(t) = t/7, p1(t) = t and p2(t) = 8.

It is obvious that conditions (i)− (iv) hold with
∫ ∞
t0

1
r1/γ (s)

ds =
∫ ∞
32 s−2/3ds = ∞ .

Note that η−1
1 (σ(t)) = 5t/7 < t . Letting h(t) = t/6, we see that η−1

1 (h(t)) =
5t/6 < t . A direct calculation shows that

ϑ1(t) ≈ 3t1/3, ϑ2(t) ≈ 9
4
t4/3, ϑ(t) ≈ t4/3 and K(t) ≈ (0.008)t4/3.

Meanwhile, we have

m2(t) =
1
t

[
1− 1

5t
− 8

15t

]
=

15t−11
15t2

> 0

and

m1(t) ≈ 1
t

[
1− 1

5t
(5t)4/3

t4/3
− 8

15t
(15t)4/3

t4/3

]
=

15t−3×54/3−8× (15)4/3

15t2
> 0

for t � 32. Thus, condition (2.27) becomes
∞∫

T

t

(
75t/7−3×54/3−8× (15)4/3

375t2/49

)
9
4

(
5t
7

)4/3

dt = ∞

and condition (2.28) becomes
∞∫

T

t

(
75t/7−11
375t2/49

)
(0.008)t4/3dt = ∞

for all t � T � 32. Hence, equation (3.2) is oscillatory by Corollary 2.
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linear several delay second-order differential equations, Appl. Math. Comput., 397, (2021), 125915.
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