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OSCILLATING BOUNDARY VIA PERIODIC UNFOLDING

S. AIYAPPAN ∗ , K. PETTERSSON AND A. SUFIAN

(Communicated by P. I. Naumkin)

Abstract. This paper deals with the homogenization of an elliptic model problem in a two-
dimensional domain with non-periodic oscillating boundary by the method of periodic unfold-
ing. For the non-periodic oscillations, a modulated unfolding is used. The L2 convergence of
the solutions and their fluxes are shown, under natural hypotheses on the domain.

1. Introduction

This paper illustrates the homogenization of a second order elliptic boundary value
problem posed on a domain with a non-periodically oscillating boundary. The homoge-
neous Neumann boundary condition is assumed at the oscillating part of the boundary.

The homogenization of boundary value problems with periodically oscillating
boundary that is not asymptotically thin was first studied by Brizzi and Chalot [6].
Followed by this pioneering work, there has been many works till date on such peri-
odic structure. A literature review on periodic oscillating domains can be found in [10].
Most of the articles on oscillating domains deal with periodic nature, where [2, 3, 8, 10]
stand out.

The homogenization of non-periodic oscillating boundaries was first analyzed by
Gaudiello, Guibé and Murat in [10], using the method of oscillating test functions.
Locally periodic oscillations were studied in for instance [4, 12, 13, 2, 3]. Some cases
of non-periodic oscillations using the unfolding technique were treated in the book [8].

An immediate apparent difficulty with the periodic unfolding method to overcome
in the present non-periodic setting is the lack of Hausdorff convergence of the unfolded
domains, which is one of the key hypotheses in the homogenization theorems such as
Proposition 8.18 in [8]. Here two approaches seem to be natural. Either one attempts to
prove Proposition 8.18 in [8] with classical periodic unfolding definition or one mod-
ulates the periodic unfolding with the change of variables in order to retain Hausdorff
convergence in the spirit of [9]. In this paper, we follow the second approach because
it appears to be technically less demanding.

Mathematics subject classification (2020): 35B27, 35J20, 80M35.
Keywords and phrases: Homogenization, periodic unfolding, oscillating boundary, asymptotic analy-

sis.
∗ Corresponding author.

c© � � , Zagreb
Paper DEA-14-03

31

http://dx.doi.org/10.7153/dea-2022-14-03


32 S. AIYAPPAN, K. PETTERSSON AND A. SUFIAN

To motivate our work and relate it to [8], in Section 2.1 we give an example of a
sequence of domains that goes into the framework of Proposition 8.18 in [8] except for
the Hausdorff convergence hypothesis on the unfolded domains and the strong conver-
gence of the corresponding characteristic functions.

In [10], the authors assume that the oscillating part is made up of pillars of uniform
cross section while we consider non-uniform pillars. In particular, in [10], a possibly
arbitrary number of pillars under fixed density constraint was considered, while we
restrict to a very controlled number of pillars.

The rest of this paper is organized as follows. In Section 2, we describe the oscillat-
ing domain under consideration, and pose a model problem. In Section 3, we introduce
the domain specific modulation to be used with periodic unfolding, which allows for
passing of the problem in domain Ωε to a fixed unfolded domain Ωu . In Section 4,
we describe the limit problem, and in Section 5, we show that the model problem ho-
mogenizes to the limit problem, in the sense of weak convergence of the solutions uε ,
and their fluxes, of model problem to the solution of the limit problem. In Section 6,
the convergence of the energies are established, resulting in some information about the
strong L2 convergence of the solutions uε and their fluxes in Ωε .

2. Domain description and problem statement

This section is devoted to the description of a category of non-periodic oscillating
domains Ωε ⊂ R

2 , given below by (2.4), and the statment of the model problem (2.5).

2.1. Domain description

Let us first define a lifted set Ωu ⊂ R
3 which will be the main ingredient to define

the oscillating upper part Ω+
ε of the rough domain Ωε . With the fixed lower part

Ω− = (0,1)× (−1,0) , we can define the rough domain under consideration as Ωε =
IntΩ−∪Ω+

ε .
Let Ωu ⊂ (0,1)3 be a bounded domain with finite boundary measure. Denote any

(x1,x2) ∈ R
2 by x . For each x1 ∈ (0,1) , define the reference set

Z(x1) = {(y1,x2) ∈ R
2 : (x1,x2,y1) ∈ Ωu }.

We choose Ωu such that for each x1 ∈ (0,1) , Z(x1) is a nonempty connected open set
in R

2 and the reference set

Y (x1,x2) = {y1 ∈ (0,1) : (y1,x2) ∈ Z(x1)} (2.1)

is an interval of positive measure. Further we assume that there exists s > 0 such that
|Y (x1,0)| � s for all x1 ∈ (0,1) where

Y (x1,0) = {y1 ∈ (0,1) : (y1,0) ∈ Z(x1)}.

The reference set Z(x1) will be used to define the pillars in the oscillating domain and
the last condition is to make sure that every pillar in the oscillating upper part Ω+

ε is
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connected to the fixed part Ω− . Define the maximum function M as

M(x1) = sup{x2 : (y1,x2) ∈ Z(x1)}. (2.2)

Further, we assume that M is a Lipschitz function. It will define the the top boundary
of the limit domain.

Now, we will describe the oscillating upper part Ω+
ε of the domain. For simplicity,

assume ε = 1/m for m ∈ N . For every tagging xε
k ∈ [kε,(k+1)ε) for k = 0,1, . . . ,m−

1, define the scaled and translated reference cell Zε
k as

Zε
k = {(x1,x2) : x1 ∈ xε

k + εY (xε
k ,x2),x2 ∈ (0,M(xε

k ))}.
where the reference set Y (x1,x2) and the maximum function M(x1) are as defined
above. The tagging xε

k ’s are chosen such that Zε
k satisfies the compatibility condition

Zε
k ⊂ (kε,(k+1)ε)× (0,M(xε

k)). (2.3)

The condition (2.3) ensures that the tagging xε
k is arbitrarily chosen in such a way

that the scaled reference cell Zε
k is fully contained in (kε,(k+1)ε)× (0,M(xε

k)) .
Now, we define the oscillating upper part Ω+

ε as

Ω+
ε =

m−1⋃
k=0

Zε
k .

The domain with oscillating boundary Ωε is given by

Ωε = IntΩ−∪Ω+
ε , (2.4)

where the fixed part Ω− = (0,1)× (0,−1) .

We denote the common boundary of Ω+
ε and Ω− by γε

c :

γε
c = {(x1,x2) ∈ Ωε : x2 = 0}.

The full or limit domain which is the Hausdorff limit of Ωε is given by

Ω = {(x1,x2) : x1 ∈ (0,1),−1 < x2 < M(x1)},
while the upper part of the the limit domain Ω is defined by

Ω+ = {(x1,x2) : x1 ∈ (0,1), 0 < x2 < M(x1)}.
The common boundary γc of Ω+ and Ω− is given by

γc = {(x1,0) : x1 ∈ (0,1)}.

The following example provides a domain that falls in the category of Ω+
ε in this

section.
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Figure 1: Domain Ωε . Figure 2: Limit domain Ω , Ω = Ω+ ∪Ω− .

Figure 3: Lateral surface of the domain Ωu .

EXAMPLE 2.1. In R
2 , for ε = 1/N , N = 1,2, . . . , consider the following se-

quence of taggings xε
k of the partitions {[εk,ε(k +1)] : k = 0, . . . ,1/ε} of the interval

[0,1] :

xε
k =

{
kε + ε/3, if ε = 1/N, N is odd;

kε +2ε/3, if ε = 1/N, N is even.

Let the oscillating part of the domain be

Ωε
+ =

1/ε−1⋃
k=0

(xε
k + ε(−1/8,1/8))× (0,1),

and Ω− = (0,1)× (−1,0) (see Figures 4 and 5). Then classically, the unfolded char-
acteristic functions of the oscillating part of the domain are

T ε χΩε
+
(x,y) = χΩε

+
(ε[x1/ε]+ εy,x2)

=

{
χ(0,1)2×(5/24,11/24)(x,y), if ε = 1/N, N is odd;

χ(0,1)2×(13/24,19/24)(x,y), if ε = 1/N, N is even;
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with x ∈ (0,1)2 , yielding the unfolded domains (see Figure 6)

Ωu
ε =

{
(0,1)2× (5/24,11/24), if ε = 1/N, N is odd;

(0,1)2× (13/24,19/24), if ε = 1/N, N is even.

Figure 4: ε = 1
5 . Figure 5: ε = 1

6

The sequence of the unfolded domains Ωu
ε does not converge in the sense of Hausdorff

as for any ε = 1/N , the Hausdorff distance

dH(Ωu
1/N ,Ωu

1/(N+1))

= max
{

sup
x∈Ωu

1/N

inf
x′∈Ωu

1/(N+1)

|x− x′|}, sup
x∈Ωu

1/(N+1)

inf
x′∈Ωu

1/N

|x− x′|}
= 1/12.

Figure 6: Unfolded domain corresponding non-periodic pillar.
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2.2. Model problem

As a model to illustrate the application of the modulated unfolding operator, we
consider the homogenization of following elliptic equation in divergence form on the
domain Ωε given by (2.4), which contains the standard steps in homogenization:{

−div(A∇uε)+uε = f in Ωε ,

A∇uε ·νε = 0 on ∂Ωε ,
(2.5)

where f ∈ L2(Ω) , Ω is a domain containing all Ωε . Here, νε denotes the unit outward
normal vector to the boundary ∂Ωε of Ωε . The coefficient matrix A = A(x) is assumed
to be a 2×2 matrix with elements ai j = ai j(x) : Ω → R that are bounded measurable
functions. We assume that A is uniformly elliptic and bounded in Ω , that is, there
exists α,β ∈ R

+ such that,

(i) A(x)ξ ·ξ � α|ξ |2, ξ ∈ R
2, a.e. x ∈ Ω,

(ii) |A(x)ξ | � β |ξ |, ξ ∈ R
2, a.e. x ∈ Ω.

The weak formulation to the above problem is given by: Find uε ∈ H1(Ωε) such
that ∫

Ωε
A∇uε ·∇φ dx+

∫
Ωε

uε φ dx =
∫

Ωε
fφ dx, (2.6)

for all φ ∈H1(Ωε) . The Lax-Milgram lemma guarantees the existence and uniqueness
of such uε ∈ H1(Ωε ) .

By taking uε as test function in the weak formulation (2.6), we get a uniform
estimate on ‖uε‖H1(Ωε ), that is, there exists a constant C independent of ε , such that

‖uε‖H1(Ωε ) � C. (2.7)

Our aim is to analyze the asymptotic behavior of uε as ε → 0. The asymptotic
analysis will be carried out using a modulated unfolding operator which will be the
theme of the upcoming section.

3. Modulated unfolding operator

The periodic unfolding method was first introduced in [7]. A modified definition
was used in [5] to do homogenization in pillar type oscillating domain. Later in [1],
the authors further modified the unfolding operator for general periodic oscillating do-
mains. For more literature on unfolding operators one can refer to the book [8] and
references therein.

The usual periodic unfolding appears technically demanding to be applied here
as the scaled pillars are kept in the ε -cells at arbitrary locations. In this paper, the
oscillation is non periodic in the sense that for each ε , m = 1

ε , the tagging
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xε
k ∈ (kε,(k + 1)ε) for k = 0,1, . . . ,m− 1, have been chosen in a way that they are

not necessarily be equidistant as long as they satisfy the compatibility condition (2.3).
For every ε > 0, we define the approximate unfolded domain corresponding to

Ω+
ε as:

Ωu
ε =

⋃
k

[kε,(k+1)ε)× (0,M(xε
k))×Y (xε

k ,x2).

The approximate unfolded domain Ωu
ε is close to the unfolded domain (lifted set) Ωu

in the sense that

χΩu
ε → χΩu strongly in Lp(R3) for 1 � p < ∞.

DEFINITION 3.1. (Modulated periodic unfolding) The unfolding for a function φ :
R

2 → R is defined by

(T ε φ)(x1,x2,y1) = χΩu
ε
(x,y)φ(xε

k + εy1,x2) if x1 ∈ [kε,(k+1)ε),

where k = 0,1, . . . ,m−1.

The main properties of unfolding operators are given below.

LEMMA 3.2. Let u ∈ L1(Ω+
ε ). Then∫

Ω+
ε

udx =
∫

Ωu
ε
T εudxdy1.

Proof. For φ ∈C∞
c (Ω+) , we have, by the definition of unfolding∫

Ωu
ε
T ε φ(x1,x2,y1)dxdy1 =

m

∑
k=0

∫ (k+1)ε

kε

∫ M(xε
k )

0

∫
Y (xε

k ,x2)
φ(xε

k + εy1,x2) dxdy1

=
m

∑
k=0

ε
∫ M(xε

k )

0

∫
Y (xε

k ,x2)
φ(xε

k + εy1,x2)dx2dy1.

The change of variable x1 = xε
k + εy1 gives∫

Ωu
ε
T ε φ(x,y1)dxdy1 =

m

∑
k=0

∫ M(xε
k )

0

∫
kε+εY (xε

k ,x2)
φ(x)dx =

∫
Ω+

ε
φ dx.

Hence, the density of C∞
c (Ω+) in L1(Ω+

ε ) completes the proof. �

LEMMA 3.3. For vε ∈ Lp(Ω+
ε ) bounded, p > 1 , we have∫

Ω+
ε

vε dx =
∫

Ωu
ε
T εvε dxdy1 =

∫
Ωu

T εvε dxdy1 +o(1), (3.1)

as ε → 0 .
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Proof. Note that T ε χΩ+
ε

= χΩu
ε . The discrepancy can be computed as follows

∫
Ω+

ε
vε dx−

∫
Ωu

T εvε dxdy1 =
∫

Ω+×(0,1)
(T ε χΩ+

ε
T εvε − χΩuT εvε)dxdy1

=
∫

Ω+×(0,1)
(χΩu

ε − χΩu)T εvε dxdy1.

As the unfolded domain has finite boundary measure Ωu
ε\Ωu and Ωu\Ωu

ε are contained
in some strip of measure O(ε) :{

(x,y) ∈ (0,1)3 : dist((x,y),∂Ωu) < Cε
}
,

where C can be chosen independent of ε . Hence by Hölder’s inequality,

lim
ε→0

∣∣∣∣∫Ω+
ε

vε dx−
∫

Ωu
T εvε dxdy1

∣∣∣∣ = 0. �

4. Limit problem

In this section we introduce the limit problem with its associated function space.

4.1. Limit function space

We introduce the limit function space as it differs from the Sobolev space of the
model problem (2.5). Let Ω be the limit domain: Ω is the Hausdorff limit of Ωε .
Define the density ω of Ωε in Ω as

ω(x) =

{
|Y (x)|, if x ∈ Ω+;

1, if x ∈ Ω−,
(4.1)

where |Y (x)| is the Lebesgue measure of the reference set Y (x) . Notice that if x2 = 0,
then ω(x) = |Y (x1,0)| .

For any ψ : Ω → R , we denote ψ+ = ψχΩ+ and ψ− = ψχΩ− .
Let L2(Ω,ω) be the weighted Lebesgue space {v :

∫
Ω v2ω < ∞} and

H(Ω,ω) =
{

v ∈ L2(Ω,ω) :
∂v−

∂x1
∈ L2(Ω−),

∂v
∂x2

∈ L2(Ω,ω)
}

.

The space H(Ω,ω) is a Hilbert space with respect to the scalar product

(u,v)H(Ω,ω) =
∫

Ω
uvω dx+

∫
Ω+

∂u
∂x2

∂v
∂x2

ω dx+
∫

Ω−
∇u ·∇vdx.

In what follows, we will use the following notation u = (u+,u−) for any function
u ∈ H(Ω,ω) .
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4.2. Limit problem

The homogenized problem is posed in Ω (see Figure 2), and reads as follows:

− ∂
∂x2

(
ωA+

0
∂u+

∂x2

)
+ ωu+ = ω f in Ω+,

−div(A∇u−)+u− = f in Ω−,

ωA+
0

∂u+

∂x2
ν2 = 0 on γu, (4.2)

u+ = u− on γc,

ωA+
0

∂u+

∂x2
− (a12 +a22)

∂u−

∂x2
= 0 on γc,

A∇u ·ν = 0 on ∂Ω−\γc,

where ω is the domain density defined in (4.1), and

A+
0 =

det(A)
a11

.

The weak formulation of the above system (4.2) is:

Find u = (u+,u−) ∈ H(Ω,ω) such that∫
Ω+

(
A+

0
∂u+

∂x2

∂φ
∂x2

+u+φ
)

ω dx+
∫

Ω−
(A∇u− ·∇φ +u−φ)dx

=
∫

Ω+
fφω dx+

∫
Ω−

fφ dx, (4.3)

for all φ ∈ H(Ω,ω) .

As A and A+
0 are uniformly elliptic and bounded (c.f. (5.13) below), by the Lax-

Milgram lemma, there exists a unique solution u ∈ H(Ω,ω) satisfying (4.3).

5. Homogenization

In this section, we establish the homogenization of our model elliptic problem (2.5)
posed on the oscillating domain to the limit problem (4.2), and show the weak conver-
gence of the solutions uε and the fluxes ∇uε .

First, let us verify an a priori estimate of the unfolded solutions T εuε . By using
the a priori estimate on uε (2.7) and as T εuε vanishes outside of Ωu

ε , we get

‖T εuε‖2
L2(Ωu) +‖T εuε‖2

L2(Ωu
ε\Ωu) = ‖T εuε‖2

L2(Ωu
ε ) = ‖uε‖2

L2(Ω+
ε ) � C

where ere C > 0 is a constant independent of ε . Note that the inequality holds for
T ε ∇uε also. Thus, we have the following lemma.
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LEMMA 5.1. The sequence of solutions uε to the problem (2.5) satisfies the a
priori estimates

‖T εuε‖L2(Ωu) � C,

‖T ε ∇uε‖L2(Ωu) � C,

where C > 0 is a constant independent of ε .

Now, we are in a position to state the main convergence result of this paper.

THEOREM 5.2. (Homogenization) Let uε be the sequence of solutions to the prob-
lem (2.5), and let u = (u+,u−) be the solutions to the problem (4.2). Then,

i. ũ+
ε ⇀ ωu+ weakly in L2(Ω+) ,

ii.
∂̃u+

ε
∂x1

⇀ −ω
a12

a11

∂u+

∂x2
weakly in L2(Ω+) ,

iii.
∂̃u+

ε
∂x2

⇀ ω
∂u+

∂x2
weakly in L2(Ω+) ,

iv. u−ε ⇀ u− weakly in H1(Ω−) ,

as ε → 0 . Here, ∼ denotes the zero extension.

Proof. First, let us look at the convergence on the upper part Ω+ . Apply unfolding
operator in the weak formulation (2.6) to get∫

Ωu
(AT ε ∇uε ·T ε ∇φ +T εuε T ε φ)dxdy1 =

∫
Ωu

T ε f T ε φ dxdy1 +o(1), (5.1)

for any test function φ ∈C∞(Ω) , as ε → 0.
By Lemma 5.1, we have the uniform estimate on T εuε . Thus, there exist u+ and

P ∈ L2(Ωu) such that, up to a subsequence, we have

T εu+
ε ⇀ u+ weakly in L2(Ωu),

T ε ∂u+
ε

∂x2
⇀

∂u+

∂x2
weakly in L2(Ωu),

T ε ∂u+
ε

∂x1
⇀ P weakly in L2(Ωu),

as ε → 0.
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Step 1: Identification of P .

We will show that P = −a12

a11

∂u+

∂x2
almost everywhere in Ωu . Let φ ∈ C∞

c (Ω+) .

Let ϕ ∈ C∞([0,2]) and define ψ(y) =
∫ y
0 ϕ(z)dz . Then, ψ ∈ C∞((0,2)) and ψ ′(y) =

ϕ(y) . Consider the following oscillating test functions:

ψε(x) = εφ(x)ψ
( x1− xε

k

ε

)
when x1 ∈ [xε

k ,x
ε
k+1).

Then ψε ∈C∞(Ωε) , and (5.1) holds for such sequence of test functions. Moreover,

T ε ψε → 0 strongly in L2(Ωu), (5.2)

T ε ∂ψε

∂x1
→ φ(x)ϕ(y1) strongly in L2(Ωu), (5.3)

T ε ∂ψε

∂x2
→ 0 strongly in L2(Ωu), (5.4)

as ε → 0. Now, by taking ψε as a test function in the weak from (5.1) and passing to
the limit as ε → 0, we get∫

Ωu

(
a11P+a12

∂u+

∂x2

)
φ(x)ϕ(y1)dxdy1 = 0.

Since φ and ψ are arbitrary, the above equation implies that

P = −a12

a11

∂u+

∂x2
a.e. in Ωu, (5.5)

by the density of the tensor products.

Step 2: Limit equation in Ω+ and Ω− .

Let us write the weak formulation of (2.6) as∫
Ω+

ε

(
A∇uε ·∇φ +uεφ

)
dx+

∫
Ω−

(
A∇uε ·∇φ +uεφ

)
dx =

∫
Ωε

fφ dx, (5.6)

for all φ ∈C∞(Ω) . By using (5.1)–(5.5), the first term in the above equation becomes

lim
ε→0

∫
Ω+

ε

(
A∇uε ·∇φ +uεφ

)
dx =

∫
Ω+

∫
Y (x)

(
det(A)
a11

∂u+

∂x2

∂φ
∂x2

+u+φ
)

dxdy1

for all φ ∈C∞(Ω) . Note that
∂

∂y1

(
T εuε

)
= εT ε ∂uε

∂x1
and T ε ∂uε

∂x1
is uniformly bounded

by Lemma 5.1. Thus we have
∂u+

∂y1
= 0, in other words u+ is independent of y1 , as
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the sections of Y (x) are supposed to be connected. As u+ is independent of y1 ,

lim
ε→0

∫
Ω+

ε

(
A∇uε ·∇φ +uεφ

)
dx

=
∫

Ω+

(
det(A)

a11

∂u+

∂x2

∂φ
∂x2

+u+φ
)

ω dx

=
∫

Ω+

(
A+

0
∂u+

∂x2

∂φ
∂x2

+u+φ
)

ω dx. (5.7)

We turn to the second term in (5.6).
By the a priori estimate (2.7), we have ‖uε‖H1(Ω−) � C , where C > 0 is constant

independent of ε . Then, by the weak compactness there exists u− ∈H1(Ω−) such that

uε ⇀ u− weakly in H1(Ω−),

along some subsequence, as ε → 0. Thus,

lim
ε→0

∫
Ω−

(
A∇uε ·∇φ +uεφ

)
dx =

∫
Ω−

(A∇u− ·∇φ +u−φ)dx, (5.8)

for all φ ∈C∞(Ω) . The right hand side of (5.6) becomes

lim
ε→0

∫
Ωε

fφ dx =
∫

Ω+
fφω dx+

∫
Ω−

fφ dx. (5.9)

The next step is to show u+ = u− on the interface γc .

Step 3: Interface condition.

On the common interface γε
c , u+

ε = u−ε , and because the interface is flat γε
c ⊂ γc .

It follows that

T εu+
ε = T εu−ε on γu

c , (5.10)

where the unfolded interface is denoted by

γu
c = {(x1,x2,y1) ∈ Ωu : x2 = 0}.

By the strong convergence of T ε χγε
c

to χγu
c

in L2(γu
c ) , and the weak sequential conti-

nuity of the trace, one obtains

u+ = u− on γu
c ,

by passing to the limit in (5.10) as ε → 0. Since u− is independent of y1 , we have

u+ = u− on γc.
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Step 4: Limit problem.

By combining (5.7), (5.8), and (5.9), we get as ε → 0,∫
Ω+

(
A+

0
∂u+

∂x2

∂φ
∂x2

+u+φ
)

ω dx+
∫

Ω−
(A∇u− ·∇φ +u−φ)dx

=
∫

Ω+
fφω dx+

∫
Ω−

fφ dx,
(5.11)

for all φ ∈C∞(Ω) .
In general, one needs some condition on the weight ω for the smooth functions

up to the boundary to be dense in the weighted limit space H(Ω,ω) . Here, we use the
regularity of the unfolded domain to get density in weighted Sobolev space.

Let ΩU = Int
(

Ωu∪ (Ω−× (0,1))
)

and

H(ΩU) =
{

φ ∈ L2(ΩU) :
∂φ
∂x2

,
∂φ
∂x1

χΩ−×(0,1) ∈ L2(ΩU ),
∂φ
∂y1

= 0

}
.

This is a Hilbert space with the following inner product: For φ ,ψ ∈ H(ΩU) ,

〈φ ,ψ〉H(ΩU ) =
∫

Ωu

∂φ
∂x2

∂ψ
∂x2

dxdy1 +
∫

ΩU

(
χ(Ω−×(0,1))∇φ ·∇ψ + φψ

)
dxdy1.

Now, the above variational equality can be written in ΩU as∫
Ωu

A+
0

∂u+

∂x2

∂φ
∂x2

dxdy1 +
∫

ΩU

(
χ(Ω−×(0,1))A∇u− ·∇φ +uφ

)
dxdy1

=
∫

ΩU
fφ dxdy1 (5.12)

for all φ ∈ H(ΩU) as C∞(Ω) is dense in H(ΩU) because ΩU is a bounded Lipschitz
domain in R

3 , and the functions in H(ΩU) are independent of y1 by the connectedness
of the sections.

To see the well-posedness of the problem (4.2), one can verify that the left hand
side of (5.12) is a bounded and elliptic bilinear form on H(ΩU)×H(ΩU) , due to the
assumption on the matrix A and the scalar A+

0 is strictly positive. In particular, by the
assumptions on the matrix A ,

α2

β
� A+

0 � β 2

α
. (5.13)

The right hand side in (5.12) is a bounded linear functional on H(ΩU) . By the Lax-
Milgram lemma, there exists a unique solution u ∈ H(ΩU) solving (5.12). Hence u
satisfies the homogenized equation (4.2). By uniqueness of the solution u = (u+,u−)
the full ε sequence uε converges. �
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6. Energy convergence

In this section, we show a strong L2 estimate in Ωε for the solutions uε and their
fluxes.

LEMMA 6.1. Let uε ∈ H1(Ωε) be the solution to (2.5) and u ∈ H(Ω,ω) be the
solution to (4.2). Then

lim
ε→0

∫
Ωε

(A∇uε ·∇uε +u2
ε)dx

=
∫

Ω+

(
ωA+

0

(∂u+

∂x2

)2
+ ω(u+)2

)
dx+

∫
Ω−

(A∇u− ·∇u− +(u−)2)dx.

Proof. Using uε as a test function in (2.6), we have∫
Ωε

(A∇uε ·∇uε +u2
ε)dx =

∫
Ωε

f uε dx. (6.1)

Using the weak convergence of uε in the right hand side, we get

lim
ε→0

∫
Ωε

(A∇uε ·∇uε +u2
ε)dx =

∫
Ω+

ω f u+ dx+
∫

Ω−
f u− dx. (6.2)

Since u ∈ H(Ω,ω) is the solution of the homogenized system (4.2), right hand side of
(6.2) matches with the right hand side of (4.3) and this completes the proof. �

THEOREM 6.2. Let uε ∈H1(Ωε) be the solution to (2.5) and u∈H(Ω,ω) be the
solution to (4.2). Then

i.

∥∥∥∥T ε ∇u+
ε −

(
−a12

a11

∂u+

∂x2
,

∂u+

∂x2

)∥∥∥∥
L2(Ωu)

→ 0,

ii. ‖T εu+
ε −u+‖L2(Ωu) → 0 ,

iii. ‖u−ε −u−‖H1(Ω−) → 0,

as ε → 0 .

Proof. The convergence in Lemma 6.1 is equivalent to the following convergence:

lim
ε→0

∫
Ωu

(T εA T ε ∇u+
ε ·T ε ∇u+

ε +(T εu+
ε )2)dxdy1

+ lim
ε→0

∫
Ω−

(A∇u−ε ·∇u−ε +(u−ε )2)dx

=
∫

Ω+

(
ωA+

0

(∂u+

∂x2

)2
+ ω(u+)2

)
dx+

∫
Ω−

(A∇u− ·∇u−+(u−)2)dx.
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From the ellipticity assumption on A , we get

α
∥∥∥∥T ε ∇u+

ε −
(
−a12

a11

∂u+

∂x2
,

∂u+

∂x2

)∥∥∥∥2

L2(Ωu)
+‖T εu+

ε −u+‖2
L2(Ωu)

+ α‖∇u−ε −∇u−‖2
L2(Ω−) +‖u−ε −u−‖2

L2(Ω−)

�
∫

Ωu
(T εAT ε ∇u+

ε ·T ε ∇u+
ε + |T εu+

ε |2)dxdy1 +
∫

Ω−
(A∇u−ε ∇ ·u−ε +(u−ε )2)dx

+
∫

Ωu

(
A+

0

(∂u+

∂x2

)2
+(u+)2

)
dxdy1 +

∫
Ω−

(A∇u− ·∇u− +(u−)2)dx

−2
∫

Ωu

(
T εAT ε ∇u+

ε ·
(
− a12

a11

∂u+

∂x2
,

∂u+

∂x2

)
+T εu+

ε u+
)
dxdy1

−2
∫

Ω−

(
A∇u−ε ·∇u−+u−ε u−

)
dx.

By letting ε → 0, using Lemma 6.1, the right hand side of the above inequality van-
ishes. This completes the proof. �

REMARK 6.3. In the above Theorem, we have shown the converge in the limit un-
folded domain Ωu. Actually, we have the convergence in approximate unfolded domain
Ωu

ε , since, we have the following

∫
Ω+

ω

[
A+

0

(
∂u+

∂x2

)2

+(u+)2

]
dx+

∫
Ω−

(A∇u− ·∇u−+(u−)2)dx

� liminf
ε→0

(∫
Ωu

ω
(
T εAT ε

(∂u+

∂x2

)2
+T ε(u+)2

)
dx

+
∫

Ω−
(A∇u−ε ·∇u−ε +(u−ε )2)dx

)
� liminf

ε→0

(∫
Ωu

ε
ω

(
T εAT ε

(∂u+

∂x2

)2
+T ε(u+)2

)
dx

+
∫

Ω−
(A∇u−ε ·∇u−ε +(u−ε )2)dx

)
=

∫
Ω+

ω f u+ dx+
∫

Ω−
f u− dx

=
∫

Ω+
ω

(
A+

0

(∂u+

∂x2

)2
+(u+)2

)
dx+

∫
Ω−

(A∇u− ·∇u−+(u−)2)dx.

We have the following convergences:

i.

∥∥∥∥T ε ∇u+
ε −

(
−a12

a11

∂u+

∂x2
,

∂u+

∂x2

)∥∥∥∥
L2(Ωu

ε )
→ 0,

ii. ‖T εu+
ε −u+‖L2(Ωu

ε ) → 0,

as ε → 0.
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We have the following corollary from Theorem 6.2.

COROLLARY 6.4. Let uε and u be as in Lemma 6.1, then

i. ‖u+
ε −u+‖L2(Ω+

ε ,ω) → 0,

ii.

∥∥∥∥∇u+
ε −

(
−a12

a11

∂u+

∂x2
,

∂u+

∂x2

)∥∥∥∥
L2(Ω+

ε ,ω)
→ 0 ,

iii. ‖u−ε −u−‖H1(Ω−) → 0 ,

as ε → 0 , where L2(Ω+
ε ,ω) is the space of functions v such that v2ω ∈ L1(Ω+

ε ) .

Proof. By Theorem 6.2,

‖u+
ε −u+‖2

L2(Ω+
ε ,ω) =

∫
Ω+

ε
(u+

ε −u+)2ω dx

=
∫

Ωu
ε
(T εu+

ε −T εu+)2T ε ω dxdy1

�
∫

Ωu
ε
(T εu+

ε −u+)2 dxdy1 +
∫

Ωu
ε
(u+−T εu+)2 dxdy1

→ 0,

as ε → 0. Similarly, we have the convergences (ii) and (iii). �

REMARK 6.5. Suppose that Ω and ΩU are open sets with continuous boundary,
not necessarily Lipschitz. The solution u ∈ H(Ω,ω) to the limit problem is then un-
derstood in the sense (4.3). Then Corollary 6.4 holds as long as (i) C∞(Ω) is dense in
H(Ω,ω) , and (ii) ∂Ω and ∂ΩU are of finite measure.

For example, suppose that there are C1,C2,C3 > 0 such that for some γ > 0, in
the local charts (xr1,xr2) , Mr , (c.f. [11, Chapter 6]):

C1ωγ � xr2 −Mr(xr1)+ κr(xr1) � C2ωγ , (6.3)

and 0 � κr(xr1) � C3 . Then C∞(Ω) is dense in H(Ω,ωγθ ) , θ � 0. In particular,
C∞(Ω) is dense in H(Ω,ω) .

Moreover, under condition (6.3), for θ > 1, H(Ω,ωγθ ) is continuously embedded
into L2(Ω,ωγ(θ−2)) (c.f. [11, Chapter 6]). In particular, H(Ω,ω) is continuously
embedded into L2(Ω) if the condition (6.3) holds for any γ ∈ (0,1/2] . In conclusion,
u+ ∈ L2(Ω) if (6.3) holds for some γ ∈ (0,1/2] .
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