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THREE WEAK SOLUTIONS FOR A DEGENERATE

NONLOCAL SINGULAR SUB–LINEAR PROBLEM

SHAPOUR HEIDARKHANI ∗ , KIT IAN KOU AND AMJAD SALARI

(Communicated by L. Kong)

Abstract. Based on one recent abstract critical point result for differentiable and parametric func-
tionals which was recently proved by Ricceri, we establish the existence of three weak solutions
for a class of degenerate nonlocal singular sub-linear problems when the nonlinear term admits
some hypotheses on the behavior at infinitely or perturbation property.

1. Introduction

The aim of this paper is to study the existence of weak solutions for the following
degenerate nonlocal problem⎧⎨⎩

−M (
∫

Ω |x|−ap|∇u(x)|pdx)div
(|x|−ap|∇u|p−2∇u

)
= |x|−p(a+1)+c

(
ε f (u)+ λg(u)+ νh(u)

)
, inΩ,

u = 0, on∂Ω,
(1.1)

where Ω is an open bounded subset of RN with Lipschitz boundary, 0 � a < N−p
p ,

1 < p < N , c > 0, M : R
+ →R , f ,g,h : R→ R are three continuous functions, ε > 0,

λ > 0 and ν � 0 are three parameters.
Problem (1.1) is related to the stationary problem

ρ
∂ 2u
∂ t2

−
(ρ0

h
+

E
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx
)∂ 2u

∂x2 = 0, 0 < x < L, t � 0, (1.2)

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t ,
E is the Young modulus, ρ is the mass density, h is the cross-section area, L is the
length and ρ0 is the initial axial tension. Equation (1.2) was proposed by Kirchhoff
[22] as an extension of the classical D’Alembert’s wave equation for free vibrations of
elastic strings. In the literature, such problems like (1.1) are called nonlocal problems
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because they are no longer pointwise identity, since the function M in problem (1.1)
contains an integral over Ω .

Some interesting results can be found, for example in [1, 9], if the length changes
of the string produced by transverse vibrations are taken into account in the Kirchhoff’s
model. On the other hand, Kirchhoff-type boundary value problems appear in several
physical and biological systems where u describes a process which depends on the
average of itself, for example the population density. It received great attention only
after Lions [26] proposed an abstract framework for the problem. The solvability of the
Kirchhoff type problems is obvious an important topic and has been studies by many
researchers. Some early classical results can be seen in [19, 20, 21, 27, 33] and the
references therein. The existence and multiplicity of solutions for stationary higher
order problems of Kirchhoff type were also treated recently, via variational methods
like the symmetric mountain pass theorem in [17] and a three critical point theorem
in [4]. Moreover, in [2, 3], some evolutionary higher order Kirchhoff problems were
treated, mainly focusing on the qualitative properties of the solutions.

If we take a = 0 and c = p , problem (1.1) becomes the well-known Kirchhoff
boundary value problem involving the p -Laplacian equation{−M (

∫
Ω |∇u(x)|pdx)Δpu = ε f (u)+ λg(u)+ νh(u), inΩ,

u = 0, on∂Ω.
(1.3)

During the last few decades, the existence of multiple nontrivial solutions for p -Lapla-
cian type equations has been studied by many researchers using different methods. See
for instance [6, 14, 16, 18, 23, 25]. For example, using the minimization technique and
maximum principle, Brézis and Oswald in [6] obtained an existence and uniqueness
result for the problem {−div(a(x,∇u)) = f (x,u) inΩ,

u = 0 on∂Ω,

when the behaviour of f (s)/s is suitably controlled at infinity. In [16] Chang and Toan
used variational methods to show that the p -Laplacian type elliptic problem{−div(a(x,∇u)) = h(x)|u|q−2u+g(x), inΩ,

u = 0, on∂Ω (1.4)

has at least one/two solutions when g = 0/g �= 0.
On the other hand, during the last two decades, different kinds of singular dif-

ferential equations have been studied by many researchers. We refer the reader to
[5, 10, 13, 15] and the references therein. Some classical tools have been used to
study singular equations in the literature, including variational methods, the method
of upper and lower solutions, degree theory and fixed point theorems. We mention the
following two works which are related to our problems. Tyagi in [35] considered a
singular quasilinear equation with sign changing nonlinearity and used a three critical
point theorem to established the existence results. In [37], it was proved that (1.1) has
least three distinct weak solutions under some mild assumptions on a and some growth
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and singularity conditions of f . In [11] the existence and energy estimates of solutions
for the problem (1.1), in the case λ = ν = 0, while the nonlinear part of the prob-
lem admits some hypotheses on the behavior at origin or perturbation property were
established. In particular, for a precise localization of the parameter, the existence of
a non-zero solution was discussed requiring the sublinearity of nonlinear part at origin
and infinity. Also the existence of solutions for the problem under algebraic conditions
with the classical Ambrosetti-Rabinowitz was investigated. Then, by combining two
algebraic conditions on the nonlinear term guaranteeing the existence of two solutions
as well as applying the mountain pass theorem given by Pucci and Serrin, the existence
of the third solution for the problem was ensured. In [12] using variational methods and
critical point theory, the existence results and energy estimates of solutions for singu-
lar p -Laplacian-type equations if the nonlinear term admits some suitable conditions
on the behavior at origin or perturbation property, were established. In particular, for
a precise localization of the parameter, the existence of a non-zero solution was en-
sured and the existence of solutions for positive values of the parameter, with requiring
(p−1)-sublinearity of nonlinear part at the origin and the infinity was deduce.

The novelty of this paper is that we deal with problem (1.1) in which there is
singularities not only in the nonlinear term, but also in the diverge term

div(|x|−ap|∇u(x)|p−2∇u),

which will lead to some difficulties in the proof, and as far as we know, there are very
few results even for such singular p -Laplacian type equations in the literature. Based
on one recent abstract critical point result for differentiable and parametric functionals
which was recently proved by Ricceri, we establish the existence of three weak so-
lutions for (1.1) when the nonlinear term admits some hypotheses on the behavior at
infinitely or perturbation property.

2. Preliminaries

In this section, we state some preliminary results, which can be found in [7, 8, 36].
First, for all u ∈ C∞

0 (RN) , there exists a constant Ca,b > 0 such that

(∫
RN

|x|−bq|u(x)|qdx

) p
q

� Ca,b

∫
RN

|x|−ap|∇u(x)|pdx, (2.1)

where

−∞ < a <
N− p

p
, a � b � a+1, q = p∗(a,b) =

Np
N−dp

, d = 1+a−b.

Let W1,p
0 (Ω, |x|−ap) be the completion of C∞

0 (Ω) with respect to the norm

‖u‖a,p =
(∫

Ω
|x|−ap|∇u(x)|pdx

) 1
p

.
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Then W1,p
0 (Ω, |x|−ap) is a reflexive Banach space. From the boundedness of Ω and

the standard approximation argument, it is easy to see that (2.1) holds for any u ∈
W1,p

0 (Ω, |x|−ap) in the sense that(∫
RN

|x|−α |u(x)|rdx

) p
r

� Ca,b

∫
RN

|x|−ap|∇u(x)|pdx

for 1 � r � p∗ = Np
N−p , α � (1+a)r+N(1− r

p ) , that is, the embedding

W1,p
0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−α)

is continuous, where Lr(Ω, |x|−α) is the weighted L(Ω, |x|−α) space with the norm

|u|r,α := |u|Lr(Ω,|x|−α ) =
(∫

Ω
|x|−α |u(x)|rdx

) 1
r

.

In fact, we have the following compact embedding result which is an extension of the
classical Rellich-Kondrachov compactness theorem [36].

LEMMA 1. Suppose that Ω ⊂R
N is an open bounded domain with C1 boundary,

0 ∈ Ω and 1 < p < N , −∞ < a < N−p
p , 1 � r < Np

N−p , α < (1+a)r+N(1− r
p) . Then

the embedding W1,p
0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−α) is compact.

DEFINITION 1. [15, Definition 2.1] We say that u ∈ W1,p
0 (Ω, |x|−ap) is a weak

solution of (1.1) if

M
(|x|−ap|∇u(x)|pdx

)∫
Ω
|x|−ap|∇u(x)|p−2∇u(x)∇v(x)dx

−
∫

Ω
|x|−(a+1)p+c(ε f + λg+ νh)(u(x))v(x)dx = 0

for all v ∈ C∞
0 (Ω) .

Let E be a non-empty set and I,Ψ,Φ : E → R be three given functions. If μ > 0
and r ∈ (infE Φ,supE Φ) , we put

β (μI + Ψ,Φ,r) := sup
u∈Φ−1((r,+∞))

μI(u)+ Ψ(u)− infΦ−1((−∞,r))(μI + Ψ)

r−Φ(u)
.

When the map Ψ+ Φ is bounded from below, for each r ∈ (infE Φ,supE Φ) such that

inf
Φ−1(−∞,r]

I(u) � inf
Φ−1(r)

I(u),

we denote

μ�(I,Ψ,Φ,r) := inf

{
Ψ(u)− γ + r

ηr − I(u)
: u ∈ E, Φ(u) < r, I(u) < ηr

}
,
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where
γ := inf

E
(Ψ(u)+ Φ(u)), ηr = inf

u∈φ−1(r)
I(u).

Using the above notations, we present the following Theorem proved by Ricceri,
which was successfully employed in [28] to study the existence of three weak solutions
for nonlocal fractional equations. We also refer the reader to the papers [29, 30, 31, 32]
and the monograph [24] for some related results along this topic.

Besides, we recall that if I is a C1 -functional, the derivative I ′ : X →X∗ admits
a continuous inverse on X∗ if there exists a continuous operator K : X∗ → X such that
K (I ′(u)) = u for every u ∈ X .

THEOREM 1. [29, Theorem 3] Let (E,‖.‖) be a reflexive Banach space; I : E→R

be a sequentially weakly lower semicontinuous, bounded on each bounded subset of E ,
C1 -functional whose derivative admits a continuous inverse on the topological dual
E∗ ; Φ,Ψ : E → R two C1 -functionals with compact derivative. Assume also that the
functional Ψ+ λ Φ is bounded below for all λ > 0 and

liminf
‖u‖→∞

Ψ(u)
I(u)

= −∞.

Then, for each r > supS Φ , where S is the set of all global minima of I , for each
μ > max{0,μ�(I,Ψ,Φ,r)} , and each compact interval [a, b] ⊂ (0,β (μI + Ψ,Φ,r)) ,
there exists a number ρ > 0 with the following property: for every λ ∈ [a, b] and every
C1 -functional Γ : E→R with compact derivative, there exists δ > 0 such that, for each
ν ∈ [0,δ ] , the equation

μI′(u)+ Ψ′(u)+ λ Φ′(u)+ νΓ′(u) = 0,

has at least three solutions in E whose norm are less than ρ .

Throughout this paper we assume the following assumption:

(M ) M : R
+ → R

+ is a continuous function and satisfies

m0t
α−1 � M(t) � m1t

α−1 for allt ∈ R
+,

where m1 > m0 > 0 and 1 < α < min
{

N
N−p , N−p(a+1)+c

N−p(a+1)

}
.

We also introduce the following notations

M̂(t) =
∫ t

0
M(ξ )dξ for all t � 0,

F(t) =
∫ t

0
f (ξ )dξ for all t ∈ R,

G(t) =
∫ t

0
g(ξ )dξ for all t ∈ R.
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For every A ⊂ Ω and γ ∈ R, set

D(A ,γ) :=
∫

A
|x|−γdx.

In the sequel, we set X := W1,p
0 (Ω, |x|−ap) and consider the functionals T,Jf ,Jg :

X → R defined by

T (u) =
1
p
M̂

(∫
Ω
|x|−ap|∇u(x)|pdx

)
, (2.2)

Jf (u) =
∫

Ω
|x|−p(a+1)+cF(u(x))dx, (2.3)

and

Jg(u) =
∫

Ω
|x|−p(a+1)+cG(u(x))dx. (2.4)

Since

T ′(u)(v) = M

(∫
Ω
|x|−ap|∇u(x)|pdx

)∫
Ω
|x|−ap|∇u(x)|p−2∇u.∇vdx,

and

J′f (u)(v) =
∫

Ω
|x|−(a+1)p+c f (u(x))v(x)dx, (2.5)

for every u,v ∈ X , T and Jf are continuously Gâteaux differentiable.

PROPOSITION 1. Let J := T ′ : X −→ X∗ be the operator defined by

J (u)(v) = M

(∫
Ω
|x|−ap|∇u(x)|pdx

)∫
Ω
|x|−ap|∇u(x)|p−2∇u.∇vdx

for every u,v ∈ X . Then J admits a continuous inverse on X∗ .

Proof. Since J is the Fréchet derivative of T , J is continuous and bounded.
On the other hand, for all u,v ∈ X such that u �= v we have

(J (u)−J (v))(u− v)

� max

{
m0

∣∣∣∣∫Ω
|x|−ap|∇u(x)|pdx

∣∣∣∣α−1

,m1

∣∣∣∣∫Ω
|x|−ap|∇v(x)|pdx

∣∣∣∣α−1
}

×
∫

Ω
|x|−ap

(
|∇u(x)|p + |∇v(x)|p−|∇v|p−2∇v.∇u−|∇u|p−2∇u.∇v

)
dx.

Using the elementary inequality [34]

|x− y|η � 2η(|x|η−2x−|y|η−2y)(x− y) if η � 2,
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for all (x,y) ∈ R
N ×R

N , N � 1, we obtain for all u,v ∈ X such that u �= v ,

〈J (u)−J (v),u− v〉

� max

{
m0

∣∣∣∣∫Ω
|x|−ap|∇u(x)|pdx

∣∣∣∣α−1

,m1

∣∣∣∣∫Ω
|x|−ap|∇v(x)|pdx

∣∣∣∣α−1
}

×
∫

Ω
|x|−ap

( 1
2p

|∇v−∇u|p
)
dx � 0

which means that J is a monotone operator. Thus J is injective. Moreover, J is
a coercive operator. Indeed, we have

〈J (u),u〉
‖u‖a,p

� m0 (
∫

Ω |x|−ap|∇u(x)|pdx)α

‖u‖a,p
= m0‖u‖α p−1

a,p → ∞ as ‖u‖a,p → ∞.

Consequently, by Minty-Browder theorem [38], the operator J is an surjection and
admits an inverse mapping. Thus it is sufficient to show that J −1 is continuous. For
this, let (vn)∞

n=1 be a sequence in X∗ such that vn → v in X∗ . Let un and u in X such
that

J −1(vn) = un and J −1(v) = u.

By the coercivity of J , we conclude that the sequence (un) is bounded in the reflexive
space X . For a subsequence, we have un ⇀ û in X , which implies

lim
n→+∞

〈J (un)−J (u),un− û〉 = lim
n→+∞

〈vn− v,un− û〉 = 0.

Therefore, by the continuity of J , we have

un → û inX and J (un) → J (û) = J (u) inX∗. �

3. Main results

We denote by F the class of all continuous functions f : R → R such that

sup
t∈R

| f (t)|
1+ |t|s−1 < ∞

for some s ∈ [1,α p) . First we observe that problem (1.1) has the variational struc-
ture, indeed it is the Euler-Lagrange equation of the functional JK : X → R defined as
JK(u) = T (u)− (Jf + Jg + Jh)(u) , where T , Jf and Jg are given by (2.2), (2.3) and
(2.4), respectively. Thus, a critical point of the functional JK is a function u ∈ X such
that

J′K(u)(v) = T ′(u)(v)− (J′f + J′g + J′h)(u)(v) = 0

for every v ∈ X . Hence, the critical points of the functional JK are weak solutions of
problem (1.1).



56 S. HEIDARKHANI, K. I. KOU AND A. SALARI

Now, let us fix some notations that we will adopt in the sequel. For each r > 0
and each pair of functions f ,g : Ω×R → R belonging F such that G−F is bounded
from below, set

μ̃( f ,g,r) := α p inf
u∈X

{
r− γ̃ − Jf (u)

m0η̃r −m1‖u‖α p
a,p

: Jg(u) < r, ‖u‖a,p < α p
√

η̃r

}
,

where
γ̃ := D

(
Ω, p(a+1)− c

)
. inf

ξ∈R

(G(ξ )−F(ξ )),

and
η̃r := inf

u∈J−1
g (r)

‖u‖α p
a,p.

Finally, for each ε ∈
(
0, 1

max{0,μ̃( f ,g,r)}
)

, we denote β̃ (ε, f ,g,r) by

sup
u∈J−1

g (r,∞)

m0‖u‖α p
a,p−α pεJf (u)− infu∈J−1

g ((−∞,r))(m1‖u‖α p
a,p−α pεJf (u))

α p(r− Jg(u))
.

Now we are in a position to state and prove the main result of this paper.

THEOREM 2. Let σ ∈ (α p,α p∗) with p∗ := Np
N−p , f ,g : Ω×R→ R be two con-

tinuous functions belonging to F ,

lim
|ξ |→∞

f (ξ )
|ξ |α p−1 = ∞, limsup

|ξ |→∞

f (ξ )
|ξ |σ−1 < ∞

and

lim
|ξ |→∞

g(ξ )
|ξ |σ−1 = ∞.

Then for each r > 0 , for each

ε ∈
(

0,
1

max{0, μ̃( f ,g,r)}
)

and for each compact interval [a, b] ⊂]0, β̃(ε, f ,g,r)[ , there exists a number ρ > 0
with the following property: for every λ ∈ [a, b] and every function h belong to (F )
there exists δ > 0 such that for each ν ∈ [0,δ ], problem (1.1) has at least three weak
solutions whose norms in X are less than ρ .

Proof. Take E = X := W1,p
0 (Ω, |x|−ap) . According to Section 2, (X ,‖.‖a,α) is a

reflexive Banach space. It is well known that Jf is Gâteaux differentiable and sequen-
tially weakly upper semicontinuous whose Gâteaux derivative at the point u ∈ X is the
functional J′f (u) given by (2.5) and J′f : X → X∗ is a compact operator. Moreover, the

functional T is C1 , and by Proposition 1, its derivative admits a continuous inverse
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on X∗ . Furthermore, it is clear that T is sequentially weakly lower semicontinuous.
Moreover, since M satisfy the condition (M ) , from (2.2) we have

m0

α p
‖u‖α p

a,p � T (u) � m1

α p
‖u‖α p

a,p (3.1)

for all u ∈ X . Now, let A be a bounded subset of X . That is, there exists a constant
c > 0 such that ‖u‖a,p � c for each u ∈ A . Then, by (3.1) we have

|T (u)| � m1

α p
cα p.

Hence T is bounded on each bounded subset of X . Now, let us prove that

limsup
‖u‖→∞

Jf (u)
‖u‖α p

a,p
= ∞. (3.2)

Now, since 1 < α < min
{

N
N−p , N−p(a+1)+c

N−p(a+1)

}
, the embedding

X ↪→ Lα p(Ω, |x|−p(a+1)+c)

is compact (see Lemma 1). Thus there exists C1 > 0 such that

C1‖u‖Lα p(Ω,|x|−p(a+1)+c) � ‖u‖a,p for allu ∈ X ,

or

Cα p
1

∫
Ω
|x|−p(a+1)+c|u(x)|α pdx �

(∫
Ω
|x|−ap|∇u(x)|pdx

)α
for allu ∈ X .

It follows that

λα := inf
u∈X\{0}

(
∫

Ω |x|−ap|∇u(x)|pdx)α∫
Ω |x|−p(a+1)+c|u(x)|α pdx

> 0 (3.3)

(see [36]). Furthermore, by [36, Corollary 2.2] the eigenfunction eα ∈ X is non-
negative in Ω and by (3.3) it follows that

‖eα‖α p
a,p = λα

(∫
Ω
|x|−p(a+1)+c|eα(x)|α pdx

)α
.

To get (3.2) it is enough to show that

lim
k→∞

Jf (ke1)
‖ke1‖α p

a,p
= ∞. (3.4)

To this end, fix two positive numbers L1 and L2 such that L1 < L2
α p . Since

lim
|ξ |→∞

f (ξ )
|ξ |α p−1 = ∞,
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there exists η > 0 such that
F(ξ ) � λ1L2|ξ |α p

for all ξ ∈ (η ,∞) . For each k ∈ N , set

Ak :=
{

x ∈ Ω : eα(x) � η
k

}
.

Taking into account that, for every k ∈ N , one has Ak ⊆ Ak+1 , the numerical sequence{∫
Ak

e1(x)α pdx

}
k∈N

is non-decreasing, i.e., ∫
Ak

e1(x)α pdx �
∫

Ak+1

e1(x)α pdx

for every k ∈ N and ∫
Ak

e1(x)α pdx →
∫

Ω
e1(x)α pdx

as k → +∞ . At this point, fix k̃ ∈ N so that∫
Ak̃

e1(x)α pdx >
α pL1

L2

∫
Ω

e1(x)α pdx.

Moreover, since f ∈ F , one has

sup
ξ∈[0,η]

|F(ξ )| < +∞.

Indeed, taking into account that f ∈ F there exists a constant c > 0 such that

|F(ξ )| � c(|ξ |+ |ξ |s)
for every ξ ∈ R . Thus

sup
ξ∈[0,η]

|F(ξ )| � c(η + ηs).

Then, for each k ∈ N satisfying

k > max

⎧⎨⎩k̃,

(
D(Ω, p(a+1)− c)supξ∈[0,η] |F(ξ )|

L1‖e1‖α p
a,p

) 1
α p

⎫⎬⎭ ,

we have

Jf (ke1)
‖ke1‖α p

a,p
=

∫
Ak
|x|−p(a+1)+cF(ke1(x))dx

kα p‖e1‖α p
a,p

+

∫
Ω\Ak

|x|−p(a+1)+cF(ke1(x))dx

kα p‖e1‖α p
a,p

�
λ1L2

∫
Ak
|x|−p(a+1)+ce1(x)α pdx

‖e1‖α p
a,p

+

∫
Ω\Ak

|x|−p(a+1)+cF(ke1(x))dx

kα p‖e1‖α p
a,p

>
α pλ1L1

∫
Ak
|x|−p(a+1)+ce1(x)α pdx

‖e1‖α p
a,p

− D(Ω, p(a+1)− c)supξ∈[0,η] |F(ξ )|
kα p‖e1‖α p

a,p

> α pL1 −L1,
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which shows (3.4). Thus by (3.1) and (3.4) we have

liminf
‖u‖→∞

−Jf (u)
T (u)

= −∞.

Since

limsup
|ξ |→∞

F(ξ )
|ξ |σ < ∞,

there exists κ > 0 such that

F(ξ ) � κ(|ξ |σ +1), for everyξ ∈ R. (3.5)

Moreover, since

lim
|ξ |→∞

G(ξ )
|ξ |σ = ∞

for each ι > 0, there exists a constant cι > 0 such that

G(η) � η |ξ |σ − cι for everyξ ∈ R. (3.6)

Of course, by (3.5) and (3.6), for each λ > 0, the function G−λF : R→ R is bounded
from below in R . Indeed, fixing λ > 0, let us consider η > λ κ . Hence, by (3.5) and
(3.6) it follows that

(G−λF)(ξ ) � η |ξ |σ − cι −λ κ(|ξ |σ +1)
= (η −λ κ)|ξ |σ − (cι + λ κ)
� −(cι + λ κ)

for every ξ ∈ R . Thus, by the above relation, one has that∫
Ω
|x|−p(a+1)+c(G(u(x))−λF(u(x)))dx � −(cι + λ κ)D

(
Ω, p(a+1)− c

)
.

Then, the functional Jg−λJf is bounded from below in X . At this point, the conclusion
comes by Theorem 1, taking

I(u) := T (u), Ψ(u) := −Jf (u)

as well as
Φ(u) = Jg(u) Γ(u) = Jh(u),

for every u ∈ E := X . �
Now we give one example to illustrate our result.

EXAMPLE 1. Let N = 3, p = 5
2 , a = 1

6 , c = 59
12 , Ω = {(x1,x2,x3)∈ R

3; x2
1 +x2

2 +
x2
3 � 4} ⊂ R

3 , M(t) = t for all t ∈ R and consider the problem⎧⎨⎩−div

(√
|∇u|∇u

12
√

|x|5

)∫
Ω

√
|∇u(x)|5
12
√

|x|5 dx = |x|3(ε f (u)+ λg(u)+ νh(u)) inΩ,

u = 0 on∂Ω,
(3.7)
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with

f (t) =
{

1+
√

t9 fort � 0,

1−
√
|t|9 fort < 0,

and g(t) = 1+ t8.

We observe that min
{

N
N−p , N−p(a+1)+c

N−p(a+1)

}
= min{6,60} = 6, thus M satisfies the con-

dition (M ) with m0 = m1 = 1 and α = 12
5 . Moreover, by setting r = 128π

5 , s = 11
2

and σ = 7 we have 1 < s < 6 = α p , α p = 5 < σ = 7 < 15
2 = α p∗ ,

sup
t∈R

| f (t)|
1+ |t|s−1 = sup

t∈R

1+ t
9
2

1+ t
9
2

= 1 < ∞,

lim
|ξ |→∞

f (ξ )
|ξ |α p−1 =

⎧⎪⎨⎪⎩ limξ→∞
1+ξ

9
2

ξ 4 = ∞

limξ→−∞
1−|ξ | 92

ξ 4 = ∞
,

limsup
|ξ |→∞

f (ξ )
|ξ |σ−1 =

⎧⎪⎨⎪⎩ limξ→+∞
1+ξ

9
2

ξ 6 = 0 < ∞

limξ→−∞
1−|ξ | 92

ξ 6 = 0 < ∞
,

lim
|ξ |→∞

g(ξ )
|ξ |σ−1 =

1+ t8

|ξ |6 = ∞.

Then, the conclusion of Theorem 4.1 holds for the problem (3.7).

Now we consider problem (1.3). The following result comes directly from Theo-
rem 2.

THEOREM 3. Let f ,g : Ω×R → R be two continuous functions such that

sup
t∈R

| f (t)|
1+ |t|s−1 < ∞ and sup

t∈R

|g(t)|
1+ |t|s−1 < ∞

for some 1 < s < p∗ with p∗ = Np
N−p . Moreover, let

lim
|ξ |→∞

f (ξ )
|ξ |p−1 = ∞, limsup

|ξ |→∞

f (ξ )
|ξ |p∗−1 < ∞ and lim

|ξ |→∞

g(ξ )
|ξ |p∗−1 = ∞.

Then for each r > 0 , for each

ε ∈
(

0,
1

max{0, μ̃1( f ,g,r)}
)

where μ1( f ,g,r) is the same as μ( f ,g,r) but with a = 0 and p = c, and for each com-

pact interval [a, b] ⊂]0, β̃1(ε, f ,g,r)[ where β̃1(ε, f ,g,r) is the same as β̃ (ε, f ,g,r)
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but a = 0 and p = c, there exists a number ρ > 0 with the following property: for
every λ ∈ [a, b] and every function h satisfying

sup
t∈R

h(t)
1+ |t|s < ∞

for some 1 < s < p, there exists δ > 0 such that for each ν ∈ [0,δ ], problem (1.3)
has at least three distinct weak solutions {ui}3

i=1 ⊂ W1,p
0 (Ω) , such that ui = 0 a.e. in

R
N\Ω , and ∫

Ω
|∇ui|pdx < ρ p

for every i ∈ 1,2,3 .

Finally, we give the following corollary as a consequence of Theorem 3.

COROLLARY 1. Let 1 < ϑ < p < � < p∗ with p∗ = Np
N−p . Then for each ε > 0

small enough, there exists λε such that, for every compact interval [a, b]⊂ (0,λε) there
exists ρ > 0 with the following property: for every λ ∈ [a, b] and every continuous
function h : R → R satisfying

limsup
|ξ |→∞

|h(ξ )|
|ξ |υ < ∞,

for some 1 < υ < p∗ , there exists δ > 0 such that for every ν ∈ [0,δ ], problem{−M (
∫

Ω |∇u(x)|pdx)Δpu = ε|u|ϑ−1u+ λ |u|�−1u+ νh(u), inΩ,
u = 0, on∂Ω,

has at least three distinct weak solutions {ui}3
i=1 ⊂ W1,p

0 (Ω) such that ui = 0 for a.e.
in R

N\Ω , and ∫
Ω
|∇ui|pdx < ρ p

for every i ∈ 1,2,3 .
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