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Abstract. This paper deals with the the existence of solution sets and its topological structure
for a fractional differential equation with ψ -Riemann-Liouville fractional derivative on (0,∞)
in a special Banach space. Our approach is based on a fixed point theorem for Meir-Keeler
condensing operators combined with measure of non-compactness. An example is given to
illustrate our approach.

1. Introduction

The notion of fractional differential equations has been recognized as one of the
best tools to describe the memory and the hereditary properties of various processes
and materials. This is the main advantage of fractional derivatives in comparison with
classical integer-order models, in which such effects are in fact neglected. The frac-
tional calculus and its applications in many areas of science have also received much
attention and have developed very rapidly (cf. [20, 22, 24, 25, 28]) and the monographs
[1, 2, 3].

Recently, many interesting works have appeared in the study of fractional differ-
ential equations over Banach spaces, some of them examined the existence results of
solutions on finite intervals by using certain basic tools from functional analysis; we
refer the reader to [5, 7, 8, 9, 19, 23, 26, 27].

In [30] there are new concepts of the fractional integral and the fractional deriva-
tive. Many fractional differential equations solved over Banach spaces using these
new concepts and certain basic tools from functional analysis, we mention for example
[16, 21].

Several existence results of these problems were obtained on unbounded domains
as [0,+∞) involving classical methods, we quote for example [6, 29]. The technique of
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measure of noncompactness is an alternative to the classical Ascoli-Arzela’s theorem
for the problem with lack of compactness [11].

This article study the existence of solutions on unbounded domain of the following
boundary value probem

RLD
α ,ψ
0+ y(t) = f (t,y(t)), t ∈ (0,+∞), (1)

RLI
2−α ,ψ
0+ y(0+) = a, (2)

RLD
α−1,ψ
0+ y(∞) = b, (3)

where RLDα ,ψ denote the left-sided ψ -Riemann-Liouville fractional derivative with

1 < α < 2. The operator I
(2−α),ψ
0+ denotes the left-sided ψ - Riemann-Liouville frac-

tional integral, E is a Banach space with the norme ‖.‖ , a,b∈ E , f : (0,∞)×E×E →
E a function satisfying some specified conditions (see, section 3) and ψ ∈C 1([0,∞),R+)
satisfied ψ ′(t) > 0, for all t ∈ [0,∞) .

The present work is organized as follows: In Section 2, we give some general re-
sults and preliminaries and in Section 3, we show the existence solution for the problem
(1)–(3) by applying the fixed point theorem combined with the technique of measure of
non-compactness. Finally an example to reinforce our work in the section 4.

2. Backgrounds

We introduce, in this section, some notation and technical results which are used
throughout this paper. Let I ⊂ (0,∞) be a compact interval and denote by C (I,E) the
Banach space of continuous functions y : I → E with the usual norm

‖y‖∞ = sup{‖y(t)‖, t ∈ I}.

For all η > −1 and s,t ∈ [0,∞) with t � s , we pose ψη (t,s) = (ψ(t)−ψ(s))η . We
consider the following Banach space

Cα ,ψ ([0,∞),E) =
{

y ∈ C ((0,∞),E) : lim
t→0

ψ2−α(t,0)y(t) and

lim
t→∞

ψ2−α(t,0)y(t)
1+ ψα(t,0)

exists and finite
}
,

equipped with the norm

‖y‖ψ
α = sup

{
ψ2−α(t,0)‖y(t)‖

1+ ψα(t,0)
, t ∈ (0,∞)

}
.

Let us now give the definition of the measure of non-compactness in the sense
of Kuratowski and its properties. For all G ⊆ E , we denote by Sb(G) the set of all
bounded subsets of G .
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DEFINITION 1. [10, 17] Let D ∈ Sb(E) . The Kuratowski measure of non-com-
pactness ϑ of the subset D is defined as follows:

ϑ(D) = inf{e > 0 : D admits a finite cover by sets of diameter � e}.

LEMMA 1. [10, 17] Let A,B ∈ Sb(E) . The following properties hold:

(i1) ϑ(A) = 0 if and only if A is relatively compact,

(i2) ϑ(A) = ϑ(A) , where A denotes the closure of A,

(i3) ϑ(A+B) � ϑ(A)+ ϑ(B) ,

(i4) A ⊂ B implies γ(A) � γ(B),

( i5 ) ϑ(a.A) = ‖a‖.ϑ(A) for all a ∈ E ,

( i6 ) ϑ({a}∪A) = ϑ(A) for all a ∈ E ,

( i7 ) ϑ(A) = ϑ(Conv(A)) , where Conv(A) is the smallest convex that contains A.

LEMMA 2. [16] Let D ∈ Sb(E) and ε > 0 . Then, there is a sequence {μn}n∈N ⊂
D, such that

ϑ(D) � 2ϑ({μn,n ∈ N})+ ε.

LEMMA 3. [17] If D is an equicontinuous and bounded subset of C ([a,b],E) ,
then ϑ(D(.)) ∈ C ([a,b],R+)

ϑC (D) = max
r∈[a,b]

ϑ(D(r)), ϑ
({∫ b

a
w(r)dr : w ∈ D

})
�
∫ b

a
ϑ(D(r))dr,

where D(r) = {w(r) : w ∈ D} and ϑC is the non-compactness measure on the space
C ([a,b],E) .

Meir-Keeler has been introduced since 1969 the notion of Meir-Keeler contraction
mapping in a metric space. Most recently in 2015, the authors introduced the following
definition and fixed point theorem.

DEFINITION 2. [4] Let κ be an arbitrary measure of non-compactness on E and
G be a nonempty subset of E. Let Δ be an operator from G to G . Δ is said Meir-Keeler
condensing operator if

∀ε > 0, ∃k(ε) > 0,∀D ∈ Sb(G) : ε � κ(D) < ε + k =⇒ κ(ΛD) < ε.

THEOREM 1. [4] Let κ be an arbitrary measure of non-compactness on E and
G a closed, bounded and convex subset of E . Let Δ be an operator from G to G,
assume that Δ is a Meir-Keeler condensing operator and continuous, then the set {w ∈
G : Δ(w) = w} is nonempty and compact.
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We begin with some definitions from the theory of fractional calculus.

DEFINITION 3. [20, 30] Let δ be an integrable function defined on (0,c] . Then,

(i) the ψ -Riemann- Liouville fractional integral of order ξ > 0 of the function δ is
defined by

I
ξ ,ψ
0+ δ (t) =

1
Γ(ξ )

∫ t

0
ψ ′(s)ψξ−1(t,s)δ (s)ds,

(ii) the ψ -Riemann- Liouville fractional derivative of order ξ > 0 of the function δ
is defined by

RLD
ξ ,ψ
0+ δ (t) =

1
Γ(n− ξ )

(
1

ψ ′(t)
d
dt

)n(∫ t

0
ψ ′(s)ψn−ξ−1(t,s)δ (s)ds

)
,

where Γ is the gamma function.

LEMMA 4. [20, 30] Let ξ ,ζ ∈ R
∗
+ . We have then

1. I
ξ ,ψ
0+ ψζ−1(t,0) = Γ(ζ )

Γ(ξ+ζ )ψξ+ζ−1(t,0).

2. If 1 < ξ < 2 , we have

(i1) RLDξ−1,ψ
0+ ψξ−1(t,0) = Γ(ξ ) and RLDξ−1,ψ

0+ ψξ−2(t,0) = 0,

(i2) RLDξ ,ψ
0+ ψξ−1(t,0) =RL Dξ ,ψ

0+ ψξ−2(t,0) = 0.

3. Main result

We need to introduce the following four hypotheses to present our main result at
the end of this section:

(H1) f : (0,∞)×E → E is a continuous function and for all x,y and (0,T ] ⊂ (0,∞) :

‖ f (t,x)− f (t,y)‖ � Aψ2−α(t,0)‖x− y‖, for all t ∈ (0,T ],

where A ∈ R
+ .

(H2) There exists nonnegative functions a,b ∈ C ([0,∞),R+) such that

‖ f (t,u)‖ � a(t)+ ψ2−α(t,0)b(t)‖u‖ for all t ∈ (0,∞) and u ∈ E,

with ∫ ∞

0
ψ ′(s)[1+ ψα(s,0)]b(s)dt < Γ(α),

∫ ∞

0
ψ ′(s)a(s)dt < ∞.
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(H3) There exists a function � ∈ C ([0,∞),R+) such that for each nonempty, bounded
set Ω ⊂Cα ,ψ((0,∞),E)

ϑ( f (t,Ω(t))) � �(t)ψ2−α(t,0)ϑ(Ω(t)), for all t ∈ (0,∞) with,

∫ ∞

0
ψ ′(s)(1+ ψα(s,0))�(s)ds � Γ(α)

2
.

(H4) There exists R > 0 such that

R >
‖b‖+(α −1)‖a‖+

∫ ∞

0
ψ ′(s)a(s)ds

Γ(α)−
∫ ∞

0
ψ ′(s)(1+ ψα(s,0))b(s)ds

.

DEFINITION 4. A function y ∈ Cα ,ψ([0,+∞)) is said to be solution of the prob-
lem (1)–(3) if y satisfies the equation RLDα

0+y(t) = f (t,y(t)) and the conditions (2)–(3).

Let
B = {y ∈ Cα ,ψ ([0,∞),E) : ‖y‖∞ � R},

such that R is a strictly positive real.

REMARK 1. There exists a positive real number M such that∫ ∞

0
ψ ′(s)‖ f (s,y(s))‖ds � M, for any y ∈ B.

LEMMA 5. Any solution y ∈ B of the following integral equation

y(t) =
1

Γ(α)
[b−

∫ ∞

0
ψ ′(s) f (s,y(s)ds]ψα−1(t,0)+

aψα−2(t,0)
Γ(α −1)

+
1

Γ(α)

∫ t

0
ψ ′(s)ψα−1(t,s) f (s,y(s)ds (4)

is a solution of the problem (1)–(3).

Proof. Let y ∈ B be a solution of (4). Applying I
2−α ,ψ
0+ to both sides of (4) and

utilizing Lemma 4, we get

I
2−α ,ψ
0+ y(t) =

1
Γ(α)

[b−
∫ ∞

0
ψ ′(t) f (t,y(t)dt]ψ1(t,0)+a+I

2,ψ
0+ f (t,y(t)).

By taking t tends to 0, we get I
1−α ,ψ
0+ y(0) = a. By applying RLD

α−1,ψ
0+ to both sides

of (4) and using Lemma 4, we have

RLDα−1,ψ
0+ y(t) = b−

∫ ∞

0
ψ ′(t) f (t,y(t)dt + I1,ψ

0+ f (t,y(t)).
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As t −→ ∞ , we get

RLDα−1,ψ
0+ y(∞) = b.

Next, by applying RLD
α ,ψ
0+ to both sides of (4) and by using Lemma 4, we obtain

RLDα ,ψ
0+ y(t) = f (t,y(t)) . The results are proved completely. �
Consider the operator N : Cα ,ψ([0,∞),E) → Cα ,ψ([0,∞),E) defined by

Ny(t) =
1

Γ(α)
[b−

∫ ∞

0
ψ ′(t) f (t,y(t)dt]ψα−1(t,0)+

aψα−2(t,0)
Γ(α −1)

+
1

Γ(α)

∫ t

0
ψ ′(s)ψα−1(t,s) f (s,y(s)ds.

The theorem below is the main result

THEOREM 2. Suppose that conditions (H1)–(H4) are valid. Then the problem
(1)–(3) has at least one solution.

Proof. From the definition of the operator N and Lemma 5, we see that the fixed
points of N are solutions of problem (1)–(3). For this reason, it suffices to verify the
axioms of Theorem 1, it is done in four steps.

Step 1: N is bounded on B .
Let y∈ Cα ,ψ([0,∞),E) , from (H2) it is easy to deduce that Ny∈ Cα ,ψ([0,∞),E) .

Using (H2) , for all y ∈ B and t ∈ (0,∞) we get

ψ2−α(t,0)‖N(y)(t)‖
1+ ψα(t,0)

� ‖b‖+M
Γ(α)

+
‖a‖

Γ(α −1)
+

1
Γ(α)

∫ ∞

0
ψ ′(s)‖ f (s,y(s))‖ds

� ‖b‖+2M+(α −1)‖a‖
Γ(α)

.

Hence, NB is bounded.

Step 2: N is continuous.
We rewrite N as follows

Ny(t) =
bψα−1(t,0)

Γ(α)
+

aψα−2(t,0)
Γ(α −1)

− ψα−1(t,0)
Γ(α)

∫ ∞

t
ψ ′(s) f (s,y(s)ds

+
1

Γ(α)

∫ t

0
ψ ′(s)[ψα−1(t,s)−ψα−1(t,0)] f (s,y(s)ds.

Let {yn}n∈N converges to y in Cα ,ψ([0,∞),E) and ε > 0, by noticing that the
functions yn,n∈N and y are bounded, it implies that there exists M > 0 such that‖yn‖ψ

α
� M , n∈ N and ‖y‖ψ

α � M . Hypothese (H2) assume that there exists L > 0, such that

∫ ∞

L
ψ ′(s)a(t)dt <

Γ(α)
6

ε,

∫ ∞

L
ψ ′(s)(1+ ψα(t,0))b(t)dt <

Γ(α)
6

ε,
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and from (H1) there exists m ∈ N such that, for all n � m and t ∈ (0,L] , we have

‖ f (t,yn(t))− f (t,y(t))‖ <
Γ(α)

3ψ1(L,0)
ε. (5)

Then for all t ∈ (0,∞) and n > m , we have

ψ2−α(t,0)
1+ ψα(t,0)

‖N(yn)(t)−N(y)(t)‖

� 1
Γ(α)

∫ t

0
ψ ′(s)‖ f (s,yn(s))− f (s,y(s))‖ds

+
1

Γ(α)

∫ ∞

t
ψ ′(s)‖ f (s,yn(s))− f (s,y(s))‖ds

� 1
Γ(α)

∫ L

0
ψ ′(s)‖ f (s,yn(s))− f (s,y(s))‖ds+

2M
Γ(α)

∫ ∞

L
ψ ′(s)[1+ ψα(s,0)]b(s)ds

+
2

Γ(α)

∫ ∞

L
ψ ′(s)a(s)ds � ε

3
+

ε
3

+
ε
3

= ε.

So,
‖Nyn −Ny‖ψ

α → 0 as n → ∞.

Step 3: NB is equicontinuous on any compact [c,d] of (0,∞).
Let y ∈ B and t1, t2 ∈ [c,d], where t2 > t1 . Then∥∥∥ψ2−α(t2,0)N(y)(t2)

1+ ψα(t2,0)
− ψ2−α(t1,0)N(y)(t1)

1+ ψα(t1,0)

∥∥∥
� ‖b‖+M

Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣
+

1
Γ(α)

∥∥∥∥
∫ t2

0
ψ ′(s)ψα−1(t2,s) f (s,y(s))ds−

∫ t1

0
ψ ′(s)ψα−1(t1,s) f (s,y(s))ds

∥∥∥∥
� ‖b‖+M

Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣
+

1
Γ(α)

∫ t1

0
ψ ′(s)[ψα−1(t2,s)−ψα−1(t1,s)]‖ f (s,y(s))‖ds

+
1

Γ(α)

∫ t2

t1
ψ ′(s)ψα−1(t2,s)‖ f (s,y(s))‖ds

� ‖b‖+M
Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣



90 K. BENIA, M. BEDDANI, M. FEČKAN AND B. HEDIA

+
1

Γ(α)

∫ t1

0
ψ ′(s)[ψα−1(t2,s)−ψα−1(t1,s)]a(s)ds

+
R

Γ(α)

∫ t1

0
ψ ′(s)[ψα−1(t2,s)−ψα−1(t1,s)](1+ ψα(s,0))b(s)ds

+
1

Γ(α)

∫ t2

t1
ψ ′(s)ψα−1(t2,s)a(s)ds

+
R

Γ(α)

∫ t2

t1
ψ ′(s)ψα−1(t2,s)(1+ ψα(s,0))b(s)ds

� ‖b‖+M
Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣
+

a∗ +b∗R
Γ(α)

(∫ t1

0
ψ ′(s)[ψα−1(t2,s)−ψα−1(t1,s)]ds

)

+
a∗ +b∗R

Γ(α)

∫ t2

t1
ψ ′(s)ψα−1(t2,s)ds

+
2b∗R
Γ(α)

(∫ t2

0
ψ ′(s)ψα−1(t2,s)ψα (s,0)ds−

∫ t1

0
ψ ′(s)ψα−1(t1,s)ψα (s,0)ds

)

� ‖b‖+M
Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣
+

a∗ +b∗R
Γ(1+ α)

(ψα(t2,0)−ψα(t1,0)−ψα(t2,t1))

+
a∗ +b∗R
Γ(1+ α)

ψα(t2,t1)+
2b∗RΓ(α +1)

Γ(2α +1)
ψ2α(t2,t1),

where a∗ = max
t∈[c,d]

a(t) and b∗ = max
t∈[c,d]

b(t) . As t2 → t1 the right-hand side of the above

inequality tends to zero. Then NB is equicontinuous on any compact [c,d] of (0,∞) .

Step 4: We verify that N satisfies the assumptions of theorem 1.
First, we now show that N is defined from B to B , Indeed, for any y ∈ B , by

above conditions (H2),(H4) and by according to a little calculation, we have

∥∥∥∥ψ2−α(t,0)N(y)(t)
1+ ψα(t,0)

∥∥∥∥
� ‖b‖

Γ(α)
+

‖a‖
Γ(α −1)

+
1

Γ(α)

∫ ∞

0
ψ ′(s)‖ f (t,y(t))‖dt

� 1
Γ(α)

(
‖b‖+(α −1)‖a‖+

∫ ∞

0
ψ ′(s)a(s)ds+R

∫ ∞

0
ψ ′(s)(1+ ψα(s,0))b(s)ds

)
< R.
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We put D = conv(NB) , it is clear that D is a closed, bounded and convex subset of
B . Knowing that ND ⊂ NB ⊂ D , then N remains defined from D to D . We denote by
ϑ(α ,ψ) the Kuratowski measure of non-compactness on Cα ,ψ ([0,∞),E) , we will show
the following equality

ϑ(α ,ψ)(NV ) = sup

{
ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
, t ∈ (0,∞)

}
, for all V ⊂ D. (6)

Let us first show that for all ε > 0, there is a real number T∞ > 0 such that, for any
t1,t2 � T∞ and y ∈V , we have∥∥∥∥ψ2−α(t2,0)Ny(t2)

1+ ψα(t2,0)
− ψ2−α(t1,0)Ny(t1)

1+ ψα(t1,0)

∥∥∥∥< ε. (7)

We have ∥∥∥∥ψ2−α(t2,0)N(y)(t2)
1+ ψα(t2,0)

− ψ2−α(t1,0)N(y)(t1)
1+ ψα(t1,0)

∥∥∥∥
� ‖b‖+M

Γ(α)

∣∣∣∣ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∣∣∣∣
+

‖a‖
Γ(α)

∣∣∣∣ 1
1+ ψα(t2,0)

− 1
1+ ψα(t1,0)

∣∣∣∣
+

1
Γ(α)

∥∥∥∥ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∥∥∥∥
∫ ∞

0
ψ ′(s)‖ f (s,y(s))‖ds.

We distinguish two cases. If limψ1(t,0)) = ∞ , we obtain limt→∞
ψ1(t,0))

1+ψα (t,0) = 0 and

limt→∞
1

1+ψα (t,0) = 0, then, this shows that∥∥∥∥ψ2−α(t2,0)Ny(t2)
1+ ψα(t2,0)

− ψ2−α(t1,0)Ny(t1)
1+ ψα(t1,0)

∥∥∥∥→ 0 as t1,t2 → ∞. (8)

If limψ1(t,0)) = l < ∞ , by noticing the inequality∥∥∥∥ ψ1(t2,0)
1+ ψα(t2,0)

− ψ1(t1,0)
1+ ψα(t1,0)

∥∥∥∥
�
∥∥∥∥ ψ1(t2,0)

1+ ψα(t2,0)
− l

1+ lα

∥∥∥∥+
∥∥∥∥ ψ1(t1,0)

1+ ψα(t1,0)
− l

1+ lα

∥∥∥∥ ,

we easily obtain the estimate (8). In the same way, we verify that for all ε > 0, there is
a real number 0 < T0 << T∞ such that, for any t1,t2 � T0 and y ∈V , we have∥∥∥∥ψ2−α(t2,0)Ny(t2)

1+ ψα(t2,0)
− ψ2−α(t1,0)Ny(t1)

1+ ψα(t1,0)

∥∥∥∥< ε. (9)

We come back to show equality (6), we show first

ϑ(α ,ψ)(NV ) � sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
.
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Let NV |K the restriction of NV on the interval K = [T0,T∞] and let ε be a strictly
positive real number, by utilizing Lemma 3 and the third step, we get

ϑ(α ,ψ)(NV |K) = sup
K

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
� sup

(0,∞)
ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
,

this implies that there exists a finite partition NVi of NV so that NV = ∪iNVi and

diam(NVi|K) < sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
+ ε, i = 0,1, · · · ,k. (10)

Consequently, using inequalities (7) and (10), we get, for all Ny1,Ny2 of NVi and
t � T∞ we have ∥∥∥∥ψ2−α(t,0)Ny2(t)

1+ ψα(t,0)
− ψ2−α(t,0)Ny1(t))

1+ ψα(t,0)

∥∥∥∥
�
∥∥∥∥ψ2−α(t,0)Ny2(t)

1+ ψα(t,0)
− ψ2−α(T∞,0)Ny2(T∞)

1+ ψα(T∞,0)

∥∥∥∥
+
∥∥∥∥ψ2−α(T∞,0)Ny2(T∞)

1+ ψα(T∞,0)
− ψ2−α(T∞,0)Ny1(T∞)

1+ ψα(T∞,0)

∥∥∥∥
+
∥∥∥∥ψ2−α(t,0)Ny1(t)

1+ ψα(t,0)
− ψ2−α(T∞,0)Ny2(T∞)

1+ ψα(T∞,0)

∥∥∥∥
< 3ε + sup

(0,∞)
ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
.

So,∥∥∥∥ψ2−α(t,0)Ny2(t)
1+ ψα(t,0)

− ψ2−α(t,0)Ny1(t))
1+ ψα(t,0)

∥∥∥∥� 3ε + sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
. (11)

By the same procedure and using inequalities (9) and (10), we easily show that the
inequality (11) is also true for all Ny1,Ny2 of NVi and t � T0 . Then, from (10) and
(11), we obtain

diam(NVi) < sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
+3ε, i = 0,1, · · · ,k.

Thus,

ϑ(α ,ψ)(NV ) < sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
+3ε.

Since ε is arbitrary, this leads us to the result.

Conversely, we show that sup(0,∞) ϑ
(

ψ2−α (t,0)NV (t)
1+ψα (t,0)

)
� ϑ(α ,ψ)(NV ). According to

the definition of Kuratowski MNC, we have, for all ε > 0 we can find a finite partition
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NV = ∪iNVi such that diam(NVi) < ϑ(α ,ψ)(NV )+ ε , then for all y1,y2 ∈ V and t ∈
(0,∞) , we obtain∥∥∥∥ψ2−α(t,0)Ny2(t)

1+ ψα(t,0)
− ψ2−α(t,0)Ny1(t)

1+ ψα(t,0)

∥∥∥∥� ‖Ny2−Ny1‖ψ
α < ϑ(α ,ψ)(NV )+ ε.

According to NV (t) = ∪iNVi(t) , we get ϑ
(

ψ2−α (t,0)NV (t)
1+ψα (t,0)

)
< ϑ(α ,ψ)(NV )+ ε , since ε

is arbitrary, we then have ϑ
(

ψ2−α (t,0)NV (t)
1+ψα (t,0)

)
� ϑ(α ,ψ)(NV ). So,

sup
(0,∞)

ϑ
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
� ϑ(α ,ψ)(NV ).

That’s all he would like to show.
Next, it remains to prove that N is a Meir-Keeler condensing operator via the

measure of non-compactness ϑ(α ,ψ) , this is equivalent to demonstrating the following
implication

∀ε > 0,∃ρ(ε) : ε � ϑ(α ,ψ)(V ) < ε + ρ =⇒ ϑ(α ,ψ)(NV ) < ε, for any V ⊂ D. (12)

Let ε be a strictly positive real, V ⊂ D and t ∈ (0,∞) , for all ι,κ ∈ R
∗
+ verifying

0 < ι � t � κ , we define the auxiliary operator Nι,κ by

Nι,κy(t) =
bψα−1(t,0)

Γ(α)
+

aψα−2(t,0)
Γ(α −1)

− ψα−1(t,0)
Γ(α)

∫ κ

t
ψ ′(s) f (s,y(s)ds

+
1

Γ(α)

∫ t

ι
ψ ′(s)[ψα−1(t,s)−ψα−1(t,0)] f (s,y(s)ds.

Using the properties of ϑ , we get

ϑ
(

ψ2−α(t,0)Nι,κV (t)
1+ ψα(t,0)

)
→
(

ψ2−α(t,0)NV (t)
1+ ψα(t,0)

)
as ι → 0 and κ → ∞. (13)

An argument similar to that of third step, we show that the Nι,κV is equicontinuous and
bounded on [ι,κ ] . From Lemmas 1, 3, 5, (H3) and the previous steps, we have, there
exists a sequence {μn}∞

n=0 ⊂V such that

ϑ
(

ψ2−α(t,0)Nι,κV (t)
1+ ψα(t,0)

)
� ε

2
+

1
Γ(α)

ϑ
{∫ κ

t
ψ ′(s) f (s,μn(s))ds,n ∈ N

}

+
1

Γ(α)
ϑ
{∫ t

ι
ψ ′(s) f (s,μn(s))ds,n ∈ N

}

� ε
2

+
1

Γ(α)

∫ κ

ι
ψ ′(s)ϑ { f (s,μn(s)),n ∈ N}ds

� ε
2

+
ϑ(α ,ψ)(V )

Γ(α)

∫ ∞

0
ψ ′(s)[1+ ψα(s,0)]�(s)ds.
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From (13), we know that

ϑ(α ,ψ)(NV ) � ε
2

+
ϑ(α ,ψ)(V )

Γ(α)

∫ ∞

0
ψ ′(s)[1+ ψα(s,0)]�(s)ds.

If

ϑ(α ,ψ)(NV ) � ε
2

+
ϑ(α ,ψ)(V )

Γ(α)

∫ ∞

0
ψ ′(s)[1+ ψα(s,0)]�(s)ds < ε,

this implies that

ϑ(α ,ψ)(V ) <
Γ(α)

2
∫ ∞
0 ψ ′(s)[1+ ψα(s,0)]�(s)ds

ε,

so that implication (12) is fulfilled, we take

ρ =
Γ(α)−2

∫ ∞
0 ψ ′(s)[1+ ψα(s,0)]�(s)ds

2
∫ ∞
0 ψ ′(s)[1+ ψα(s,0)]�(s)ds

ε.

So, N is a Meir-Keeler condensing operator via ϑ(α ,ψ) , finally all the hypotheses of
the theorem 1 are fulfilled, which ensures us that the solution sets of problem (1)–(3) is
nonempty and compact. �

4. Example

As an application of our results we consider the following fractional differential
equation.

RLD
3
2 ,ψy(t) =

(√
ψ0.5(t,0)yn(t)
1+ ψ1.5(t,0)

+
sin(t)
1+ e2t

)∞

n=1

, t ∈ (0,+∞), (14)

RLI
1
2 ,ψ
0+ y(0) = (1,0, . . . ,0, . . .), (15)

RLD
1
2 ,ψ
0+ y(∞) = (1,0, . . . ,0, . . .). (16)

where ψ(t) =−arctan( 1
1+t ), this implies that ψ ′(t) = 1

1+(1+t)2 and ψη (t,0) = [ψ(t)+
π
4 ]η . Let

E = {(y1,y2, . . . ,yn, . . .) : sup
n
|yn| < ∞},

with the norm ‖y‖ = supn |yn| , then (E,‖.‖) consists a Banach space, by comparing
with the (1)–(3), we notice that

α = 1.5 and f (t,y(t)) = ( f (t,y1(t)), . . . , f (t,yn(t)), . . .),

where

f (t,yn(t)) =

√
ψ0.5(t,0)yn(t)
1+ ψ1.5(t,0)

+
sin(t)
1+ e2t , n ∈ N

∗.
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We shall verify the conditions (H1) and (H2) . Evidently, f is continuous function in
(0,∞)×E and

‖ f (t,y(t))‖ �
√

ψ0.5(t,0)
1+ ψ1.5(t,0)

‖y(t)‖+
1

1+ e2t .

With the aid of simple computation we find that

∫ ∞

0
ψ ′(t)b(t)[1+ ψ1.5(t,0)]dt =

∫ ∞

0

dt
1+(1+ t)2 =

π
4

< Γ(1.5)

and ∫ ∞

0
ψ ′(t)a(t)dt =

∫ ∞

0

dt
(1+ e2t)(1+(1+ t)2)

� π
2

< ∞.

Finally, we verify condition (H3) . For any bounded set Ω ⊂ Cα ,ψ((0,∞),E) , we have

f (t,Ω(t)) =

√
ψ0.5(t,0)

1+ ψ1.5(t,0)
Ω(t)+

{
sin(t)
1+ e2t

}
.

Then

ϑ( f (t,Ω(t)) �
√

ψ0.5(t,0)
1+ ψ1.5(t,0)

ϑ(Ω(t)).

Since
∫ ∞
0 ψ ′(t)�(t)[1 + ψ1.5(t,0)]dt � Γ(1.5)

2 , we conclude that condition (H3) is sat-
isfied. Therefore, Theorem 2 ensures that the solution sets of problem (14)–(16) is
nonempty and compact.

Conclusion

Our aim in this paper is to study the existence of solution sets and its topological
structure for some fractional differential equation with ψ Riemman Liouville derivative
on an unbounded domain, which implies a lack of compactness, we avoid this obstruc-
tion by using a special Banach space. We show that this constructed space is in a natural
way, in the sense that, one recover the characterization of the relatively compact subset
in the space C(J,E) when J is compact. Our main result is based on tools from classical
functionnal analysis and Meir-Keeler condensing operators combined with measure of
non-compactness.
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